Propagating fronts, chaos and multistability in a cell replication model
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Numerical solutions to a model equation that describes cell population dynamics are presented and
analyzed. A distinctive feature of the model equatiarhyperbolic partial differential equatipis

the presence of delayed arguments in the tieafid maturationX) variables due to the nonzero
length of the cell cycle. This transport like equation balances a linear convection with a nonlinear,
nonlocal, and delayed reaction term. The linear convection term acts to impress the value of
u(t,x=0) on the entire population while the death term acts to drive the population to extinction.
The rich phenomenology of solution behaviour presented here arises from the nonlinear, nonlocal
birth term. The existence of this kinetic nonlinearity accounts for the existence and propagation of
soliton-like or front solutions, while the increasing effect of nonlocality and temporal delays acts to
produce a fine periodic structure on the trailing part of the front. This nonlinear, nonlocal, and
delayed kinetic term is also shown to be responsible for the existence of a Hopf bifurcation and
subsequent period doublings to apparent “chaos” along the characteristics of this hyperbolic partial
differential equation. In the time maturation plane, the combined effects of nonlinearity, nonlocality,
and delays leads to solution behaviour exhibiting spatial chaos for certain parameter values.
Although analytic results are not available for the system we have studied, consistency and
validation of the numerical results was achieved by using different numerical methods. A general
conclusion of this work, of interest for the understanding of any biological system modeled by a
hyperbolic delayed partial differential equation, is that increasing the spatio-temporal delays will
often lead to spatial complexity and irregular wave propagation.1996 American Institute of
Physics[S1054-150006)00903-3

When models of cell populations are built to account for
biochemical processes and for the age distribution of
cells, the resulting mathematical framework typically in-
volves differential equations with inherent delays. In this
work, the basic mechanisms involved in cell replication
were accounted for in the derivation of a prototype delay
equation model, which contains both temporal and spa-
tial delays. The predictions of this model include soliton-
like propagating fronts and spatio-temporal oscillations
in cell densities, along with bifurcations and chaos. In-
creasing the spatiotemporal delays tends to lead to in-
creased complexity.

I. INTRODUCTION

For cellular populations reproducing through binary fis-

cell replication, in which there is simultaneous proliferation
and maturation, is studied. The cell population dynamics are
described by a first order nonlinear partial differential equa-
tion in which there is retardation in both the temporal and
maturation variables. This model is novel because dynamical
systems with retardation in both time and space have not
been extensively studied. The resulting first order nonlinear
partial differential equation for the cell densityt,x), in
which there is retardation in both the temporgl énd matu-
ration (x) variables, is studied for the initial condition
¢(x)=x". With this initial condition, varying the parameters
of the model can lead to different types of dynamics ranging
from a single stationary steady state to turbulent solution
behaviour, and the eventual solution behaviour of the model
also displays significant sensitivity to the initial function
(multistability).

The model analyzed here is an extension of a previous

sion (in contrast, e.g., to budding yeasthe dynamics are modef that successfully accounted for some of the major
most naturally described in a modeling context by time-ageclinical features of periodic hematopoiesis in humans and the
maturation modelg¢see Ref. 1 for an excellent introduction  experimental manifestations of this disorder in the gray
Often because of the nature of the boundary conditions, thessllie 2 As such, it offers the first steps toward the develop-
partial differential equation models can be reduced to differment of a tool with which to understand the effects of recom-
ential delay equation type mod@lsr to delayed partial dif-  binant cytokine$!°on the dynamics of this disease, and with
ferential equation formulatioris.’ which one can explore the often confusing responses of the
In this paper, the dynamics of a mathematical model fohematopoietic system to either chemotherapy, or bone mar-
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row transplant preceded by whole body irradiattéh? generality. Since cells can mature at different rates depend-

The plan of the paper is as follows. In Section Il, theing on their maturatiorx we assume that it is linear and a
motivation behind the model and its development are prematuration rate is introduced so the velocity of maturation
sented. In Section Il we briefly summarize the numericalis V(x)=rx for x € (0,1) andV(0)=0 andV(1)=r.
methods we have used to investigate the solution properties. We further assume that a cell can disappear through
In Section 1V, we show through a sequence of illustrativedeath at any time during its life, and we ketdenote the rate
numerical examples how traveling front solutions may ariseat which cells die.y is positive and assumed to be indepen-
and that these solutions have soliton like properties. An unedent of the age or the maturation level of the cell.
derstanding of these properties is given by restilosm an It should be noted that a number of authors have em-
analogous problem in the absence of retardation and nonlgloyed time-age or time-maturation models for the descrip-
cality, and these are reviewed in the first part of Section IVtion of cell replication processes, but the terminology is by
In Section V we turn to a consideration of the multi-stableno means consistent. For example, in Refs. 24—26 models
behaviour of the eventual solutions. We first review previousare discussed in which age denotes the time since the birth of
work on this problenf;” and then present a number of new a cell—just as we do. In Ref. 27, however, the term matura-
numerical results on the dynamics of the temporal and spatidion is used for this quantity. Given the quite explicit defini-
solutions that indicate the complexity of the multistability tions of the terms age and maturation as used here, the reader
and bifurcation structure of this interesting and novel systemshould have no difficulty in discerning the differences.
The paper concludes with a brief discussion in Section VI. We now turn to a derivation of the equations governing
this process. The derivation could have been carried out
along the lines of that in Ref. 3, but here we present a some-
what abbreviated andd hoc derivation. The reader inter-

A cell produces two daughter cells by going through twoested in the full details should consult Ref. 3.
phases, an interphase and a division phase. Since each Let U(t,x,a) denote the density of proliferating cells,
daughter cell must contain the same components as its parewtherex anda are as described above ang time. Then
cell, in order for a cell to divide it must duplicate all of its U g

. . . X . [rxU]

contents. This occurs during the interphase. The interphaseis — + — + =
divided into three phase§,, S, and G,. During the G, gt~ da oX
phase, the cell increases its rate of biosynthesis before entag the conservation equation fot(t,x,a) with initial condi-
ing the S phase during which the cell synthesizes its DNA tijon
and duplicates the contents of its nucleus. The cell then goes

Il. DEVELOPMENT OF THE BIOLOGICAL MODEL

—yU 1

through theG, phase before entering the division phase or ~ Y(0x.@)=I'(x,a), for (x,a) [0,1]X[0,7]. @
M phase and dividing via mitosis and cytokine¥is. The total number of proliferating cells is given by

Cells are considered to be actively proliferating if they
are in theG1/S/IG2/M cycle and if they are committed to u(t,x)= jTU(t,x,a)da, 3)
replicating their DNA and continuing through mitosis and 0

cytokinesis to produce two daughter cells. laetlenote the
cell age, i.e., the position of the cell in the cell cycle, with
a ranging froma=0, at the point of commitment, ta= 7, at U(t,x,00=2U(t,x,7)=.7(u(t,x)). 4

the point of cytokinesis. Some authors have examined thl?‘he first equality reflects the fact that two daughter cells

role of distributions of ages in time age models, notably o .
Refs. 15-21, and obtained results that can be applied tgenerated ah= 7, i.e. at the end of the cycle, constitute the

. L nput flux for the cell cycle aa=0. The second equality
some types of cell cycle models. Their results indicate, a . ) .
. . . . . .. states that the input flu¥ is assumed to be a function of the
least in a model without the maturation dimension, signifi-

cant new effects are not to be expected to arise from a di total number of proliferating cells at a given maturation

tribution of cell cycle times and we have not considered it evel. Equation(1) can be rewritten as

here, though it is the subject of active investigation in our U gU au

group. E+a—a+rx5=—[7+r]u. (5)
As well as proliferating, cells can also be characterized ) )

by other processes such as maturation. The level of matura- 1he general solution of5) can be calculated using the

tion is measured in different ways for different cells. In keep_method of characteristi®@.The characteristic equations are

ing with experimental evidencg;”* we assume that the ag- ot sa ax

ing and maturation processes take place simultaneously and —=1, —=1,

and the boundary conditions for the system are

d e [y+r]U

—=rx, and —=-—[y+r]U,

. . . aJs Js aJs Js

independently. Lex represent the maturation variable. If the (6)
maturation variable runs from a minimal value xf;, to a _ _ _ _ _ _
finite maximal value ofx,,, then we may rescalg and  Which, after integration, give the set of parametric equations

replace it with anew given by & — Xmin) (Xmax—Xmin) SO the t(s)=s+t,, a(s)=s+ay,
scaled maturation variable runs from 0 to 1. Thus, the range %
of the values ok is taken fromx=0 tox=1 without loss of X(s)=xqe's, U(s)=Uge [7*ls,
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To obtain an explicit solution, two cases are consideredHowever, we have chosen the linearly decreasing prolifera-
O<t=<a and a<t. For O<t=a, the initial condition tion rate to facilitate the analytic computation of the solution
U(Ox,a)=I'(x,a) is used. Thust=s=0 on the initial to (15 in the case that=0.]

curve and If we also set
t=s, a=t+ay, x=x€", U=Uye [t (g d=vy+r andA=ce (7*D7, (18)
which gives then(15) becomes
Utx.a)=T(xe"a-te’"", o=t=a. ©) Z—l:vtrxg—i: —du+u(1-u,), (19)
Fora<t, U(t,x,a)=U(t,x,0). Thus,a=s=0 on the initial i i
curve and whereu,, is defined by
u,(t,x)=u(t—r7,xe"""). (20

t=a+ty,, a=s, x=xge?, U=Uye "3 (10
Both the nonlocality xe™"") and the temporalt 7) retar-

which gives dation, which are the essential novel ingredient$l&j, are
U(t,x,a)=U(t—a,xe" 2,00 e [7*ra a<t, (11)  clearly represented if19). These two features make the
study of (15) extremely interesting. The study of systems
Hence, with both nonlocality and temporal retardation has been par-
F(xe a-te 7t o<t<a tially explored by Rey and Mackel.’
U(t,x,a)= ' ’ ' Throughout this paper, we employ the initial condition
(t.x.a) U(t—a,xe "?,0)e 7112 a<t.
(12) IC:iu(t—7,xe""")=p(x)=x", 0<t<s7, n=1, (21
Equation(5) can be integrated over the age varianle and the boundary condition
which, in conjunction with(3), gives BC:u(t,x=0)=0, teR". (22
au u U U 0 13 We were motivated to study this specific form of initial con-
o P = —DyHrju—{Utx,n-Utx0} (13 giion because it allows us to explore the possible conse-

quences of widespread destruction of proliferating cells, as
would be encountered, for example, after chemotherapy
and/or radiotherapy. As in the experimental/clinical situation

After applying the boundary condition@) and using the
general solution(12), equation(13) becomes

au au this initial condition makes the destruction an inverse func-
X —=—[y+ i ion.
o X [y+r]u tion of cell maturation
['(xe ", 7—t)e it o<t<r,
+
Flult—rxe e T et ll. NUMERICAL METHODS OF SOLUTION
(14) The numerical methods used to integrate the partial dif-
The interesting case to study is wheftt, i.e. when ferential delay equation are the Galerkin finite elements

method® 3! and the method of characteristi®sand in this
section we briefly review both.

A. The Galerkin finite elements method (GFEM)

ou ou
—+rXx—=—[y+rju+7(u(t—r,xe "M))e 17,

at Ix
(19

. int ted in the | i behavi f th The GFEM assumes that given a nonlinear partial differ-
since we are interested in the fong |me~ enaviour ol & i) equation such g49), u(t,x) can be accurately repre-
solution. As described above, the input flaxis a function

of the total number of proliferating cells at a given matura-sented by an approximate solutiag(t,x) of the form

tion level. N

Realizing that the input flu¥” is given by the product of Ua(t,X) = Zl uj(H)e;(x), (23)
the proliferation rate and the cell density and taking the 2

proliferation rate to be a linearly decreasing functionuof Where theu; are unknown coefficients, the; are known

given by Z(1—u), we have basis functions, anll is the number of nodes in the discreti-
. zation of the maturation variable. Substituting into the
F(u)=2cu(1-u). (1) nonlinear partial differential equatiof9), the nonzero re-

[Note that it would be more realistic biologically to take a SidualR is obtained:

non-negative monotone decreasing function for the prolifera- Ay AUy

tion rate such as R=—m+IX—"+5Ua= N, (1= U, ). (29)
2c 0" 6.m>0 17) R cannot be null since, is an approximate solution. Hence

om+um ' R is forced to zero, which gives the weighted residual:

CHAOS, Vol. 6, No. 3, 1996
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1
Fi:f
0

duy dUq
—p TIX o T 0Ua= NUa (1-Ug ) |@idx,

u(0x)=e¢(x), for xe[0,1]. (30

In this section we discuss those results as they relate to the
unretarded £=0) version of(19).

i=1, ... N 2 : .
=5 Y (25 The results of Lasotd are directly applicable to the sys-
where ¢; are the same basis functions aq23). tem studied here with no delay€0) and given by
A time discretization of §u,/dt) is then implemented
. e : . Ju ou
using a finite difference scheme and the resulting set of non- 4 1y — _ 544 \u(1—u), (32)
linear algebraic equations can be solved using an iterative 9t J

root finder such as the Newton—Raphson sch&i.The  \yhere

code implementing the GFEM is written ADRTRAN. Linear

basis and weighting functions are used as well as a uniform d=y+r andi=c, (32

mesh of 400-600 element$l &401-601). The time inte-  ang the initial and boundary conditions are

gration scheme is a first order implicit predictor corrector N

method with fixed time step. With no delay the time stepis  C:@(X)=u(0x)=x"m, xe[0,1], (33

h=1/50, and with delay the time step fis= 7/50. BC:U(t,x=0)=0 teR". (34)

B. The method of characteristics An analytic solution of(31) can be obtained using the
The method of characteristics is applicable to quasilineamethod of characteristics, and is of some help in illuminating

partial differential equations. The main idea behind thethe numerical behaviour discussed in the following section

method of characteristics is to transform the delayed partiavhen 7>0. This solution is

differential equation into an ordinary delayed differential [(A— 8)/\](xe ™)eth=9)

equation which one can then solve using the initial  y(t,x)= ——= _ i 35
condition(s).? (tx) (xe" ™M™ —1)+[(N = §)/N] (

The x characteristics of19) are given byx(t)=xqe". The limiting behaviour of the analytic solutidB5) is as
Along these characteristic&l9) is rewritten as follows [remember the conditiofB4)]:

du 0, O<A—é<nr

—_ - + - 1 1

T Su+iu(l—u,), (26) (A= 8)x" o

NNV - :nra
where lim u(t,x)={ A=+ \x" (36)
toee N—206

u(t,x(t))=u(t,xee") (27) —— A-&>nr.

and

- The solution behaviour obtained far <\ — §, whenn
u.(t,x(t))=u(t—r7,xe""""7). (28) s taken to be sufficiently large, is that of moving fronts.
The code for the integration along characteristics is writterf 0Nt solutions, as defined by Collet and Eckmiainter-

in c. A fourth order Runge—Kutta method is used with aPolate between two(differenp stationary solutions at
constant time step of 1. X=*o0; in addition, they move with a certain speed in the

laboratory frame.” Here, this definition is slightly modified.
Since x is only considered in the intervgld,1], the front
IV. PROPAGATING FRONT SOLUTIONS solution interpolates between two stationary solutions,
namely the trivial solution, atx=0, and the solution
In this section we numerically explore the nature of(x—§)/\, at x=1, and the front speed is thus time
propagating front solutions td5). There has been consider- dependent.
able work®*?~*characterizing the nature of the solutions to  The solution behaviour of moving fronts for <\ — &
(15) in the absence of a delay € 0) and thus the absence of can be summarized as follows: increasing either r slows
nonlocality, and we first review the major results of impor- down the rate at which the solution approaches its limiting
tance. behaviour, and hence reduces the speed at which the front
=0 propagates towards the impermeable boundamy=ad. The
former effect is due to the fact that increasimgproduces a
There are several interesting results concerning the solusteeper initial profile, while the latter effect arises because
tion behaviour of first order partial differential equations increasingr increases the Strength Of the Convective term

with respeCt to Stab|l|ty and eXaCtnqsee above I’eferendes (r (?U/(?X) WhiCh, in turn, opposes front propagation_
and most of this work was initiated by the work of Lasdta

who considers the partial differential equation

A. Results for

ou ou
STHet0 =X, (txefoelx[oy, g B Newresdsior 0
X There is no known method to obtain an analytic solution

with the initial condition of (19) with 7>0. Hence the results of this section are nu-
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FIG. 1. Effect of increasing on the solution behaviour far=20, r=0.01, =1, and\=3.

merical solutions tq19) subject to condition$21) and(22). cally determined solutions match the analytic ones, and,
The accuracy of these results was checked in three ways. when analytic solutions are not available, it produces mesh
independent solutions that agree with those obtained using
the method of characteristics. Throughout this section we

pared to the analytic solutiof85). _ e _ .
(2) In the GFEM, the number of elements were doubled an&ake& LA=3, F 0.01, ar_1ch 20, and examine the effect
of 7 on the solution behaviour.

guadrupled to check for changes in the solution behav-
iour.

(3) The solutions obtained with the GFEM were compared1. Effect of increasing =
to those obtained numerically using the method of char-
acteristics forr>0.

(1) The numerical solutions obtained with=0 were com-

The effect of increasing is illustrated in Fig. 1. When

7 is close to 0, it can be shown that the solution is similar to
The results obtained from all of these checks indicatehe solution forr=0, i.e. the solution for smak starts at the

that the GFEM code is correct in the sense that the numertrivial solution, and ax increases towards 1, smoothly ap-
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00 02 04 06 0.0 02 04 0.6 0.0 02 04 06
u(tx) u(tx) u(tx)

FIG. 2. Phase-plane diagrams of the solution behaviour for various valuesvith n=20, r=0.01, §=1, and\=3.

proaches theN— 8)/\ solution. However, as is increased u(t,x). The phase-plane diagram fer=0 was obtained us-
the speed at which the front moves towards the impermeabliag the analytic solutiori35):

boundaryx=0 decreases until the front completely disap- _ 2/ u ot N f(A =)

pears for a critical value of=7,. At 7= 7, the solution is d_u: E(n)‘n zi)(/h)i]&(xe )'ne . (37)
no longer attracted to the\(~ 5)/\ solution. This bifurcation dx  [(xe"™)"(e —D+[(A =)\ ]]x

in solution behaviour appears betweer4 and 7=4.75,  The phase diagrams far>0 were obtained using a differ-

and is due to the fact that the Iong time behaviour SWitChe%nce scheme, and are not Comp|ete|y smooth because of
from the (}\— 5)/)\ SOlUtion, forr< Tc to the trivial solution Computationa] limitations.

when 7> 7.. This switch is similar to the one Lasotalem- In the phase diagrams, the increase in the steepness of
onstrated analytically for-=0 [cf. equation(36)], though  the front is shown by the increase in the valuesdafdx.
much more complex than in the simple caseref0. For instance, comparing the phase diagrams in Figure 2 for

Another change in the solution behaviour occursras  .=qQ (Figure 2a and =1 (Figure 2B, one can see that the
increased from O to. Although the solution still starts out change in steepness of the front is not as great between times
at the trivial solution for smalk, asx increases, instead of t=10 andt=20. This is due to the fact that the speed of
making the transition Smoothly to thﬂ(— 5)/)\ solution, the propagation of the front is slower for=1 than for r=0.
solution approaches\(- §)/\ in an oscillatory fashion. The Further, the appearance of the oscillations is reflected in the
amplitude of these oscillations increasesrascreases. This  spiraling around the point\(— 8)/\. The differences in the
is clearly observed, in Figure 1, by the change in solutionspirals for r=1 (Figure 2b and for r=3 (Figure 2¢ illus-
behaviour between=0.1 andr=4. trate that, asr is increased, the amplitude and the wave

length of the oscillations become greater.
2. An oscillating solution around  (A— 6)/\

In Figure 1, it was observed that oscillations appearec?' Section summary
with a small visible peak forr=0.5 and that ag was in- The numerical study of19), with the initial condition
creased the amplitude of the oscillations became larger. Th@1) and boundary conditiof22) shows interesting solution
amplitude of the oscillations, observed in Figure 1d, de-behaviour fom>1. As we have shown in Section IV A, the
creases asx increases; these oscillations are thereforeanalytic solution withr=0 is a propagating wave front. The
damped oscillations. Further, it can be shown thatrds  parameters: andr vary the speed at which the front propa-
increased the wave length increases. Hence, the resuligtes and can also lead to a change in stability. The numeri-
shown in Figure 1d indicate that the oscillations in the solu-cal solution with7>0 is also a propagating front. However
tion behaviour are damped with increasing wave length aas the delay is increased, oscillations appear near the wave
T is increased. front. This type of solution can be associated with soliton-

To obtain further insight into these phenomena, thelike behaviour. Although the changes from a monotone front
(u,uy,) phase-plane diagrams of the solution behaviour aréo an oscillatory front in a delayed partial differential equa-
shown in Figure 2 whereju(t,x)/ox is plotted versus tion reported here appear to be new, this type of behaviour

CHAOS, Vol. 6, No. 3, 1996
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has been observed in the solution of the KdV Burger's Linearizing (39) around the nontrivial steady state
equation’® As the delay is increased past a critical delay(\— 8)/\ gives the equation
7., there is a change in stability, and the long term behaviour
i ; dz
becomes that of the trivial solution. =— 62+ (26—\)z (42)

From a biological perspective these numerical results in-  dt

dicate that following a massive depletion of cells, the Ce"u'arwherez: U—[(A— 8)/\]. Under the assumption that the so-

population will reconstitute itself with a speed that decreaseﬁjtions to the linear equatiof#?) are of the formz(t)=e~t
as the cell cycle time increases. This repopulation may be we obtain the eigenvalue equation

either uniform, or oscillatory, but once the cell cycle time
T exceeds a critical threshold value of repopulation is k=—0+(26—N)e" X, (43
impossible and the entire cellular population is driven to

extinction Since a transition from a single steady state to a periodic

cycle is expected, we take

k=u+io, (44
V. MULTISTABLE SOLUTION BEHAVIOUR
which then gives
In this section we turn from an examination of the propa-

gating front solutions of Section IV to a consideration of the ~ #+iw=—35+(25—N)e “e ™. (45)
dependence of the eventual solution behaviour on the initi
function. Throughout, we will tak@=1 in the initial func-
tion equation(21).

aéeparating real and imaginary parts, this last result can be
written as

u=—0+(26—\)e * cosw,
w=—(26—N)e * sin w.

A. Previous results (46)

Rey and Macke¥* studied the dynamics of the model
(19 for two initial conditionsg(x) =x+c and ¢(x)=X. In
this section, their results fas(x) = x are briefly summarized.

Forn=1, the long time behaviour ¢fL.9) with r=0 and

Thus from the results of Haf¥,the nontrivial steady state
(N—0)/\ is locally stablegf u=Re A <0] if and only if

0<d<\ with p(X)=x is )
—_— —_— _1 —
0. 0on—o<r, V(26—1)?— 8%< cos 75" (47)
. (A—9)x C A—&=r, and thus locally unstable when the inequality is reversed.
limu(t,x)={ N—38+AX (39 The equality
tooe A—08
—, A=O>r. o
A V(26—1)2= &%= cos Y| =—— (48
26—\

To extend these results to the caserof0, the model(19)
can be rewritten, using the method of characteristics, as defines a bifurcation point marking the transition from a
single locally stable solution to a locally stable periodic

%: —Su+iu(l—u,), (399  cycle, and there are three possible spatial Hopf bifurcations
dt depending on the relationship between the line composed of
where the (\,8) values satisfying this temporal Hopf bifurcation

(denote this line by THB and the line composed of the

— t
u(t,x(t)=u(t.xee") (40 (N, 6) values satisfyingh=(5+r)e" for which the u,,(x)
and solution is stable. Denote this latter line by SS.
UL(t (D) =U(t— 7 xge" ). (41) If the line THB is always above the line Sgis occurs

for 0<r<0.7455) there is a simultaneous spatial and tem-
Using this method it is possible to determine the local tem-poral Hopf bifurcation occurring when thex ¢ 8)/\ solu-
poral and spatial stability of the steady states separately. tion loses its stability. The temporal bifurcation leads to pe-

Letting 7=1 and linearizing(39) around the trivial so- riodic solution behaviour while the spatial bifurcation leads
lution, Rey and Mackey showed that there israar . which  to left traveling waves. However, if the line SS crosses the
determines the local stability of the three solutions wherine THB (this occurs when 0.7455r <1.0986) there is a
subjected to linear spatial perturbations. Forr., the  spatial Hopf bifurcation occurring when thg(x) solution
trivial solution is locally stable and the two other solutions loses its stability. This Hopf bifurcation induces slow left
are locally unstable. When<r. the (\—8)/\ solution is  traveling waves. Finally, if the line SS is always above the
locally stable while the other two are locally unstable. Fi-line THB (this occurs whemrr>1.0986) there is a spatial
nally, forr=r, the only solution which is locally stable is a Hopf bifurcation also occurring when the,,(x) solution
nonhomogeneous one which we denoteuly(x) through-  loses its stability. In this situation the Hopf bifurcation leads
out. This nonhomogeneous solution is locally stable whero chaotic traveling waves. These results are summarized in
A=(5+r)€e". Figure 3.
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FIG. 3. Diagram of the three possible scenarios for which spatial Hopf bifurcations occur.
B. New results tion along the characteristics given £89) and plotting the

local extrema of the solution(t,x) as a function ofx (the
|[\'s are incremented by I0) for 700<t<750. In all cases
6, Xg, andr are held constant with the following values
6=1, X,=0.1, andr=0.01. The Hopf bifurcation occurs at
A=4.25 which concurs with the analytic results given by the
local stability analysi$cf. equation(49)]. A period doubling
bifurcation occurs ak=5.412. AtA=5.793 there is a jump
in the solution and a new cycle of period 8 occurs. &
increased past 5.793 the cycle of period 8 gives rise to a
turbulent solution which appears to be chaotic. This turbulent
solution ends abruptly ax=5.854 at which point a new
cycle of period 2 occurs.
To better visualize what is happening in the region from
The bifurcation diagram fo(19) is shown in Figure 4. he first bifurcation(from a period 4 cycle to a period 8
This bifurcation diagram is obtained by calculating the 5°|U'cyc|e) to the second bifurcatioffrom a turbulent solution to
a period 2 cyclg the bifurcation diagram of Figure 4 is
magnified for 5.79.\<5.87, and shown in Figure 5.
- L~ Figure 5b shows a period doubling route to chaos. As
. T T \ is increased, the period doublings occur at smaller inter-
vals of A until the period doublings are no longer distin-
guishable and the solution becomes chaotio\ at5.8194.
s Figures 5b—5c show that there are periodic windows in the
e chaotic attractor.
T A Subduction is a term given by Greboet al*? to de-
. e e e scribe the appearance of a nonchaotic attractor within a cha-
otic attractor causing the chaotic attractor to be replaced by
] h the nonchaotic attractor. It would appear that these windows
. arise in Figure 5 by the appearance of periodic cycles in the
4.0 4.5 5o ss 6.0 o5 chaotic attractor which destroy the chaotic attractor via
> subduction.
FIG. 4. Temporal bifurcation diagram for the model obtained by numeri- . The chaotic attractor reappears _throth n_eW pe”o_d do_u_
cally computing the solution along the characteristics given by39) and ~ Dling routes to chaos and then widens. This widening is
plotting the local extrema afi(t,x) versus\. probably caused by the intersection of a locally unstable

In this section the case where< 0.7455 isconsidered.
For these values aof, a simultaneous temporal and spatia
Hopf bifurcation occurs when

o

(26—\)?>—8°= cos * —) (49

26—\

is satisfied. The changes in solution behavioufl® subject
to conditions(21) and (22) will be studied as the parameter
\ is increased. With reference to Figure 3, thevalue al-
ways lies above the THB curve.

1. Temporal bifurcations occurring after the Hopf
bifurcation

10

08

local extrema of u{tx)
04

02

00

02
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FIG. 5. Magnification of the bifurcation diagram in Figure 4 for 579<5.87.

cycle and the distinct chaotic bands; this phenomenon hasonditions.(Recall that at =5.79 the solution consists of a

been called an interior crisfé. The largest window occurs cycle of period 4 and ak =5.81 the solution consists of a

when 5.8356:A<5.8372. The cycle is of period 12 in this cycle of period 8; cf. Figure 4.

window. The bifurcation diagram for the solution with an initial
In Figure 5d the chaotic attractor suddenly disappeargondition which is the solution at=5.79 is shown in Figure

and a new cycle of period 2 appears. By a conjecture o6a. For comparison, in Figure 6b, the solution bifurcation

Grebogiet al,*? the destruction of this chaotic attractor is diagram of Figure 4 is magnified for 5 <5.9. The jump

most probably caused by the collision of an unstable orbito a period 8 cycle as well as the subsequent period dou-

with the chaotic attractor. It is not possible to determine fromplings and chaotic bands have completely disappe@mi-

the numerical evidence of Figure 5d where the unstable orbjare with Figure 6pand instead there is a smooth transition

which causes the destruction is located. from the cycle of period 4 to the cycle of period 2 at
N=5.82. Call the attractor shown in Figure 6a attractor A.

2. Multistability of the solution along the x Comparing Figure 6a and Figure 6b, one sees that attractor A

characteristics becomes unstable in Figure 6b for 5.798<5.854.

The sudden jump from a period 4 cycle to a period 8  The bifurcation diagram for the solution when the initial
cycle as shown in Figure 5a is an indication that there argondition is the solution ax=5.81, is shown in Figure 7a.
two coexisting attractors of the solution. Each attractor mustn Figure 7b, the bifurcation diagram in Figure 4 is again
have a basin of attraction such that given an initial conditionmagnified for 5. A\ <5.9.
in the basin of attraction the solution converges to the attrac- From Figure 7a, we see that instead of a solution bifur-
tor ast—oo. cation atA =5.793 from a period 4 cycle to a period 8 cycle,

There has been an extensive study of the geometry dhere is now a bifurcation from a period 4 cycle to a new
basins of attraction and of their boundaries in nonlinear reperiod 4 cycle at\=5.732. The new period 4 cycle then
turn maps obtained from ordinary differential equatiéfd®  gives rise to the period 8 cycle at=5.788. The period
These basins of attraction can be extremely complicated, ardbubling route to chaos as well as the periodic windows and
in some cases are fractal in nature. Sensitivity to initial conthe destruction of the chaotic attractor occur as before. Call
ditions has previously been studied for differential delaythe attractor shown in Figure 7a attractor B. Comparing Fig-
equations, and it has been shown that they can possess muke 7a and Figure 7b, one sees that attractor B is unstable in
tistable solution®-°*To determine whether the mod@l9)  Figure 7b for 5.732 A <5.793.
has two coexisting attractors the solutions obtained along the One can very precisely determine the range of values of
x characteristic ak =5.79 and ah =5.81 are taken as initial A, for which the initial conditiongwhich are given by the
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FIG. 6. (a) Solution bifurcation behaviour along tlkecharacteristics using the solutionat5.79 as an initial conditionb) Magnification of the bifurcation
diagram in Figure 4 for 5.7\ <5.89.

solution at\) give rise to solutions which converge to attrac- dition taken as the solution at=5.792654. The solution is
tor B ast—oe. If the initial condition is given by the solution plotted for 506<t<600 and the\’s are incremented by
for a value of\ such that 5.79265\ <5.85408, then the 10~7. This figure shows what happens when one attractor is
solution converges to attractor B &s>. If the initial con- replaced by another attractor.
dition is given 'by a solution foh =5.79265 orA =5.85408 Due to the appearance of a new cycle of period 4 and to
then the solution converges to attractor Atase. Thus the rounding at the extremities of the branches at the begin-
A=5.85408 and\ =5.79265 are on the boundary of the ba- . . L .

ning of the new cycle of period 4 in Figure 7a and Figure 8,

sin of attraction. In Figure 8 the solution bifurcation behav- . )
iors are shown for 5.7318\ <5.7319 with the initial con- W€ 8¢ led to conjecture that at the valuesoforresponding
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FIG. 7. (a) Solution bifurcations along the characteristics using the solution)at5.81 as an initial conditionb) Magnification of the bifurcation diagram
in Figure 4 for 5.79.\<5.89.

CHAOS, Vol. 6, No. 3, 1996

Downloaded-29-May-2001-t0-163.1.103.109.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/chaos/chocr.jsp



Crabb, Mackey, and Rey: Fronts, chaos and multistability 487

= =
= = 5= = ]
= =
B g B S
[se [~
s - | S -
= B~
8 =+ 8 o |
s - =
o <
T T T T T < 7
5.7315 57316 5.7817 5.7318 5.7319 5';0 5.;5 5_'80 5.;35 5_'90
» A
FIG. 8. Solution behaviour when attractor A is replaced by attractor B. FIG. 9. Potential unstable cycle of period 4.

to the lower limit of the basin of attractiol&5.79265), at (A =5.85408) the unstable cycle of period 4 collides with the
which the new cycle of period 4 appears, a tangent bifurcaehaotic attractor causing the destruction of the chaotic attrac-
tion occurs creating a stable and unstable cycle of period 4or. This would agree with the Grebogt al. conjecture®?

We further conjecture that at the value)ofcorrespond- Figure 9 shows the postulated unstable cycle of period 4
ing to the upper limit of the basin of attraction (plotted as dashed curves
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FIG. 11. Temporal and spatial solution for=5.5.
3. Spatial solution behaviour occurring after the Hopf shown in Ref. 4, if we denote the period in thex) plane by
bifurcation T, and the period along the characteristicsTgy then near

In Figures 10—13 the solution is shown as a function ofthe Hopf bifurcation we havé,=T./(1-r), in agreement
x [remember thak is the maturation variable of the model With these observations.
equation(19)]. In the top left hand corner of each of these ~ This behaviour is again mirrored in Figure 11 where the
figures the temporal bifurcation diagram is shown. In the topsolutions are shown fok=5.5. The temporal solution has
right hand corner the solution is shown as a functiort of Undergone a period doubling and the length of the period is
along thex characteristics. The four other plots are solutions@pproximately 6.55. The spatial solutions shown again span
as functions of the maturation variable. the length of the period and the solutiort at400.4 is almost

As in the previous section, these solutions were obtainedfientical to the solution at=406.95 in spite of the fact that
using the method of characteristicsandr were held con- the first period doubling has taken place.
stant at the value$=1 andr=0.0001. Each solution was Comparing Figure 11 to Figure 10, note that the ampli-
calculated for a giveh on 700 characteristics equally spaced tude of the spatial solution has increased and the solution has
on the interval0,1]. become more structured.

In Figure 10 the solutions are shown foe=4.5. Since In Figure 12 the solutions are shown fere=5.8. The
r < <0.7455, the spatial and temporal Hopf bifurcation occurtemporal solution has undergone a secondary bifurcation
simultaneously. Thus in both cases the solution is just abovifom a cycle of period 4 to a cycle of period 8. The length of
the Hopf bifurcation. The length of the temporal period isthe period is now approximately 8.2. The spatial solutions
approximately 3.1. The spatial solutions shown span thehown again span the whole length of the period; however
whole length of the temporal period and thus the solution athis time, as one can see by comparing the plots for
t=400.4 appears identical to the solutiontat403.5. As t=400.4 and t=408.6 in Figure 12, the solution at
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t=400.4 is not identical to the solution #&t=408.6 (this f(t+1)=%(f(t)), teRr", (50)

discrepancy in solutions is not improved by increasing the
precision of the length of the peripdrhis discrepancy is not Where #:1—1 is a given function,| e %' is a closed,
unexpected considering the fact that for this cese much ~ bounded interval, and(t) € ™" is an unknown function.
further from the Hopf bifurcation point. They investigated how the structure of the solution for large

Comparing Figure 12 to Figure 11 shows that the spatiaiteration numbers depends on the relationship between the
solution has become even more structured. In Figure 13 theap-~ and the identity line, and showed how very “turbu-
solutions are shown fax=6. The temporal solution has un- lent” solutions may arise in some circumstances. Noting that
dergone a reverse bifurcation and is again a cycle of perioffom (26) along the characteristics we may write
2. The length of the period is approximately 3.35. The spatial
solutions shown span the length of the period and the solu-
tion at t=400.4 is almost identical to the solution at
t=403.75(note that forA =6, attractor A has regained its .
stability). The spatial solution has become extremely +)\J e27(u(z,x0e?))dz};
structured. 0

Clearly, increasing the parametercauses the matura- (51)
tional dependence of the solution to become progressively
more structured. The increase in structure in the solution asia some qualitative sense the same phenomena must be oc-
parameter is varied and has been studied extensively bgurring for the system studied here.
Sharkovskyet al> for functionaliteration under the action An interesting feature in the spatial plots in Figure 10 is
of a map, the sharp reversal of slope at approximatety0.8. To ex-

u(t+7,xpe ") = e‘”{ u(7,x0e" "
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FIG. 13. Temporal and spatial solution for=6.

plore this further, in Figure 14 the spatial solution for variouswhereu (t,x)=u(t— r,xe ""), has an extremely rich array
values of\ is plotted. Each plot shows the solution for ten of solution behaviour.

times (the times are incremented by D.1The plot for As A, the maximal proliferation rate, is varied the tem-
A=4.2 in Figure 14 shows the solution just above the Hopfporal solution undergoes a period doubling route to chaos.
bifurcation. The amplitude of the solution very close to theThe chaotic band thus obtained contains periodic windows
Hopf bifurcation is small. With magnification of Figure 14 whose behaviour can be explained by the presence of crises.
(not shown one can see that the solution has a node att was also shown that the temporal solution has two coex-
x=0.77 which corresponds (t,x)=0.7619. The value of isting attractors and hence is multistable.

u(t,x) at this node is the value of the steady state  The spatial solution becomes more structured\ais
(A—=208)IN for A\=4.2 and5=1. Thus the node is created increased and at=6 is extremely turbulent. The spatial
when the solution for various times simultaneously attain thesolution displays two interesting phenomena.

value of the steady stata - 5)/\. As \ is slowly increased

and the solution moves away from the Hopf bifurcation the

node becomes a line which lengthens as the amplitude of tHd) The further one is away from the Hopf bifurcation line,
solution increases. This is illustrated in Figure 14. Further the greater the discrepancy between the pefipdlong

work is needed to explain this phenomenon. the characteristics and the peridq in the (t,x) plane
(e.g., the spatial solution at=5.8 does not repeat itself
C. Section summary after one period’,).

(2) There is a node at the steady staxe—(5)/ o for spatial
solutions just past the Hopf bifurcation. As the solution

au au moves further away from the Hopf bifurcation, the node

EHX&_XZ —dou+iu(1l—-u,), (52 becomes a static front.

The nonlinear partial differential delay equation,
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FIG. 14. Spatial solutions just above the Hopf bifurcations for four values ahd ten times.

Further work is needed in order to fully understand both ofsolution behaviour presented here arises from the nonlinear,
these phenomena. nonlocal birth term Xu_.(1—u,)). The existence of this ki-
Though this behaviour is interesting in its own right, it netic nonlinearity accounts for the existence and propagation
has further potentially interesting biological implications of soliton-like or front solutions, while the increasing effect
since the process of cell population replenishment via bonef nonlocality and temporal delays acts to produce a fine
marrow transplant may be viewed as the imposition of aperiodic structure on the trailing part of the front. This non-
different initial function on the cell replication dynamics. linear, nonlocal, and delayed kinetic term is also shown to be
Our simulation results indicate that, depending on the maxiresponsible for the existence of a Hopf bifurcation and sub-
mal proliferation rate, the resulting dynamics may differ dra-sequent period doublings to apparent “chaos” along the
matically from trial to trial depending on the precise form of characteristics of this hyperbolic partial differential equation.
the initial function. Extrapolating this into the bone marrow In the time maturation plane, the combined effects of non-
transplant situation, they would indicate that small changeéinearity, nonlocality, and delays leads to solution behaviour
in the maturity composition of the transplanted cells couldexhibiting spatial chaos for certain parameter values.
lead to dramatically different dynamic patterns of transplant  Although analytic results are not available for the system
engraftment>=" This problem has been considered bywe have studied, consistency and validation of the numerical
Schwegler and Mackéy from quite a different modeling results was achieved by using different numerical methods.
perspective. A general conclusion of this work, of interest for the under-
standing of any system modeled by a hyperbolic delayed
partial differential equation, is that increasing the spatio-
temporal delays will often lead to spatial complexity and
Numerical solutions to a model equation that describesrregular wave propagation.
cell population dynamics have been presented and analyzed.
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