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A unified description for the parallel relaxation in systems with static disorder and for the competitive risk
mortality theory in population biology is suggested by combining the physical and biological approaches
presented in the literature. A multichannel parallel decay process is investigated by assuming that each channel
is characterized by a state vectorx and by a probability of decayingp~x;t!. A general fluctuation-dissipation
relation is derived which relates the effective decay rate of the process to the fluctuations of the density of
channels characterized by different state vectors. A limit of the thermodynamic type inx space is introduced
for which both the volume available and the average number of channels tend to infinity, but the average
volume density of channels remains constant. By using scaling arguments combined with a stochastic renor-
malization group approach, two types of universal laws are identified in the thermodynamic limit for the
relaxation~survival! function corresponding to nonintermittent and intermittent fluctuations of the density of
channels, respectively. For nonintermittent fluctuations the general relaxation equation of Huber is recovered,
which includes the stretched exponential equation as a particular case, whereas for intermittent fluctuations a
more complicated universal relaxation equation is obtained which includes Huber’s equation, the stretched
exponential, and the inverse power law relaxation equations as particular cases.@S1063-651X~96!07805-1#

PACS number~s!: 05.40.1j, 64.60.Ak, 87.10.1e

Although models of relaxation processes in disordered
systems@1–3# share some common features with the sto-
chastic theory of mortality@4–6#, there has been almost no
interaction between these two branches of physics and biol-
ogy. The purpose of this paper is to suggest a unified ap-
proach for the theory of parallel relaxation in systems with
static disorder and the model of competitive risks in mortal-
ity theory by combining the different methods developed for
the study of these two problems in the physical and biologi-
cal literature.

We study a multichannel relaxation process which can
take place by following different pathways~reaction chan-
nels! characterized by different values of anM -dimensional
state vectorx5(x1 ,...,xM). For a physical relaxation process
the state vectorx may be the displacement vector between
two interacting molecules or an individual relaxation rate@3#,
whereas in the case of the mortality processx is the vector of
the relevant variables characterizing the state of an individual
@7#. We denote byp~x;t! the instantaneous probability of
relaxation~death! at timet attached to an individual channel

characterized by the state vectorx. The relaxation or the
death occur if at least one of the individual channels lead to
these processes. Denoting byE the total instantaneous prob-
ability of relaxation at timet, we have

E @z~x!;t#>12)
u

@12p~xu ;t !#
z~xu!Dxu

512expH E z~x!dx ln@12p~x;t !#J , ~1!

wherez~x!dx is the number of channels with a state vector
betweenx andx1dx.

As the system is disordered, the state density of channels
z~x! is a random function whose stochastic properties can be
characterized by the characteristic functional

G@K~x!#5 K expS i E K~x!z~x!dxD L , ~2!

whereK~x! is a test function conjugate to the density of
statesz~x!. Herewith we restrict ourselves to systems with
static disorder, for which the characteristic functional
G@K~x!# is time independent. This assumption of time inde-
pendence is also consistent with the theory of competitive
risks in population dynamics, where the contributions of the
different factors to the mortality process are assumed to be
time independent@4–6#.
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The observable function both in solid-state physics and in
population biology is the overall probability of relaxation
~death!,

^E ~ t !&5^E@z~x!;t#&, ~3!

or the complementary probability

l ~ t !512^E~ t !&, ~4!

which bear the names of relaxation function and survival
function in physics and in biology, respectively. An alterna-
tive characterization of the process can be given in terms of
the effective relaxation rate~the mortality force!

m~ t !52] t ln l ~ t !. ~5!

In Eq. ~3! the average is taken over all possible values of
the density of statesz(x). It is easy to check that this average

can be expressed in terms of the characteristic functional
G@K~x!#. By combining Eqs.~2!–~4!, we obtain

l ~ t !5G@K~x!5 ib~x;t !#, ~6!

where

b~x;t !52 ln@12p~x;t !# ~7!

is the bit number@8# of the individual probability of survival
12p(x;t) attached to the channel characterized by the state
vectorx.

If the cumulants of the density of statesz(x),
^^ l (x1)...l (xm)&&, m51,2,..., which describe the fluctuations
of the number of channels with different state vectors, exist
and are finite, we can express the characteristic functional
G@K~x!# as @9#

G@K~x!#5expH (
m51

`
i m

m! E •••E ^^z~x1!•••z~xm!&&K~x1!•••K~xm!dx1 •••dxmJ , ~8!

from which we obtain the following expressions for the relaxation functionl (t) and for the effective relaxation ratem(t):

l ~ t !5expH (
m51

`
~21!m

m! E •••E ^^z~x1!•••z~xm!&&b~x1 ;t !•••b~xm ;t !dx1 •••dxmJ , ~9!

m~ t !5 (
m51

`
~21!m21

m! E •••E ^^z~x1!•••z~xm!&&F )
u51

m

b~xu ;t !G] t lnF )
u51

m

b~xu ;t !Gdx1 •••dxm . ~10!

Equations~9! and~10! are general fluctuation-dissipation re-
lations which relate the average time-dependent behavior of
the system expressed by the functionsl (t) or m(t) to the
fluctuations of the numbers of channels characterized by dif-
ferent state vectors expressed by the cumulants
^^z~x1!...z~xm!&&. Although valid both in the physical and bio-
logical contexts considered in this paper, Eqs.~9! and ~10!
are not very useful because they depend on a number of
unknown functions. That is why in the following we inves-
tigate the possibility of an occurrence of certain types of
universal limit behaviors in the limit corresponding to a very
large number of channels.

We start out by considering that the possible values of the
state vectorx belong to a certain domainS of the x space.
The corresponding volumeVS and the total average number
of channelŝN & are given by

VS5E
S
dr , ~11!

^N &5E
S
^z~x!&dx5E

S
^^z~x!&&dx, ~12!

where we have used the property that the first cumulant
^^z(x!&& of the density of statesz(x! is equal to the corre-
sponding average valuêz(x!&. We consider a limit of the

thermodynamic type for which both the average number of
channelŝN & and the volumeVS of the available state space
tend to infinity but the average volume density of channels

e5^N &/VS ~13!

remains constant:

VS,^N &→` with e5^N &/VS5const. ~14!

Such a limit has been recently introduced in a biological
context for the study of space-dependent epidemics@10#. For
investigating the asymptotic behavior which emerges in the
limit ~14!, we should have some knowledge concerning the
nature of the fluctuations of the number of channels. We
introduce the relative fluctuations of different orders
m52,3,...,

cm~x1 ,...,xm!5
^^z~x1!...z~xm!&&
Pu51

m ^^z~xu!&&
, m52,3,... .

~15!

If the functionscm~x1,...,xm! decrease to zero in the thermo-
dynamic limit ~14!,

cm~x1 ,...,xm!→0 as VS ,^N &→` with e5const,
~16!
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then the fluctuations of the number of channels are noninter-
mittent; otherwise, if in the thermodynamic limit the func-
tions cm~x1,...,xm! do not decrease to zero but tend toward
constant values different from zero or diverge to infinity,
then the fluctuations of the number of channels are intermit-
tent.

For investigating the asymptotic behavior in the thermo-
dynamic limit ~14!, we need to know the dependence of the
individual probability of relaxationp~x;t! attached to a given
channel of the state vectorx and of the timet. We denote by
W~x! the individual relaxation~death! rate of an individual
channel characterized by the state vectorx and byl~x! the
probability that the channel is open. If an individual channel
were always open@l(x!51# or closed@l(x!50#, we would
have

12p~x;t !5exp@2tW~x!# for l~x!51, ~17!

12p~x;t !51 for l~x!50. ~18!

For a probabilityl(x! between zero and unity, the probabil-
ity 12p~x;t! is an average of the values corresponding to the
two limit cases given by Eqs.~17! and ~18!:

12p~x;t !5l~x!exp@2tW~x!#112l~x!. ~19!

Concerning the probabilityl~x! that the channel character-
ized by the state vectorx is open, we assume that it is the
ratio between a characteristic volumeV* ~x! of a neighbor-
hood of the statex, and the total volumeVS available in the
x space,

l~x!5V* ~x!/VS . ~20!

Equation~20! expresses the locality of the behavior of chan-
nels; a similar relationship has been suggested in the context
of the theory of epidemics@10#. An important feature of the
instantaneous decay law~19! is the assumption of exponen-
tial relaxation for the case when the channel is open; in its
present form this assumption was introduced by Huber ten
years ago@11#; he showed that it may be viewed as being a
result of a local Markovian behavior of the different indi-
vidual channels.

By combining Eqs.~9!–~19! we arrive at the following
expression for the relaxation~survival! function l (t):

l ~ t !5expH (
m51

`
em

m! ES
•••E

S
cm~x1 ,...,xm!j~x1!•••j~xm!

3 )
u51

m HVSlnF12
V* ~xu!

VS

3$12exp@2tW~xu!#%G J dx1 •••dxmJ , ~21!

where

j~x!dx5^^z~x!&&dx YE
S
^^z~x!&&dx

with E
S
j~x!dx51, ~22!

is the average probability that the state vector of an indi-
vidual channel is betweenx andx1dx and

c1~x!51 independent ofx. ~23!

By assuming that the fluctuations of the number of channels
are nonintermittent, and that the conditions of nonintermit-
tency ~16! hold in the thermodynamic limit~14!, Eq. ~21!
leads to the universal behavior

l ~ t !5expH 2E r~W!@12exp~2Wt!#dWJ , ~24!

where

r~W!5eE d@W2W~x!#V* ~x!j~x!dx ~25!

is the average density of active channels distributed accord-
ing to their relaxation rates. Relationship~24! was derived in
the physical literature by Huber@11# on the basis of a model
for the decay of luminiscence. An alternative derivation of
Eq. ~24! based on the use of the theory of random point
processes has recently been suggested by two of the present
authors@12#. Our derivation of Huber’s law~24! is less re-
strictive than the other proofs presented in the literature, be-
cause it is not based on a particular model but is rather a
universal law which emerges in the thermodynamic limit
~14! in the case of nonintermittent fluctuations of the number
of channels.

The study of the universal law which emerges in the case
of intermittent fluctuations is more complicated. In this case
a renormalization group technique should be used. In the
following we apply a probabilistic version@13# of the
Shlesinger-Hughes stochastic renormalization procedure@14#
which was recently applied to a study of space-dependent
epidemics with high migration@10#. The method consists in
starting from an initial characteristic functionalG@K~x!# of
the density of statesz~x! for which the fluctuations are non-
intermittent and in constructing, by means of a succession of
decimation processes, a renormalized characteristic func-
tional G̃@K~x!# for which the fluctuations of the density of
states are intermittent. The main steps of such an approach
are presented in another context in Ref.@13#, and a simplified
derivation is also presented in Ref.@10#. The corresponding
expression for the renormalized characteristic functional
G̃@K~x!# is given by~see Appendix A!

G̃@K~x!#5HE
0

1

zH21G@2 i ln†12z

3$12exp„iK ~x!…#%‡dz, H.0, ~26!

whereH.0 is a positive fractal exponent which describes
the intermittent nature of the fluctuations of the number of
channels. By expressing the renormalized cumulants
^^z̃~x1!•••z̃~xm!&& and the corresponding nonrenormalized cu-
mulants ^^z~x1!•••z~xm!&& as functional derivatives of the
characteristic functionalsG̃@K~x!# andG@K~x!#, respectively,

^^z̃~x1!•••z̃~xm!&&

5~2 i !mdm ln G̃@K~x!50#/@dK~x1!•••dK~xm!#, ~27!
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^^z~x1!•••z~xm!&&

5~2 i !mdm ln G@K~x!50#/@dK~x1!•••dK~xm!#, ~28!

it is easy to check that, if the nonrenormalized fluctuations
are nonintermittent and obey the nonintermittency conditions
~16!, then the renormalized fluctuations are intermittent.

For computing the universal law which emerges in the
thermodynamic limit~14! for intermittent fluctuations, in Eq.
~26! we expand the nonrenormalized characteristic func-
tionalG@K~x!# in the cumulant expansion~8! and express the
nonrenormalized cumulantŝ̂z~x1!•••z~xm!&& in terms of the
nonrenormalized relative fluctuationscm~x1,...,xm! given by
Eqs.~15! and in terms of the average renormalized density of
channels,

e5^Ñ &/VS5
H

H11

^N &
VS

. ~29!

Here we have used the relationship between the renormalized
and nonrenormalized average number of channels,

^Ñ &5^N &H/~H11!, ~30!

which can easily be derived by the functional differentiation
of Eq. ~26! followed by the application of Eqs.~27! and~28!
for m51, and by the integration over the state vectorx. After
lengthy algebraic manipulations Eq.~6! for the average re-
laxation functionl (t) can be written as

l ~ t !5HE
0

1

zH21dz expH (
m51

`
1

m!
@e~111/H !#mE

S
•••E

S
cm~x1 ,...,xm!j~x1!•••j~xm!

3 )
u51

m HVS lnF12z
V* ~xu!

VS
$12exp@2tW~xu!#%G J dx1 •••dxmJ . ~31!

By passing in Eq.~31! to the thermodynamic limit~14! and
using the nonintermittency conditions~16! for the nonrenor-
malized fluctuations, we obtain the universal law

l ~ t !5 j HF E r~W!@12exp~2Wt!#dWG , ~32!

where the functionj H(z) can be expressed in terms of the
complete gamma function

g~a,u!5E
0

u

ta21 exp~2t !dt, a.0, u>0. ~33!

We have

j H~z!5H@~111/H !z#2Hg@H,~111/H !z#. ~34!

Now we consider certain particular cases of the universal
laws ~24! and~32! of the relaxation functionl (t) derived for
nonintermittent and intermittent fluctuations, respectively. It
is easy to check that the intermittent law~32! includes the
Huber’s equation~24! as a particular case corresponding to
the limit H→`. We can show that in this limit the function
j H(z) tends toward an exponential:

lim j H~z!5exp~2z!, H→`, ~35!

and Eq.~32! reduces to Eq.~24!. The physical interpretation
of this result is simple. The reciprocal value of the fractal
exponent,

w51/H, ~36!

is a measure of the intermittency of the fluctuations of the
number of channels: as the fractal exponentH increases, the
intermittent character of the fluctuations becomes less and

less pronounced, and in the limitH→` ~w→0! it vanishes
completely, resulting in the nonintermittent law~24!.

A particular case of importance both for physics and bi-
ology is the stretched exponential survival statistics for
which the relaxation functionl (t) is given by

l ~ t !5exp@2~Vt !a#, 1.a.0, ~37!

whereV is a characteristic frequency anda is a fractal ex-
ponent between zero and unity. Equation~37! describes a
broad class of relaxation phenomena in condensed matter
physics@1–3#, and, on the other hand, gives a representation
of the survival function of cancer patients@7,15#. The effec-
tive relaxation ratem(t) corresponding to the stretched ex-
ponential~37! is

m~ t !5aV~Vt !a21. ~38!

For establishing the conditions within which the stretched
exponential~37! emerges as a particular case of the universal
laws ~24! or ~32!, we rewrite the fluctuation-dissipation rela-
tion ~10! in the thermodynamic limit~14!; the corresponding
expressions for nonintermittent and intermittent fluctuations,
respectively, are

m~ t !5E Wr~W!exp~2Wt!dW, ~39!

m~ t !5bHF E dWr~W!@12exp~2Wt!#G E Wr~W!

3exp~2Wt!dW, ~40!

where the functionbH~x! is given by
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bH~x!5~H11!x21$11@~111/H !HxH#

3exp@2x~111/H !#/g@H11,x~111/H !#%21.

~41!

As expected, asH→` we have

lim
H→`

bH~x!51, ~42!

and Eq.~40! reduces to Eq.~39! for nonintermittent fluctua-
tions.

If the effective relaxation rate is known from experiments,
then Eqs.~39! and~40! can be considered as functional equa-
tions for the density of statesr(W) expressed in terms of the
relaxation rateW. Equation~39! for nonintermittent fluctua-
tions can be easily resolved by means of an inverse Laplace
transformation. In particular, in the case of stretched expo-
nential relaxation, for which the effective relaxation rate is
given by Eq.~38!, Eq. ~39! leads to a negative power law for
the density of statesr(W):

r~W!5aVaW2~11a!/G~12a!

with G~x!5g~x,`!, x.0. ~43!

The functional Eq.~40! for intermittent fluctuations can-
not be solved in a simple way. For a comparison with the
nonintermittent case we use an inverse approach and evalu-
ate the relaxation functionl (t) for the case when the density
of statesr(W) is given by the negative power law~43!. By
inserting Eq.~43! into Eqs.~33! and ~40!, we obtain

l ~ t !5H~Vt !2aH~111/H !2Hg@H,~Vt !a~111/H !#
~44!

and

m~ t !5aV~Vt !a21bH@~Vt !a#. ~45!

From Eqs.~44! and ~45! for small times, we recover the
stretched exponential behavior

l ~ t !;exp@2~Vt !a#, t!V21, ~46!

m~ t !;aV~Vt !a21, t!V21, ~47!

whereas for large times we obtain a negative power law

l ~ t !;G~11H !~Vt !2aH~111/H !2H,

t@V21, H finite, ~48!

m~ t !;aH/t, t@V21, H finite. ~49!

As the fractal exponentH increases, the stretched exponen-
tial portion of the relaxation functionl (t) becomes longer
and longer and the power law tail becomes shorter and
shorter; eventually in the limitH→` the whole relaxation
function l (t) can be represented by a stretched exponential.

It has been suggested that it would be interesting to inves-
tigate the connection between the overall relaxation~death!
process and the fluctuations of the density of channels for
nonintermittent and intermittent systems, respectively. Al-

though, in general, according to the fluctuation-dissipation
relations ~9! and ~10! the average behavior of the overall
process is characterized by the relative fluctuations of all
orders, the limit behavior for nonintermittent and intermittent
systems, described by Eqs.~24! and ~32! is independent of
the relative fluctuations. It therefore seems that the fluctua-
tions do not play any role in the thermodynamic limit; how-
ever, this is not the case. We should make a distinction be-
tween the total number of relaxation channels and the
channels which are active; that is, those channels which are
involved in the relaxation process. The average density of
active channels involved in the relaxation process is given by
Eq. ~25! both for nonintermittent and intermittent fluctua-
tions; their distribution is random and different in the two
cases.

We can describe the properties of the random distribution
of the active channels in terms of a set of grand canonical
probability densities

Q0 , QN~W1 ,...,WN!dW1 •••dWN , ~50!

with the normalization condition

Q01 (
N51

`
1

N! E •••E QN~W1 ,...,WN!dW1 •••dWN .

~51!

QN(W1 ,...,WN)dW1 ...dWN is the probability that there are
N active channels and that their individual relaxation rates
are betweenW1 andW11dW1 ,..., andWN andWN1dWN ,
respectively. The total relaxation rate of the process is given
by the sum of the individual rates corresponding to the dif-
ferent channels which are active:

W5W11•••1WN , ~52!

and then the average survival function can be expressed as a
grand canonical average of an exponential survival function
exp(2Wt), whereW is given by Eq.~52!:

l ~ t !5Q01 (
N51

`
1

N! E •••E expS 2t(
u51

N

WuD
3QN~W1 ,...,WN!dW1 •••dWN . ~53!

If in Eq. ~53! the average survival functionl (t) is given by
one of the two limit laws,~24! or ~32!, then this equation can
be viewed as a functional equation for the grand canonical
probability densities of the active channels. In Appendix B
we show that for nonintermittent fluctuations the solution of
this functional equation is

Q05expS 2E r~W!dWD , ~54!

QN~W1 ,...,WN!5r~W1!•••r~WN!expS 2E r~W!dWD ,
~55!

that is, the distribution of active channels is given by a Pois-
sonian random point process. In particular, considering the
number of active channels with rates between a minimum
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valueWmin and a maximum valueWmax, the corresponding
probability distribution is a Poissonian:

P~N!5^N&N~N! !21exp~2^N&!, ~56!

where the average number of channels is given by

^N&5E
Wmin

Wmax
r~W!dW. ~57!

Now the cause for the apparent absence of the fluctuations in
the nonintermittent limit law is clear. For a Poissonian dis-
tribution all cumulants of a random variable are equal to the
average value, and this is the reason why the limit equation
~24! depends only on the average density of channels.

A similar analysis can be performed for intermittent fluc-
tuations, resulting in the following expressions for the ran-
dom distribution of the active channels~see Appendix B!:

Q05HE
0

1

zH21dz expS 2z~111/H !E r~W!dWD
5 j HS E r~W!dWD , ~58!

QN~W1 ,...,WN!5r~W1!•••r~WN!H~111/H !N

3E
0

1

zH1N21dz expS 2z~111/H !

3E r~W!dWD
5H~111/H !2HgSH1N,~111/H !

3E r~W!dWD
3S E r~W!dWD 2N2H

r~W1!•••r~WN!.

~59!

In this case, due to the intermittent behavior, the distribution
of active channels is no longer Poissonian; however, since it
can be represented as a superposition of Poissonians the fluc-
tuation dynamics is entirely characterized by the average
density of channelsr(W) and by the fractal exponentH.
This fact explains why the intermittent limit law~32! seems
to be apparently independent of fluctuations.

We conclude this paper by outlining some general fea-
tures of our approach, as well as some of its limitations and
possibilities of generalization. The occurrence of the asymp-
totic universal laws~24! and~32! for the relaxation function
l (t) is due to two different properties of the process. The first
property is related to the nonintermittent or intermittent char-
acter of the fluctuations of the number of channels, whereas
the second property consists in the local behavior of an in-
dividual channel inx space, expressed by the finiteness of
the volumeV* ~x! of the neighborhood of the statex which
corresponds to the open state of the channel. Note that this
local behavior is conserved in the thermodynamic limit~14!

because in Eqs.~21! and ~31! for nonintermittent and inter-
mittent fluctuations, respectively,V* ~x! is assumed to be
constant whenVS and ^N & tend to infinity.

Limit ~14! of the thermodynamic type expresses the fact
that the process considered is complex and involves a very
large number of pathways~channels! which are uniformly
and randomly distributed in the state space. Although suffi-
cient for the occurrence of the two types of universal laws
~24! and ~32! for nonintermittent and intermittent fluctua-
tions, the assumptions made in this paper are incomplete, and
cannot be used for specifying the density of active channels
r(W) with a rate betweenW andW1dW and the fractal
exponentH. This is both an advantage and a disadvantage of
our approach: it is the main reason for which the results are
valid both for biological and physical systems and, on the
other hand, because of its incompleteness, our formalism is
not a theory but rather a scenario which should be completed
with specific assumptions describing the physical or biologi-
cal processes considered. Such a development would lead to
particular models for different physical or biological pro-
cesses providing expressions for the density of statesr(W)
and for the fractal exponentH, but of course the generality
of the treatment would be lost.

Our approach is valid for systems with static disorder: for
such systems once a fluctuation of the number of channels
has occurred it is completely frozen and lasts forever. Such
an assumption is justified if the characteristic time scale for
the regression of fluctuations is much larger than the time
scale of the process itself. If the two time scales have the
same order of magnitude then the dynamic character of fluc-
tuations should be taken into account; the fluctuations of the
number of channels are continuously formed and destroyed,
the characteristic functionalsG@K~x!# and G̃@K~x!# also de-
pend on time, and the average in Eq.~3! is dynamical, being
taken over all possible random functionsz~x;t!. Further re-
search concerning this dynamical problem is presented in
Ref. @17#.

This research was supported by the Alexander von Hum-
boldt Foundation, NATO, and the Natural Sciences and En-
gineering Research Council of Canada.

APPENDIX A

It has been suggested that the main steps of the derivation
of the renormalized group equation~26! for intermittent fluc-
tuations should be presented in an appendix. Here we give a
simplified derivation of this equation. For further details the
interested reader may consult Refs.@10# and @13#.

The renormalization transformation generating a limit in-
termittent behavior consists in a succession of decimation
processes of the number of channels characterized by two
probabilities: the probabilitya that a decimation process
takes place and the probabilityn that for a given step a chan-
nel is decimated~left out!. For characterizing the decimation
process we use a discrete representation of the numbers of
channels characterized by different state vectors, and denote
by

Nu5z~xu!Dxu , u51,2,... ~A1!

4708 53VLAD, SCHÖNFISCH, AND MACKEY



the number of channels with a state vector betweenxu and
xu1dxu . We introduce the notation

P~N1 ,N2 ,...! with (
N1

(
N2

•••P~N1 ,N2, ...!51

~A2!

for the initial ~nonrenormalized! probability that there areN1
channels in the groupu1, N2 channels in groupu2, etc.,

Pq~N1 ,N2 ,...! with (
N1

(
N2

•••Pq~N1 ,N2 ,...!51

~A3!

and

P̃~N1 ,N2 ,...! with (
N1

(
N2

••• P̃~N1 ,N2 ,...!51,

~A4!

for the corresponding probabilities attached to theqth deci-
mation step and to the renormalized process, respectively.

Since the probabilitya for the occurrence of a decimation
step is constant, the probabilityxq that the renormalization
process is made up ofq decimation steps is given by a Pascal
law,

xq5aq~12a!. ~A5!

Due to the independence of the different decimation pro-
cesses, it is easier to focus on the description of the decima-
tion of the channels of a given type. Since the decimation of
a channel is a random process characterized by a constant
probability,n, we have

Pq~ ...,Nv ,...!5( Pq21~ ...,Nv
~q21!, ...!

3
Nv

~q21!!

Nv
~q!! ~Nv

~q21!2Nv
~q!!!

3nNv
~q21!

2Nv
~q!

~12n!Nv
~q!
, ~A6!

with the initial condition

P0~ ...,Nv ,...!5P~ ...,Nv ,...!. ~A7!

The renormalized distribution which eventually emerges af-
ter the completion of the succession of decimation processes
can be evaluated fromP by averaging over the numberq of
steps in terms of the probabilityxq :

P̃~ ...,Nv ,...!5 (
q50

`

aq~12a!Pq~ ...,Nv ,...!. ~A8!

By introducing the generating functions

q~ ...,yv ,...!5( ~12yv!
NvP~ ...,Nv ,...!, u12yvu<1,

~A9!

qq~ ...,yv ,...!5( ~12yv!
NvPq~ ...,Nv ,...!, u12yvu<1,

~A10!

q̃~ ...,yv ,...!5( ~12yv!
NvP̃~ ...,Nv ,...!, u12yvu<1,

~A11!

Eqs.~A6!–~A11! lead to

qq~ ...,yv ,...!5qq21@ ...,~12n!yv ,...#, ~A12!

with the initial condition

q0~ ...,yv ,...!5q~ ...,yv ,...! ~A13!

and

q̃~ ...,yv, ...!5 (
q50

`

aq~12a!qq~ ...,yv ,...!. ~A14!

By applying Eqs.~A12!–~A14! recursively, we obtain

q̃~ ...,yv ,...!

5 (
q50

`

aq~12a!q@ ...,~12n!qyv ,...#

5~12a!q~ ...,yv ,...!1aq̃@ ...,~12n!yv ,...#. ~A15!

Equation~A15! has a structure typical of a renormalization
group equation@14#. It generates a negative power law scal-
ing behavior for the generating functionq̃ in terms of yv
with a fractal exponent

H5 ln a/ ln~12n!, ~A16!

modulated by logarithmic oscillations in lnyv with period
2ln~12n!. Since these logarithmic oscillations lead to a vio-
lation of the self-similarity of the process they should be
discarded. To eliminate the logarithmic oscillations we con-
sider the limit@16#.

a↗1,n↘0 with H5 ln a/ ln~12n!5const.
~A17!

In this limit the logarithmic oscillations vanish, but the nega-
tive power law scaling behavior is still present. From Eqs.
~A15!–~A17! we obtain the differential equation

yvdq̃/dyv5H~q2q̃ !. ~A18!

The solution of Eq.~17!, which conserves the normalization
conditions for the probabilities, has the form

q̃~ ...,yv ,...!5HE
0

1

zH21dzq~ ...,zyv ,...!. ~A19!

The simplified derivation presented above describes the
decimation process for only one type of channels. The gen-
eralization for many types of channels is straightforward.
The detailed derivations are left to the reader. We mention
only that Eqs.~A6!, ~A18!, and~A19! are replaced by
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Pq~N1 ,N2 ,...!5(
N18

(
N28

•••)
m

H Nm8 !

Nm! ~Nm8 2Nm!!
nNm8 2Nm

3~12n!NmJ Pq21~N18 ,N28 ,...!, ~A20!

(
m

ym]q̃/]ym5H~q2q̃ !, ~A21!

and

q̃~y1 ,y2 ,...!5HE
0

1

zH21dzq~zy1 ,zy2 ,...!, ~A22!

where

q~y1 ,y2 ,...!5(( •••)
m

~12ym!NmP~N1 ,N2 ,...!,

;u12ymu<1, ~A23!

q̃~y1 ,y2 ,...!5(( •••)
m

~12ym!NmP̃~N1 ,N2 ,...!,

;u12ymu<1. ~A24!

By comparing Eqs.~A23! and ~A24! with the discrete ver-
sions of the definitions of the characteristic functionals
G@K~x!# andG̃@k~x!#,

G@K~x!#5(
N1

(
N2

•••P~N1 ,N2 ,...!expS (
m

iK ~xm!NmD ,
~A25!

G̃@K~x!#5(
N1

(
N2

••• P̃~N1 ,N2 ,...!expS (
m

iK ~xm!NmD ,
~A26!

we notice that

G@K~x!#5q@y~x!512exp„iK ~x!…#. ~A27!

G̃@K~x!#5q̃@y~x!512exp„iK ~x!…#. ~A28!

Combining Eq.~A22! with Eqs.~A27! and~A28!, we obtain
the renormalization group equation~26!.

APPENDIX B

By expanding the exponential in Eq.~24! in a functional
Taylor series, we obtain

l ~ t !5expS 2E r~W!dWD
3H 11 (

N51

`
1

N! E •••E r~W1!•••r~WN!

3expS 2t(
v51

N

WvD dW1 •••dWNJ . ~B1!

Equation~B1! has exactly the same structure as the grand
canonical average~53!. By comparing Eqs.~B1! and ~53!,
we come to Eqs.~54! and~55!. Similarly, by expressing the
intermittent limit law ~32! in the form

l ~ t !5HE
0

1

zH21dz expH 2~111/H !zE r~W!

3@12exp~2Wt!#dWJ , ~B2!

expanding the exponential in Eq.~B2! in a functional Taylor
series similar to Eq.~B1! and comparing the result with Eq.
~53!, we obtain Eqs.~58! and ~59!.
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