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Numerical solutions to a model equation that describes cell population dynamics are presented and
analyzed. A distinctive feature of the model equation~a hyperbolic partial differential equation! is
the presence of delayed arguments in the time (t) and maturation (x) variables due to the nonzero
length of the cell cycle. This transport like equation balances a linear convection with a nonlinear,
nonlocal, and delayed reaction term. The linear convection term acts to impress the value of
u(t,x50) on the entire population while the death term acts to drive the population to extinction.
The rich phenomenology of solution behaviour presented here arises from the nonlinear, nonlocal
birth term. The existence of this kinetic nonlinearity accounts for the existence and propagation of
soliton-like or front solutions, while the increasing effect of nonlocality and temporal delays acts to
produce a fine periodic structure on the trailing part of the front. This nonlinear, nonlocal, and
delayed kinetic term is also shown to be responsible for the existence of a Hopf bifurcation and
subsequent period doublings to apparent ‘‘chaos’’ along the characteristics of this hyperbolic partial
differential equation. In the time maturation plane, the combined effects of nonlinearity, nonlocality,
and delays leads to solution behaviour exhibiting spatial chaos for certain parameter values.
Although analytic results are not available for the system we have studied, consistency and
validation of the numerical results was achieved by using different numerical methods. A general
conclusion of this work, of interest for the understanding of any biological system modeled by a
hyperbolic delayed partial differential equation, is that increasing the spatio-temporal delays will
often lead to spatial complexity and irregular wave propagation. ©1996 American Institute of
Physics.@S1054-1500~96!00903-2#
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When models of cell populations are built to account for
biochemical processes and for the age distribution o
cells, the resulting mathematical framework typically in-
volves differential equations with inherent delays. In this
work, the basic mechanisms involved in cell replication
were accounted for in the derivation of a prototype delay
equation model, which contains both temporal and spa
tial delays. The predictions of this model include soliton-
like propagating fronts and spatio-temporal oscillations
in cell densities, along with bifurcations and chaos. In-
creasing the spatiotemporal delays tends to lead to in
creased complexity.

I. INTRODUCTION

For cellular populations reproducing through binary
sion ~in contrast, e.g., to budding yeast!, the dynamics are
most naturally described in a modeling context by time-a
maturation models~see Ref. 1 for an excellent introduction!.
Often because of the nature of the boundary conditions, t
partial differential equation models can be reduced to dif
ential delay equation type models2 or to delayed partial dif-
ferential equation formulations.3–7

In this paper, the dynamics of a mathematical model
CHAOS 6 (3), 1996 1054-1500/96/6(3)/477/16/$10.0
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cell replication, in which there is simultaneous proliferatio
and maturation, is studied. The cell population dynamics a
described by a first order nonlinear partial differential equ
tion in which there is retardation in both the temporal an
maturation variables. This model is novel because dynami
systems with retardation in both time and space have n
been extensively studied. The resulting first order nonline
partial differential equation for the cell densityu(t,x), in
which there is retardation in both the temporal (t) and matu-
ration (x) variables, is studied for the initial condition
w(x)5xn. With this initial condition, varying the parameters
of the model can lead to different types of dynamics rangin
from a single stationary steady state to turbulent soluti
behaviour, and the eventual solution behaviour of the mod
also displays significant sensitivity to the initial function
~multistability!.

The model analyzed here is an extension of a previo
model8 that successfully accounted for some of the maj
clinical features of periodic hematopoiesis in humans and t
experimental manifestations of this disorder in the gra
collie.2 As such, it offers the first steps toward the develop
ment of a tool with which to understand the effects of recom
binant cytokines9,10on the dynamics of this disease, and wit
which one can explore the often confusing responses of
hematopoietic system to either chemotherapy, or bone m
4770 © 1996 American Institute of Physics
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row transplant preceded by whole body irradiation.11,12

The plan of the paper is as follows. In Section II, th
motivation behind the model and its development are p
sented. In Section III we briefly summarize the numeric
methods we have used to investigate the solution propert
In Section IV, we show through a sequence of illustrativ
numerical examples how traveling front solutions may aris
and that these solutions have soliton like properties. An u
derstanding of these properties is given by results13 on an
analogous problem in the absence of retardation and non
cality, and these are reviewed in the first part of Section I
In Section V we turn to a consideration of the multi-stab
behaviour of the eventual solutions. We first review previo
work on this problem,4–7 and then present a number of new
numerical results on the dynamics of the temporal and spa
solutions that indicate the complexity of the multistabilit
and bifurcation structure of this interesting and novel syste
The paper concludes with a brief discussion in Section V

II. DEVELOPMENT OF THE BIOLOGICAL MODEL

A cell produces two daughter cells by going through tw
phases, an interphase and a division phase. Since e
daughter cell must contain the same components as its pa
cell, in order for a cell to divide it must duplicate all of its
contents. This occurs during the interphase. The interphas
divided into three phasesG1 , S, andG2 . During theG1

phase, the cell increases its rate of biosynthesis before en
ing theS phase during which the cell synthesizes its DN
and duplicates the contents of its nucleus. The cell then g
through theG2 phase before entering the division phase
M phase and dividing via mitosis and cytokinesis.14

Cells are considered to be actively proliferating if the
are in theG1/S/G2/M cycle and if they are committed to
replicating their DNA and continuing through mitosis an
cytokinesis to produce two daughter cells. Leta denote the
cell age, i.e., the position of the cell in the cell cycle, wit
a ranging froma50, at the point of commitment, toa5t, at
the point of cytokinesis. Some authors have examined
role of distributions of ages in time age models, notab
Refs. 15–21, and obtained results that can be applied
some types of cell cycle models. Their results indicate,
least in a model without the maturation dimension, signi
cant new effects are not to be expected to arise from a d
tribution of cell cycle times and we have not considered
here, though it is the subject of active investigation in o
group.

As well as proliferating, cells can also be characteriz
by other processes such as maturation. The level of matu
tion is measured in different ways for different cells. In kee
ing with experimental evidence,22,23 we assume that the ag
ing and maturation processes take place simultaneously
independently. Letx represent the maturation variable. If th
maturation variable runs from a minimal value ofxmin to a
finite maximal value ofxmax, then we may rescalex and
replace it with a newx given by (x2xmin)/(xmax2xmin) so the
scaled maturation variable runs from 0 to 1. Thus, the ran
of the values ofx is taken fromx50 to x51 without loss of
CHAOS, Vol. 6
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generality. Since cells can mature at different rates depen
ing on their maturationx we assume that it is linear and a
maturation rater is introduced so the velocity of maturation
is V(x)5rx for x P (0,1) andV(0)50 andV(1)5r .

We further assume that a cell can disappear throug
death at any time during its life, and we letg denote the rate
at which cells die.g is positive and assumed to be indepen
dent of the age or the maturation level of the cell.

It should be noted that a number of authors have em
ployed time-age or time-maturation models for the descrip
tion of cell replication processes, but the terminology is by
no means consistent. For example, in Refs. 24–26 mode
are discussed in which age denotes the time since the birth
a cell—just as we do. In Ref. 27, however, the term matura
tion is used for this quantity. Given the quite explicit defini-
tions of the terms age and maturation as used here, the rea
should have no difficulty in discerning the differences.

We now turn to a derivation of the equations governing
this process. The derivation could have been carried o
along the lines of that in Ref. 3, but here we present a som
what abbreviated andad hoc derivation. The reader inter-
ested in the full details should consult Ref. 3.

Let U(t,x,a) denote the density of proliferating cells,
wherex anda are as described above andt is time. Then

]U

]t
1

]U

]a
1

]@rxU#

]x
52gU ~1!

is the conservation equation forU(t,x,a) with initial condi-
tion

U~0,x,a!5G~x,a!, for ~x,a!P@0,1#3@0,t#. ~2!

The total number of proliferating cells is given by

u~ t,x!5E
0

t

U~ t,x,a!da, ~3!

and the boundary conditions for the system are

U~ t,x,0!52U~ t,x,t!5F ~u~ t,x!!. ~4!

The first equality reflects the fact that two daughter cell
generated ata5t, i.e. at the end of the cycle, constitute the
input flux for the cell cycle ata50. The second equality
states that the input fluxF is assumed to be a function of the
total number of proliferating cells at a given maturation
level. Equation~1! can be rewritten as

]U

]t
1

]U

]a
1rx

]U

]x
52@g1r #U. ~5!

The general solution of~5! can be calculated using the
method of characteristics.28 The characteristic equations are

]t

]s
51,

]a

]s
51,

]x

]s
5rx, and

]U

]s
52@g1r #U,

~6!

which, after integration, give the set of parametric equation

t~s!5s1t0 , a~s!5s1a0 ,
~7!

x~s!5x0e
rs, U~s!5U0e

2@g1r #s.
, No. 3, 1996
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To obtain an explicit solution, two cases are consider
0<t<a and a,t. For 0<t<a, the initial condition
U(0,x,a)5G(x,a) is used. Thus,t5s50 on the initial
curve and

t5s, a5t1a0 , x5x0e
rt , U5U0e

2@g1r #t, ~8!

which gives

U~ t,x,a!5G~xe2rt ,a2t !e2@g1r #t, 0<t<a. ~9!

For a,t, U(t,x,a)5U(t,x,0). Thus,a5s50 on the initial
curve and

t5a1t0 , a5s, x5x0e
ra, U5U0e

2@g1r #a, ~10!

which gives

U~ t,x,a!5U~ t2a,xe2ra,0!e2@g1r #a, a,t. ~11!

Hence,

U~ t,x,a!5H G~xe2rt ,a2t !e2@g1r #t, 0<t<a,

U~ t2a,xe2ra,0!e2@g1r #a, a,t.
~12!

Equation~5! can be integrated over the age variablea
which, in conjunction with~3!, gives

]u

]t
1rx

]u

]x
52@g1r #u2$U~ t,x,t!2U~ t,x,0!%. ~13!

After applying the boundary conditions~4! and using the
general solution~12!, equation~13! becomes

]u

]t
1rx

]u

]x
52@g1r #u

1H G~xe2rt ,t2t !e2@g1r #t, 0<t<t,

F ~u~ t2t,xe2r t!!e2@g1r #t, t,t.
~14!

The interesting case to study is whent,t, i.e. when

]u

]t
1rx

]u

]x
52@g1r #u1F ~u~ t2t,xe2r t!!e2@g1r #t,

~15!

since we are interested in the long time behaviour of
solution. As described above, the input fluxF is a function
of the total number of proliferating cells at a given matur
tion level.

Realizing that the input fluxF is given by the product of
the proliferation rate and the cell densityu, and taking the
proliferation rate to be a linearly decreasing function ofu
given by 2c(12u), we have

F ~u!52cu~12u!. ~16!

@Note that it would be more realistic biologically to take
non-negative monotone decreasing function for the prolife
tion rate such as

2c
um

um1um
, u,m.0. ~17!
CHAOS, Vol.
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However, we have chosen the linearly decreasing prolife
tion rate to facilitate the analytic computation of the solutio
to ~15! in the case thatt50.]

If we also set

d5g1r and l5ce2~g1r !t, ~18!

then ~15! becomes

]u

]t
1rx

]u

]x
52du1lut~12ut!, ~19!

whereut is defined by

ut~ t,x![u~ t2t,xe2r t!. ~20!

Both the nonlocality (xe2r t) and the temporal (t2t) retar-
dation, which are the essential novel ingredients of~15!, are
clearly represented in~19!. These two features make th
study of ~15! extremely interesting. The study of system
with both nonlocality and temporal retardation has been p
tially explored by Rey and Mackey.4–7

Throughout this paper, we employ the initial condition

IC:u~ t2t,xe2r t!5w~x!5xn, 0<t<t, n>1, ~21!

and the boundary condition

BC:u~ t,x50!50, tPR1. ~22!

We were motivated to study this specific form of initial con
dition because it allows us to explore the possible con
quences of widespread destruction of proliferating cells,
would be encountered, for example, after chemothera
and/or radiotherapy. As in the experimental/clinical situati
this initial condition makes the destruction an inverse fun
tion of cell maturation.

III. NUMERICAL METHODS OF SOLUTION

The numerical methods used to integrate the partial d
ferential delay equation are the Galerkin finite eleme
method29–31 and the method of characteristics,28 and in this
section we briefly review both.

A. The Galerkin finite elements method (GFEM)

The GFEM assumes that given a nonlinear partial diff
ential equation such as~19!, u(t,x) can be accurately repre
sented by an approximate solutionua(t,x) of the form

ua~ t,x!5(
j51

N

uj~ t !w j~x!, ~23!

where theuj are unknown coefficients, thew j are known
basis functions, andN is the number of nodes in the discret
zation of the maturation variable. Substitutingua into the
nonlinear partial differential equation~19!, the nonzero re-
sidualR is obtained:

R5
]ua
]t

1rx
]ua
]x

1dua2luat
~12uat

!. ~24!

R cannot be null sinceua is an approximate solution. Henc
R is forced to zero, which gives the weighted residual:
6, No. 3, 1996
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Fi5E
0

1F]ua]t
1rx

]ua
]x

1dua2luat
~12uat

!Gw idx,

i51, . . . ,N, ~25!

wherew i are the same basis functions as in~23!.
A time discretization of (]ua /]t) is then implemented

using a finite difference scheme and the resulting set of n
linear algebraic equations can be solved using an itera
root finder such as the Newton–Raphson scheme.29–31 The
code implementing the GFEM is written inFORTRAN. Linear
basis and weighting functions are used as well as a unifo
mesh of 400–600 elements (N5401–601). The time inte-
gration scheme is a first order implicit predictor correct
method with fixed time step. With no delay the time step
h51/50, and with delay the time step ish5t/50.

B. The method of characteristics

The method of characteristics is applicable to quasiline
partial differential equations. The main idea behind th
method of characteristics is to transform the delayed par
differential equation into an ordinary delayed differentia
equation which one can then solve using the initi
condition~s!.28

The x characteristics of~19! are given byx(t)5x0e
rt .

Along these characteristics,~19! is rewritten as

du

dt
52du1lut~12ut!, ~26!

where

u~ t,x~ t !![u~ t,x0e
rt ! ~27!

and

ut~ t,x~ t !![u~ t2t,x0e
r ~ t2t!!. ~28!

The code for the integration along characteristics is writt
in C. A fourth order Runge–Kutta method is used with
constant time step of 1025.

IV. PROPAGATING FRONT SOLUTIONS

In this section we numerically explore the nature o
propagating front solutions to~15!. There has been consider
able work13,32–38characterizing the nature of the solutions t
~15! in the absence of a delay (t50) and thus the absence o
nonlocality, and we first review the major results of impo
tance.

A. Results for t50

There are several interesting results concerning the so
tion behaviour of first order partial differential equation
with respect to stability and exactness~see above references!,
and most of this work was initiated by the work of Lasota13

who considers the partial differential equation

]u

]t
1c~ t,x!

]u

]x
5 f ~ t,x,u!, ~ t,x!P@0,̀ #3@0,1#, ~29!

with the initial condition
CHAOS, Vol.
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u~0,x!5w~x!, for xP@0,1#. ~30!

In this section we discuss those results as they relate to t
unretarded (t50) version of~19!.

The results of Lasota13 are directly applicable to the sys-
tem studied here with no delay (t50) and given by

]u

]t
1rx

]u

]x
52du1lu~12u!, ~31!

where

d5g1r and l5c, ~32!

and the initial and boundary conditions are

IC:w~x!5u~0,x!5xnm, xP@0,1#, ~33!

BC:u~ t,x50!50 tPR1. ~34!

An analytic solution of ~31! can be obtained using the
method of characteristics, and is of some help in illuminatin
the numerical behaviour discussed in the following sectio
whent.0. This solution is

u~ t,x!5
@~l2d!/l#~xe2rt !net~l2d!

~xe2rt !n~et~l2d!21!1@~l2d!/l#
. ~35!

The limiting behaviour of the analytic solution~35! is as
follows @remember the condition~34!#:

lim
t→`

u~ t,x!55
0, 0,l2d,nr,
~l2d!xn

l2d1lxn
, l2d5nr,

l2d

l
, l2d.nr.

~36!

The solution behaviour obtained fornr,l2d, whenn
is taken to be sufficiently large, is that of moving fronts.
Front solutions, as defined by Collet and Eckman,39 ‘‘inter-
polate between two~different! stationary solutions at
x56`; in addition, they move with a certain speed in the
laboratory frame.’’ Here, this definition is slightly modified.
Since x is only considered in the interval@0,1#, the front
solution interpolates between two stationary solutions
namely the trivial solution, atx50, and the solution
(l2d)/l, at x51, and the front speed is thus time
dependent.

The solution behaviour of moving fronts fornr,l2d
can be summarized as follows: increasing eithern or r slows
down the rate at which the solution approaches its limiting
behaviour, and hence reduces the speed at which the fro
propagates towards the impermeable boundary atx50. The
former effect is due to the fact that increasingn produces a
steeper initial profile, while the latter effect arises becaus
increasingr increases the strength of the convective term
(r ]u/]x) which, in turn, opposes front propagation.

B. New results for t>0

There is no known method to obtain an analytic solution
of ~19! with t.0. Hence the results of this section are nu
6, No. 3, 1996
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FIG. 1. Effect of increasingt on the solution behaviour forn520, r50.01, d51, andl53.
a

r

d,
sh
ng
e

o

merical solutions to~19! subject to conditions~21! and~22!.
The accuracy of these results was checked in three way

~1! The numerical solutions obtained witht50 were com-
pared to the analytic solution~35!.

~2! In the GFEM, the number of elements were doubled
quadrupled to check for changes in the solution beh
iour.

~3! The solutions obtained with the GFEM were compa
to those obtained numerically using the method of ch
acteristics fort.0.

The results obtained from all of these checks indic
that the GFEM code is correct in the sense that the num
CHAOS, Vol.
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cally determined solutions match the analytic ones, an
when analytic solutions are not available, it produces me
independent solutions that agree with those obtained usi
the method of characteristics. Throughout this section w
taked51, l53, r50.01, andn520, and examine the effect
of t on the solution behaviour.

1. Effect of increasing t

The effect of increasingt is illustrated in Fig. 1. When
t is close to 0, it can be shown that the solution is similar t
the solution fort50, i.e. the solution for smallx starts at the
trivial solution, and asx increases towards 1, smoothly ap-
6, No. 3, 1996
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Dow
FIG. 2. Phase-plane diagrams of the solution behaviour for various values oft with n520, r50.01, d51, andl53.
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proaches the (l2d)/l solution. However, ast is increased
the speed at which the front moves towards the imperme
boundaryx50 decreases until the front completely disa
pears for a critical value oft5tc . At t5tc the solution is
no longer attracted to the (l2d)/l solution. This bifurcation
in solution behaviour appears betweent54 and t54.75,
and is due to the fact that the long time behaviour switc
from the (l2d)/l solution, fort,tc to the trivial solution
whent.tc . This switch is similar to the one Lasota

13 dem-
onstrated analytically fort50 @cf. equation~36!#, though
much more complex than in the simple case oft50.

Another change in the solution behaviour occurs ast is
increased from 0 totc . Although the solution still starts ou
at the trivial solution for smallx, asx increases, instead o
making the transition smoothly to the (l2d)/l solution, the
solution approaches (l2d)/l in an oscillatory fashion. The
amplitude of these oscillations increases ast increases. This
is clearly observed, in Figure 1, by the change in solut
behaviour betweent50.1 andt54.

2. An oscillating solution around (l2d)/l

In Figure 1, it was observed that oscillations appea
with a small visible peak fort50.5 and that ast was in-
creased the amplitude of the oscillations became larger.
amplitude of the oscillations, observed in Figure 1d, d
creases asx increases; these oscillations are theref
damped oscillations. Further, it can be shown that ast is
increased the wave length increases. Hence, the re
shown in Figure 1d indicate that the oscillations in the so
tion behaviour are damped with increasing wave length
t is increased.

To obtain further insight into these phenomena,
(u,ux) phase-plane diagrams of the solution behaviour
shown in Figure 2 where]u(t,x)/]x is plotted versus
CHAOS, Vol.
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u(t,x). The phase-plane diagram fort50 was obtained us-
ing the analytic solution~35!:

du

dx
5

@~l2d!/l#2~xe2rt !nnet~l2d!

@~xe2rt !n~et~l2d!21!1@~l2d!/l##2x
. ~37!

The phase diagrams fort.0 were obtained using a differ
ence scheme, and are not completely smooth becaus
computational limitations.

In the phase diagrams, the increase in the steepnes
the front is shown by the increase in the values ofdu/dx.
For instance, comparing the phase diagrams in Figure 2
t50 ~Figure 2a! andt51 ~Figure 2b!, one can see that the
change in steepness of the front is not as great between t
t510 and t520. This is due to the fact that the speed
propagation of the front is slower fort51 than for t50.
Further, the appearance of the oscillations is reflected in
spiraling around the point (l2d)/l. The differences in the
spirals fort51 ~Figure 2b! and for t53 ~Figure 2c! illus-
trate that, ast is increased, the amplitude and the wa
length of the oscillations become greater.

C. Section summary

The numerical study of~19!, with the initial condition
~21! and boundary condition~22! shows interesting solution
behaviour forn@1. As we have shown in Section IV A, the
analytic solution witht50 is a propagating wave front. The
parametersn andr vary the speed at which the front propa
gates and can also lead to a change in stability. The num
cal solution witht.0 is also a propagating front. Howeve
as the delay is increased, oscillations appear near the w
front. This type of solution can be associated with solito
like behaviour. Although the changes from a monotone fro
to an oscillatory front in a delayed partial differential equ
tion reported here appear to be new, this type of behavi
6, No. 3, 1996
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has been observed in the solution of the KdV Burge
equation.40 As the delay is increased past a critical del
tc , there is a change in stability, and the long term behavi
becomes that of the trivial solution.

From a biological perspective these numerical results
dicate that following a massive depletion of cells, the cellu
population will reconstitute itself with a speed that decrea
as the cell cycle timet increases. This repopulation may b
either uniform, or oscillatory, but once the cell cycle tim
t exceeds a critical threshold value oftc repopulation is
impossible and the entire cellular population is driven
extinction.

V. MULTISTABLE SOLUTION BEHAVIOUR

In this section we turn from an examination of the prop
gating front solutions of Section IV to a consideration of t
dependence of the eventual solution behaviour on the in
function. Throughout, we will taken51 in the initial func-
tion equation~21!.

A. Previous results

Rey and Mackey3,4 studied the dynamics of the mode
~19! for two initial conditionsw(x)5x1c andw(x)5x. In
this section, their results forw(x)5x are briefly summarized.

Forn51, the long time behaviour of~19! with t50 and
0,d,l with w(x)5x is

lim
t→`

u~ t,x!55
0, 0,l2d,r ,
~l2d!x

l2d1lx
, l2d5r ,

l2d

l
, l2d.r .

~38!

To extend these results to the case oft.0, the model~19!
can be rewritten, using the method of characteristics, as

du

dt
52du1lut~12ut!, ~39!

where

u~ t,x~ t !![u~ t,x0e
rt ! ~40!

and

ut~ t,x~ t !![u~ t2t,x0e
r ~ t2t!!. ~41!

Using this method it is possible to determine the local te
poral and spatial stability of the steady states separately

Letting t51 and linearizing~39! around the trivial so-
lution, Rey and Mackey showed that there is anr[r c which
determines the local stability of the three solutions wh
subjected to linear spatial perturbations. Forr.r c , the
trivial solution is locally stable and the two other solution
are locally unstable. Whenr,r c the (l2d)/l solution is
locally stable while the other two are locally unstable. F
nally, for r[r c , the only solution which is locally stable is
nonhomogeneous one which we denote byunh(x) through-
out. This nonhomogeneous solution is locally stable wh
l5(d1r )er .
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Linearizing ~39! around the nontrivial steady sta
(l2d)/l gives the equation

dz

dt
52dz1~2d2l!zt , ~42!

wherez5u2@(l2d)/l#. Under the assumption that the s
lutions to the linear equation~42! are of the formz(t).ekt

we obtain the eigenvalue equation

k52d1~2d2l!e2k. ~43!

Since a transition from a single steady state to a perio
cycle is expected, we take

k5m1 iv, ~44!

which then gives

m1 iv52d1~2d2l!e2me2 iw. ~45!

Separating real and imaginary parts, this last result can
written as

m52d1~2d2l!e2m cosv,

v52~2d2l!e2m sin v.
~46!

Thus from the results of Hale,41 the nontrivial steady state
(l2d)/l is locally stable@m5Rel,0] if and only if

A~2d2l!22d2, cos21S d

2d2l D , ~47!

and thus locally unstable when the inequality is reversed
The equality

A~2d2l!22d25 cos21S d

2d2l D ~48!

defines a bifurcation point marking the transition from
single locally stable solution to a locally stable period
cycle, and there are three possible spatial Hopf bifurcati
depending on the relationship between the line compose
the (l,d) values satisfying this temporal Hopf bifurcatio
~denote this line by THB!, and the line composed of th
(l,d) values satisfyingl5(d1r )er for which theunh(x)
solution is stable. Denote this latter line by SS.

If the line THB is always above the line SS~this occurs
for 0,r,0.7455) there is a simultaneous spatial and te
poral Hopf bifurcation occurring when the (l2d)/l solu-
tion loses its stability. The temporal bifurcation leads to p
riodic solution behaviour while the spatial bifurcation lea
to left traveling waves. However, if the line SS crosses
line THB ~this occurs when 0.7455,r,1.0986) there is a
spatial Hopf bifurcation occurring when theunh(x) solution
loses its stability. This Hopf bifurcation induces slow le
traveling waves. Finally, if the line SS is always above
line THB ~this occurs whenr.1.0986) there is a spatia
Hopf bifurcation also occurring when theunh(x) solution
loses its stability. In this situation the Hopf bifurcation lea
to chaotic traveling waves. These results are summarize
Figure 3.
6, No. 3, 1996
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Down
FIG. 3. Diagram of the three possible scenarios for which spatial Hopf bifurcations occur.
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B. New results

In this section the case wherer ! 0.7455 isconsidered.
For these values ofr , a simultaneous temporal and spat
Hopf bifurcation occurs when

A~2d2l!22d25 cos21S d

2d2l D ~49!

is satisfied. The changes in solution behaviour of~19! subject
to conditions~21! and ~22! will be studied as the paramete
l is increased. With reference to Figure 3, thel value al-
ways lies above the THB curve.

1. Temporal bifurcations occurring after the Hopf
bifurcation

The bifurcation diagram for~19! is shown in Figure 4.
This bifurcation diagram is obtained by calculating the so

FIG. 4. Temporal bifurcation diagram for the model obtained by num
cally computing the solution along thex characteristics given by~39! and
plotting the local extrema ofu(t,x) versusl.
CHAOS, Vol.
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tion along the characteristics given by~39! and plotting the
local extrema of the solutionu(t,x) as a function ofl ~the
l ’s are incremented by 1025) for 700,t,750. In all cases
d, x0 , and r are held constant with the following values
d51, x050.1, andr50.01. The Hopf bifurcation occurs at
l.4.25 which concurs with the analytic results given by th
local stability analysis@cf. equation~49!#. A period doubling
bifurcation occurs atl.5.412. Atl.5.793 there is a jump
in the solution and a new cycle of period 8 occurs. Asl is
increased past 5.793 the cycle of period 8 gives rise to
turbulent solution which appears to be chaotic. This turbule
solution ends abruptly atl.5.854 at which point a new
cycle of period 2 occurs.

To better visualize what is happening in the region fro
the first bifurcation~from a period 4 cycle to a period 8
cycle! to the second bifurcation~from a turbulent solution to
a period 2 cycle!, the bifurcation diagram of Figure 4 is
magnified for 5.79,l,5.87, and shown in Figure 5.

Figure 5b shows a period doubling route to chaos. A
l is increased, the period doublings occur at smaller inte
vals of l until the period doublings are no longer distin
guishable and the solution becomes chaotic atl.5.8194.
Figures 5b–5c show that there are periodic windows in t
chaotic attractor.

Subduction is a term given by Grebogiet al.42 to de-
scribe the appearance of a nonchaotic attractor within a c
otic attractor causing the chaotic attractor to be replaced
the nonchaotic attractor. It would appear that these windo
arise in Figure 5 by the appearance of periodic cycles in t
chaotic attractor which destroy the chaotic attractor v
subduction.

The chaotic attractor reappears through new period do
bling routes to chaos and then widens. This widening
probably caused by the intersection of a locally unstab

ri-
6, No. 3, 1996
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Downloa
FIG. 5. Magnification of the bifurcation diagram in Figure 4 for 5.79,l,5.87.
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cycle and the distinct chaotic bands; this phenomenon
been called an interior crisis.42 The largest window occurs
when 5.8356,l,5.8372. The cycle is of period 12 in thi
window.

In Figure 5d the chaotic attractor suddenly disappe
and a new cycle of period 2 appears. By a conjecture
Grebogiet al.,42 the destruction of this chaotic attractor
most probably caused by the collision of an unstable o
with the chaotic attractor. It is not possible to determine fro
the numerical evidence of Figure 5d where the unstable o
which causes the destruction is located.

2. Multistability of the solution along the x
characteristics

The sudden jump from a period 4 cycle to a period
cycle as shown in Figure 5a is an indication that there
two coexisting attractors of the solution. Each attractor m
have a basin of attraction such that given an initial condit
in the basin of attraction the solution converges to the att
tor ast→`.

There has been an extensive study of the geometr
basins of attraction and of their boundaries in nonlinear
turn maps obtained from ordinary differential equations.43–45

These basins of attraction can be extremely complicated,
in some cases are fractal in nature. Sensitivity to initial c
ditions has previously been studied for differential de
equations, and it has been shown that they can possess
tistable solutions.46–54To determine whether the model~19!
has two coexisting attractors the solutions obtained along
x characteristic atl55.79 and atl55.81 are taken as initia
CHAOS, Vol.
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conditions.~Recall that atl55.79 the solution consists of a
cycle of period 4 and atl55.81 the solution consists of a
cycle of period 8; cf. Figure 4.!

The bifurcation diagram for the solution with an initial
condition which is the solution atl55.79 is shown in Figure
6a. For comparison, in Figure 6b, the solution bifurcation
diagram of Figure 4 is magnified for 5.7,l,5.9. The jump
to a period 8 cycle as well as the subsequent period do
blings and chaotic bands have completely disappeared~com-
pare with Figure 6b! and instead there is a smooth transition
from the cycle of period 4 to the cycle of period 2 at
l.5.82. Call the attractor shown in Figure 6a attractor A
Comparing Figure 6a and Figure 6b, one sees that attractor
becomes unstable in Figure 6b for 5.793,l,5.854.

The bifurcation diagram for the solution when the initial
condition is the solution atl55.81, is shown in Figure 7a.
In Figure 7b, the bifurcation diagram in Figure 4 is again
magnified for 5.7,l,5.9.

From Figure 7a, we see that instead of a solution bifur
cation atl.5.793 from a period 4 cycle to a period 8 cycle,
there is now a bifurcation from a period 4 cycle to a new
period 4 cycle atl.5.732. The new period 4 cycle then
gives rise to the period 8 cycle atl.5.788. The period
doubling route to chaos as well as the periodic windows an
the destruction of the chaotic attractor occur as before. Ca
the attractor shown in Figure 7a attractor B. Comparing Fig
ure 7a and Figure 7b, one sees that attractor B is unstable
Figure 7b for 5.732,l,5.793.

One can very precisely determine the range of values o
l, for which the initial conditions~which are given by the
6, No. 3, 1996
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FIG. 6. ~a! Solution bifurcation behaviour along thex characteristics using the solution atl55.79 as an initial condition.~b! Magnification of the bifurcation
diagram in Figure 4 for 5.79,l,5.89.
n

a

r is

d to
gin-
8,
solution atl) give rise to solutions which converge to attra
tor B ast→`. If the initial condition is given by the solutio
for a value ofl such that 5.79265,l,5.85408, then the
solution converges to attractor B ast→`. If the initial con-
dition is given by a solution forl55.79265 orl55.85408
then the solution converges to attractor A ast→`. Thus
l55.85408 andl55.79265 are on the boundary of the b
sin of attraction. In Figure 8 the solution bifurcation beh
iors are shown for 5.7315,l,5.7319 with the initial con-
CHAOS, Vol.
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dition taken as the solution atl55.792654. The solution is
plotted for 500,t,600 and thel ’s are incremented by
1027. This figure shows what happens when one attracto
replaced by another attractor.

Due to the appearance of a new cycle of period 4 an
the rounding at the extremities of the branches at the be
ning of the new cycle of period 4 in Figure 7a and Figure
we are led to conjecture that at the value ofl corresponding
FIG. 7. ~a! Solution bifurcations along thex characteristics using the solution atl55.81 as an initial condition.~b! Magnification of the bifurcation diagram
in Figure 4 for 5.79,l,5.89.
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487Crabb, Mackey, and Rey: Fronts, chaos and multistability
to the lower limit of the basin of attraction (l.5.79265), at
which the new cycle of period 4 appears, a tangent bifur
tion occurs creating a stable and unstable cycle of period

We further conjecture that at the value ofl correspond-
ing to the upper limit of the basin of attractio

FIG. 8. Solution behaviour when attractor A is replaced by attractor B
CHAOS, Vol.
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(l.5.85408) the unstable cycle of period 4 collides with t
chaotic attractor causing the destruction of the chaotic attr
tor. This would agree with the Grebogiet al. conjecture.42

Figure 9 shows the postulated unstable cycle of period
~plotted as dashed curves!.

FIG. 9. Potential unstable cycle of period 4..
FIG. 10. Temporal and spatial solution forl54.5.
6, No. 3, 1996
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Down
FIG. 11. Temporal and spatial solution forl55.5.
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3. Spatial solution behaviour occurring after the Hopf
bifurcation

In Figures 10–13 the solution is shown as a function
x @remember thatx is the maturation variable of the mode
equation~19!#. In the top left hand corner of each of thes
figures the temporal bifurcation diagram is shown. In the t
right hand corner the solution is shown as a function ot
along thex characteristics. The four other plots are solutio
as functions of the maturation variable.

As in the previous section, these solutions were obtai
using the method of characteristics.d and r were held con-
stant at the valuesd51 and r50.0001. Each solution was
calculated for a givent on 700 characteristics equally space
on the interval@0,1#.

In Figure 10 the solutions are shown forl54.5. Since
r,,0.7455, the spatial and temporal Hopf bifurcation occ
simultaneously. Thus in both cases the solution is just ab
the Hopf bifurcation. The length of the temporal period
approximately 3.1. The spatial solutions shown span
whole length of the temporal period and thus the solution
t5400.4 appears identical to the solution att5403.5. As
CHAOS, Vol. 6
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shown in Ref. 4, if we denote the period in the (t,x) plane by
Tx and the period along the characteristics byTc , then near
the Hopf bifurcation we haveTx5Tc /(12r ), in agreement
with these observations.

This behaviour is again mirrored in Figure 11 where t
solutions are shown forl55.5. The temporal solution ha
undergone a period doubling and the length of the perio
approximately 6.55. The spatial solutions shown again s
the length of the period and the solution att5400.4 is almost
identical to the solution att5406.95 in spite of the fact tha
the first period doubling has taken place.

Comparing Figure 11 to Figure 10, note that the am
tude of the spatial solution has increased and the solution
become more structured.

In Figure 12 the solutions are shown forl55.8. The
temporal solution has undergone a secondary bifurca
from a cycle of period 4 to a cycle of period 8. The length
the period is now approximately 8.2. The spatial solutio
shown again span the whole length of the period; howe
this time, as one can see by comparing the plots
t5400.4 and t5408.6 in Figure 12, the solution a
, No. 3, 1996
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Downl
FIG. 12. Temporal and spatial solution forl55.8.
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t5400.4 is not identical to the solution att5408.6 ~this
discrepancy in solutions is not improved by increasing
precision of the length of the period!. This discrepancy is no
unexpected considering the fact that for this casel is much
further from the Hopf bifurcation point.

Comparing Figure 12 to Figure 11 shows that the spa
solution has become even more structured. In Figure 13
solutions are shown forl56. The temporal solution has un
dergone a reverse bifurcation and is again a cycle of pe
2. The length of the period is approximately 3.35. The spa
solutions shown span the length of the period and the s
tion at t5400.4 is almost identical to the solution
t5403.75 ~note that forl56, attractor A has regained it
stability!. The spatial solution has become extreme
structured.

Clearly, increasing the parameterl causes the matura
tional dependence of the solution to become progressi
more structured. The increase in structure in the solution
parameter is varied and has been studied extensively
Sharkovskyet al.53 for functional iteration under the action
of a map,
CHAOS, Vol.
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f ~ t11!5L~ f ~ t !!, tPR1, ~50!

whereL:I→I is a given function,I P R1 is a closed,
bounded interval, andf (t) P R1 is an unknown function.
They investigated how the structure of the solution for larg
iteration numbers depends on the relationship between
mapL and the identity line, and showed how very ‘‘turbu
lent’’ solutions may arise in some circumstances. Noting th
from ~26! along the characteristics we may write

u~ t1t,x0e
2r ~ t1t!!5e2dtH u~t,x0e

r t!

1lE
0

t

edzF ~u~z,x0e
rz!!dzJ ;

~51!

in some qualitative sense the same phenomena must be
curring for the system studied here.

An interesting feature in the spatial plots in Figure 10
the sharp reversal of slope at approximatelyx50.8. To ex-
6, No. 3, 1996
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Downl
FIG. 13. Temporal and spatial solution forl56.
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de
plore this further, in Figure 14 the spatial solution for vario
values ofl is plotted. Each plot shows the solution for te
times ~the times are incremented by 0.1!. The plot for
l54.2 in Figure 14 shows the solution just above the Ho
bifurcation. The amplitude of the solution very close to t
Hopf bifurcation is small. With magnification of Figure 1
~not shown! one can see that the solution has a node
x.0.77 which corresponds tou(t,x)50.7619. The value of
u(t,x) at this node is the value of the steady sta
(l2d)/l for l54.2 andd51. Thus the node is create
when the solution for various times simultaneously attain
value of the steady state (l2d)/l. As l is slowly increased
and the solution moves away from the Hopf bifurcation t
node becomes a line which lengthens as the amplitude o
solution increases. This is illustrated in Figure 14. Furt
work is needed to explain this phenomenon.

C. Section summary

The nonlinear partial differential delay equation,

]u

]t
1rx

]u

]x
52du1lut~12ut!, ~52!
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whereut(t,x)[u(t2t,xe2r t), has an extremely rich arra
of solution behaviour.

As l, the maximal proliferation rate, is varied the tem
poral solution undergoes a period doubling route to cha
The chaotic band thus obtained contains periodic windo
whose behaviour can be explained by the presence of cr
It was also shown that the temporal solution has two co
isting attractors and hence is multistable.

The spatial solution becomes more structured asl is
increased and atl56 is extremely turbulent. The spatia
solution displays two interesting phenomena.

~1! The further one is away from the Hopf bifurcation lin
the greater the discrepancy between the periodTc along
the characteristics and the periodTx in the (t,x) plane
~e.g., the spatial solution atl55.8 does not repeat itse
after one periodTc).

~2! There is a node at the steady state (l2d)/d for spatial
solutions just past the Hopf bifurcation. As the soluti
moves further away from the Hopf bifurcation, the no
becomes a static front.
, No. 3, 1996
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Downloade
FIG. 14. Spatial solutions just above the Hopf bifurcations for four values ofl and ten times.
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Further work is needed in order to fully understand both
these phenomena.

Though this behaviour is interesting in its own right,
has further potentially interesting biological implication
since the process of cell population replenishment via b
marrow transplant may be viewed as the imposition o
different initial function on the cell replication dynamics
Our simulation results indicate that, depending on the ma
mal proliferation rate, the resulting dynamics may differ dr
matically from trial to trial depending on the precise form
the initial function. Extrapolating this into the bone marro
transplant situation, they would indicate that small chan
in the maturity composition of the transplanted cells cou
lead to dramatically different dynamic patterns of transpla
engraftment.55–57 This problem has been considered b
Schwegler and Mackey11 from quite a different modeling
perspective.

VI. DISCUSSION AND SUMMARY

Numerical solutions to a model equation that describ
cell population dynamics have been presented and analy
A distinct feature of the model equation is the presence
delayed arguments in the time and maturation variables
to the nonzero length of the cell cycle. This transport-li
equation balances a linear convectionr (]u/]x) with a non-
linear reaction term @2du1lut(12ut)#, where
ut(t,x)5u(t2t,x exp(2rt)). The linear convection term
r (]u/]x) acts to impress the value ofu(t,x50) on the entire
population while the death term (2du) acts to drive the
population to extinction (u50). The rich phenomenology o
CHAOS, Vol.
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solution behaviour presented here arises from the nonline
nonlocal birth term (lut(12ut)). The existence of this ki-
netic nonlinearity accounts for the existence and propagat
of soliton-like or front solutions, while the increasing effec
of nonlocality and temporal delays acts to produce a fi
periodic structure on the trailing part of the front. This non
linear, nonlocal, and delayed kinetic term is also shown to
responsible for the existence of a Hopf bifurcation and su
sequent period doublings to apparent ‘‘chaos’’ along th
characteristics of this hyperbolic partial differential equatio
In the time maturation plane, the combined effects of no
linearity, nonlocality, and delays leads to solution behavio
exhibiting spatial chaos for certain parameter values.

Although analytic results are not available for the syste
we have studied, consistency and validation of the numeri
results was achieved by using different numerical metho
A general conclusion of this work, of interest for the unde
standing of any system modeled by a hyperbolic delay
partial differential equation, is that increasing the spati
temporal delays will often lead to spatial complexity an
irregular wave propagation.
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