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Abstract

The possible occurrence of ergodic behavior for large times is investigated in the case of
stationary random processes with memory. It is shown that for finite times the time average of
a state function is generally a random variable and thus two types of cumulants can be
introduced: for the time average and for the statistical ensemble, respectively. In the limit of
infinite time a transition from the random to the deterministic behavior of the time average may
occur, resulting in an ergodic behavior. The conditions of occurrence of this transition are
investigated by analyzing the scaling behavior of the cumulants of the time average. A general
approach for the computation of these cumulants is developed; explicit computations are
presented both for short and long memory in the particular case of separable stationary
processes for which the cumulants of a statistical ensemble can be factorized into products of
functions depending on binary time differences. In both cases the ergodic behavior emerges for
large times provided that the cumulants of a statistical ensemble decrease to zero as the time
differences increase to infinity. The analysis leads to the surprising conclusion that the scaling
behavior of the cumulants of the time average is relatively insensitive to the type of memory
considered: both for short and long memory the cumulants of the time average obey inverse
power scaling laws. If the cumulants of a statistical ensemble tend towards asymptotic values
different from zero for large time differences, then the time average is random even as the length
of the total time interval tends to infinity and the ergodic behavior no longer holds. The theory
is applied to the study of long range correlations of nucleotide sequences in DNA; in this case
the length ¢ of a sequence of nucleotides plays the role of the time variable. A proportionality
relationship is established between the cumulants of the pyrimidine excess in a sequence of
length ¢ and the cumulants of the time (length) average of the probability of occurrence of
a pyrimidine. It is shown that the statistical analysis of the DNA data presented in the literature
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is consistent with the occurrence of the ergodic behavior for large lengths. The implications of
the approach to the analysis of the large time behavior of stochastic cellular automata and of
fractional Brownian motion are also investigated.

PACS: 05.40. + j;02.50 — r; 64.60 Ak;87.10 + ¢

1. Introduction

Although initially formulated by physicists, the study of the problem of ergodic behavior
has been almost entirely taken over by mathematicians. In physics the ergodic theory is
mainly used for the analysis of the following problems: the fundamentation of statistical
physics of equilibrium systems [1-4], the description of chaotic systems [5,6] and the
description of the passage from the ergodic to the non-ergodic behavior in certain exotic
systems, for instance in spin glasses [7]. Other subjects related to the ergodic theory, such as
the ergodic behavior of stochastic processes with short or long memory [8,9], although well
known to mathematicians, have been barely investigated by physicists [10, 11].

The aim of this paper is to present a physically-oriented investigation of the possible
occurrence of ergodic behavior for a class of stochastic processes with memory based
on the use of a systematic cumulant expansion technique. Our approach originates
from an investigation of the possible ergodic behavior in the particular case of
stochastic cellular automata suggested by two of the present authors [12,13]. The
initial approach [13] has led to incomplete results due to the nonsystematic expansion
technique used. The systematic camulant expansion presented in the following allows
one to overcome the technical difficulties present in the initial approach [13] and
makes it possible to establish under what circumstances the transition from the
non-ergodic to the ergodic behavior is possible for large times. In developing this
approach we have had two different possible applications in mind. The first applica-
tion is the study of long-range correlations in the nucleotide sequences in DNA
[14-16], and the second application is the investigation of the large time behavior of
a general class of stochastic cellular automata with memory [13], which, even though
are local in space, are non-local in time.

The structure of the paper is as follows. In Sections 2 and 3 we investigate the
ergodic behavior of continuous and discrete systems, respectively. Section 4 deals with
the application of the theory to the study of long-range correlations in DNA. Finally
in Section 5 the implications of our approach for the study of stochastic cellular
automata as well as of fractional Brownian motion are discussed.

2. Continuous systems

We start out by considering the case of random processes continuous in space and
time; formally this case includes the random processes with discrete space and (or)
time as particular cases.
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The idea presented in Refs. [12, 13] for investigating the ergodic behavior is limited
to discrete random variables and discrete time. For a random system with a discrete
state space with M states u = 1,2, ... , M the time average of a function f (4) depend-
ing on the state u of the system is defined by:

SLu@)]@) =

o | —

_;f (u(z)] - 1)

In Refs. [12,13] it is suggested to express the time average (1) in the form

1 M M
Slu@)1() =7 YW, Y t=t, 2
u=1 u=1

where t,, u=1,...,M are the total times spent by the system in the states
u =1, ..., M. By using Eq. (2) the evaluation of the time average f[u(t')] (¢) reduces
to the evaluation of the stochastic properties of the sojourn times ¢4, ... , t. From Eq.
(2) it follows that, as ¢y, ... ,t)y are random, the time average f[u(t')](¢) is also
random. The possible existence of ergodicity in the limit of large times t - co can be
investigated by studying the stochastic properties of the sojourn times ¢y, ... ,ty in
this limit.
If the system is characterized by a continuous state vector

x=(x1,x2,...), (3)
which is a random function of the continuous time t,
x=x(1). @

then the time average of a state function f(x) for a time interval of length ¢ is given by

oo,

fIx()]1(@) =

o~ | —

f FLe)]dr )
0

In continuous time and space the sojourn times ¢y, ... ,t) are replaced by the density
of states characterized by a state function between fand f+ df:

t

n(f;0)= J(S(f—f[x(t’)]dt’, jn (f;ndf=t. (6)
0
By using definition (6) of the density of states #(f;t) and the filtration property of the
delta function it is easy to check that the time average (5) can be written in a form
similar to Eq. (2):

t

jfn(f; Hdf. 0

0

fIx(t)1@) =

o~ | —
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We assume that the stochastic properties of the state vector x(t) are given by
a stationary random process with memory whose behavior is characterized by
a generalized characteristic functional of the Lax type [17]:

YQk(); )] = <exp(i J Q(x(t');t’)dt')>, ®
0

where Q(x(t');t') is a suitable test function. The stationarity of the process can be
expressed in the form

FLOx(')t)] = F[QMx(r' + AD);t + AD)], ©

where At is an arbitrary time difference.

According to their definitions, the state function at time t, f(t) = f(x(t)) and the
density of states n(f;¢) are also random functions; the characteristic functionals of
these random functions can be expressed in terms of the characteristic functional
ZLOx(t'); t')] of the random vector x(t). We have:

Glw(t');t] = <exp(i J‘f(x(t’))a)(t')dt'>>
0

=) ") = fx(t') () h(t — )], (10)

BIK(f, ;1] = <exp (1” K(f", t’)n(f';t’)df’dt’>>
1]

= gl:Q(x(t’); U)=h(t—1) jdt"K(f(x(t"), t')], 1)

where w(t') and K(f',t') are suitable test functions conjugate to f(t) = f(x(t)) and
n(f';t’), respectively, and h(a) is the usual Heaviside step function.

If the cumulants f(t}) ... f(tm)> and Kn(fi,t1) ... B(fmstm)Dp, of the state
function f(x) at time ¢, f(t) = f(x(t)), and of the density of states #(f;t) exist and are
finite, then the characteristic functionals G[w(t');£] and Z[K(f", t');£] can be ex-
pressed by the cumulant expansions [10]

G[w(r');t]=exp{z”m j f«f(rl) Dol

o

- ot )dt) ... dt;,,}, (12)
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— PO - = (l)m 1.4t ]
‘=[K(f N )at] = e&xXp Z W T <<”(f1atl) "(fm’tm)>>
m=1 4
0o o

x K(f1,t1) -+ K(fm,tm))dfidty - df,.',dti..>- (13)

Between the cumulants < f(t,) --- f(t) D) of the state function f(f) = f(x(¢)) and the
cumulants n(f1;t1) ... 1(fm>tm))) of the density of states #( f;t) there is a relation-
ship which can be derived by considering that the test function K (f; ¢) has the product
form

K(f,0)=fw(). (14)

In this case by using the definitions (10), (11) for G[w(t');t] and E[K(f’,t');t] we
come to

E(K =fw(t')] = G[w(t’) = Jw(t")dt”]. (15)

By inserting the cumulant expansions (12), (13) into Eq. (15) and identifying the
coefficients of w(t}) --- w(t,,) from both terms we come to the identities

ty

[ T«f(ti) SOt b= [ [t
d

0

xLn(fist1) = n(fms tm)» dfy - dfs (16)

from which

KI0) + F e
-z ta) Y dfy -+ df (17)
i [ [ A i) Mt s -

and then the cumulants of the state function are completely determined by the
cumulants of the density of states.

Since the density of states is random from Eq. (7) it turns out that the time average
corresponding to a finite time interval of length ¢ is also random. It follows that we can
introduce the cumulants <{ f[x(t')]™)) (¢) of the time average; these cumulants can be
computed by defining a characteristic function for the time average f[x(¢')](?)
and performing a cumulant expansion

Cexp(ibfx(t)])) = eXp(i Q KLf x> (t)b"'> : (18)

T m
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The cumulants of f [x(x’)] can be expressed in terms of the cumulants of the density of
states. From Egs. (7), (11) and (18) we note that

Cexp(ibf[x(t')])> =E[K(t')=t""'d(t —t')fb]. (19)
By inserting Egs. (13) and (17) into Eq. (18) and identifying the coefficients of the
different powers of b we obtain:

KT O = 1 f ff, el (fid) - DD S - A,

(20)
from which, by taking Egs. (16) into account we get:
KLEAOD»@O =" J f((f(t'n) < fltm) Ay - iy, 1)

0 0

We are interested in checking the possibility of existence of the ergodic behavior,
i.e., we want to find out under what circumstances in the limit t — oo the time average
fx(t')](t) of the state function f(x) is equal to the ensemble average of f(x):

lim f[x(t')] (1) =<{fx)), (22)
t— oo
Due to the stationarity of the random process describing the time evolution of the
random state vector x(t) the first cuamulant of the state function f(x) is time-indepen-
dent,

L Sfx)» = <{f(x))> = independent of t, (23)

where we have used the property that the cumulant of first order of a random variable
is equal to the average value of the random variable. From Egs. (21) applied form = 1
and from Eq. (23) we have

-

SEDO = L)@ =12 J(f(x» de’ = {f(x)7, (24)
0

and therefore, in order that the ergodic property (22) be valid, we should have
x5 (o) =f[x(t)] (00), (25)

that is, in the limit  » oo the ensemble average of the time average should be equal to
the time average itself; in other words the time average f [x(t')](cc) should be non-
random. Since for a non-random quantity all cumulants of order bigger than one are
equal to zero we should have:

LKL )T M (0) = lim KLf[*()1" M) =0, m=>2. (26)

t— o0
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In order to check whether the relationships (26) hold, we should evaluate the
asymptotic behavior of the time integrals in Egs. (21) in the limit t — co . For studying
the behavior of these integrals we note that the cumulants (( f[x(t,)] --- f[x(t.)]1>»
of the state function f[x(t)] fulfill the following properties:

(1) Since no restrictions are imposed on the timest,, ... ,t,, the cumulant of the mth
order of the state function is left unchanged by a permutation of the times t,, ... , .

(2) Due to the stationarity of the random process describing the evolution of the
state vector x, and since the state function f (x) depends on time only through x = x(t)
we have

KI@) - fltm)D = LKf@tr = A) - fltm—ADY, fl)=f[x@)], (27)

where At is an arbitrary time difference. Egs. (27) are a consequence of the condition
(9) of the time invariance of the random process describing the time evolution of the
random vector x = x(t).

By choosing the time difference At as the smallest of the times t,, ... ,t,,

At =t} =min(ty, ... ,1,), (28)

we can express the cumulant of the mth order of the state function f(x) as a function of
m — 1 time differences

K@) = fEm)D = Calts —tm, . stm—t)- (29)
In Appendix A we show that by using Eq. (29) we can express the cumulants of the
time average in the form
t t—0 t—6
KUFEETI"O =me= (a0 [ dry o [ dtues Cates, e me).
0 ]

0

(30)
If moreover the mth cumulant C,,(t; —t¥, ... ,t,, — t¥) can be factorized into a pro-
duct of m — 1 time differences
Culty —tm, ... tm— ) =A, [ @(t, — 1), C,= A, = constant, (31)
then
t t—0 L
KL = Awmt ™™ | a6 ( G dr) . (2)
=0 0

Now we apply Egs. (30) and (32) to two different particular cases.
(1) For systems with short memory for which the mth cumulant
Calty —tX, ... ,t, — t¥) is the product of m — 1 exponentially decaying factors

Clts —tmy oo s tm— tm) = An [[[vexp[ — v(t. — t2)1], (33)
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where, due to the symmetry of the mth cumulant C,, with respect 10 £y, ..., m, the
frequency of fluctuations decay v should be the same for all terms in Eq. (33). In
Appendix B we show that a physical model of the shot-noise type leads to Eq. (33).
Note that this situation includes as a particular case the stationary Gaussian and
Markovian processes for which

A,=0, m>=3. (34)

By using the expression (33) for C,, Eq. (32) leads to

KLFTETI"»®
= t-"'A,,(mt +:§ W,:Tn!_(T_—l)k:‘)W[l —exp( —vkt)]), (35)
and in the limit t > o0 we have
KfEOTHO =@, Sy =Ci=4, (36)
KLTEOTI™D O ~t ™ Omd,, t>v7, m>2, (37)
and thus
KLfIxE)I1™H(0) =0, m>2, (38)

and therefore the ergodic property (22) holds. This situation includes the independent
random processes as a particular case corresponding to

v— 0. (39)

Eq. (33) becomes
Colty —t2, ... stm—t2) = An [ 0(t, — tz) (40)

(see also Van Kampen [18]). From Egs. (32) and (40) we obtain
KEOTDO =4 LKFxEII" DO =t"""mAn, m>2. 41)

Egs. (41) have the same form as the asymptotic laws (36), (37) derived for short
memory. Eqs. (41) are exact for any time interval, short or long.

(2) The second case corresponds to random processes with long memory for which
the statistical ensemble cumulants are given by a set of negative power laws:

—Hm
Culty —t¥, ... ,tm—13) =B,,,|:]_I(t,, —t;)] , C, =B, =constant, B, #0,

42)
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where H,,, m = 1,2, ... are nonnegative fractal exponents smaller than unity,
1>H,>0, m=23, .. (43)

In Appendix C we show that the scaling law (42) for the statistical ensemble cumulants
can be generated by means of Shlesinger-Hughes stochastic renormalization [19, 20].
By computing the time integrals in Eq. (32) we come to

B,mt ~Hmm—1)
[m(l - Hm) + Hm] (1 - I'Im)m—1 .

K xE)I™H @) = (44)
We note that for large time both the short and long memory lead to scaling conditions
of the inverse power law type for the cumulants of the time average [see Egs. (37),
(44)]. The only effect of the long memory is that it leads to smaller scaling exponents
than the short memory.

Concerning the ergodic behavior we distinguish two different subcases. (2.a.) If the
fractal exponents H,, are positive, that is

1>H,>0, m=23,..., 45

then as t = oo from Eq. (44) we come to

Kfx@)IN(0) =By ={fx)), (46)
KL @)1 » (o) =0, m>2, (47)

and therefore the ergodic property is valid.
(2) If the fractal exponents H,, are equal to zero

H m= 0 s (48)
the statistical ensemble cumulants are constant
Cn=B,, m=12,.. (49)

and in the limit t - oo the cumulants of the time average are equal to the statistical
ensemble cumulants

KU x)II1" N (0) =Bm, m2=1. (50)

Since the statistical ensemble cumulants C,, = B,, # 0 are different from zero [see Eq.
(42)], it follows that the ergodic property no longer holds. Note that there is a less
restrictive condition than the one given by Egs. (48), (49) for which the ergodic
property (22) is not valid. For the violation of ergodicity it is enough that residual
correlations different from zero exist for large values of the time differences
t,—t¥ t,—t¥ ..., in other words the statistical ensemble cumulants
Cnty —t* ... ,tm—t¥) tend to constant values different from zero as
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b=tk ot — k> 0O,
hm C,(t; —t%, ... ,tmw—t¥)=Cn(0)#0, (51)
Vi, —tk—> .
By applying Egs. (21) it is easy to check that
KLTETI™M (0 )= Ca(0) #0, (52)

and therefore the system has a non-ergodic behavior.

3. Discrete systems

Although most of the results derived in the preceding section also hold for discrete
systems, there are however some differences. In this section we limit ourselves to the
study of stationary stochastic systems in discrete time with a finite number M of states;
these systems are directly connected to the problem of long-range correlations in
DNA sequences and of the large time behavior of stochastic cellular automata.

For a discrete system state vector x is replaced by a discrete label u which can take
a finite number M of values, u = 1,2, ... , M, and the time ¢t is a positive and integer
number. Under these circumstances the time average of a state function f(u) is given
by Egs. (1) and (2), where the individual sojourn times t, = t,(t) corresponding to
a total time interval of length ¢, are the discrete analogs of the density of states #(f; ).
The sojourn times can be expressed by the equation

t M

)= Y dwwens Y tL@=t, (53)
t'=1 u=1

which is the discrete analog of Eq. (6). By following the same steps as in the case

of continuous systems we can relate the statistical ensemble cumulants of

the state function f(u), <{(f(t;) ... f(tm))), with f(u) =f[u(t)], to the cumulants

Ltuy(ty) - t,(tn) D) of the sojourn times:

S S S - D

(=1 th=1

M oM
= 21 v 2 S e f () Kty (01) -t ) (54)

Um=1

LKft) = ftm)D =By, - A,

M M
XY o Y fuy) o f () Kbay (B1) o b ()Y (55)

=1 um=1
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where A, ---

A o)) = ot) — ot — 1), (56)

are difference operators. We can also express the cumulants of the time average
KLAfu(@E)II™>> (@), in terms of the cumulants of the sojourn times,
Kty (t1) -+ t,,(tw)>> and of the statistical ensemble cumulants {(f(ty) -+« f(tm)):

M M
KU D@ »O =" % - ¥ f@) - fltm) Kty (O - £, 0, (57)

=1 Um=1

t 3
KLl " D@ =t™" Zl Zl<<f[u(t'1)] o f [u(tm)1 - (58)
1= tin=
Eqgs. (54)(58) are the discrete analogs of Egs. (16), (17), (20) and (21), respectively; their
detailed derivation is left to the reader.

By using the condition of time homogeneity due to the stationarity of the random
process, which describes the time evolution of the random variable u, we can express
the statistical ensemble cumulants by Eq. (29) where now the times ¢y, ... ,t, are
discrete variables. The discrete analog of Eq. (30) is:

t t—-0 t—6
<<[f[u(t')]]"'>>(t)=mt‘"'aZ Yo r Gty s Tmn)s (59)
=171=0 Tm-1=0

from which, by assuming that the cumulants C,, can be factorized in the product form
(31), we obtain:

t t—0 m—1
KL D @) = Apmt™™ 3, (Z fP(T)) : (60)
6=1 \t=0

A random process with short memory is described by a set of cumulants of the
product from (31} where the function ¢(z) is exponentially decreasing:

e =1 —-Ni, 1>1>0. (61)

In this case the evaluation of the sums in Eq. (60) reduces to the repeated summation
of several geometrical progressions; to save space we give here only the scaling law for
the cumulants of the time average valid for large times:

KSWEOIHO={f(x)>, t>[nQ/H]"". (62)
KL w@E)I™H @) ~const. ¢~V ¢ [In(1/H]™!, m>2. (63)

We notice that in the limit ¢t > co the cumulants of the time average of order bigger
than one vanish and thus the behavior of the system is ergodic.
In the limit 2 — 0 Eq. (61) becomes

¢(T) = 60t > (64)
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and the random process describing the time evolution of the label u is independent,
that is, at each time step the label u is randomly selected from a constant probability
distribution

M
P(u), Y Pw=1. (65)

In Appendix D we show that in this case all cumulants of the sojourn time and
of the time average can be computed exactly for any time interval, short or long. We
have

n M M
Kty (@) - t,,m(t))>=t}: 1) Z Z&m(m) Zl ZIP(vl)

m!
B P(Un)—6u101 614"01 6(upl+ T L

X Owg 1 ... +p)vm> (66)
e . l)n 1
KL TN (M) =t~ ™" >Z ﬂZ
o Y Bspg —— H fPsw)), (67)

Bn Hﬂ!q

where the moments of the state function { f#¢(u)) are computed in terms of the
one-time probability distribution P(u) [Eq. (65)] of the label u:

M
(fPauy = Z,l P(u) fa(uy. (68)

Egs. (67) are the discrete time analogues of the relationships (41) derived in Section 2
for independent processes in continuous space and time. Note that both equations
display the same scaling law for the cumulants of the time average, ~ ¢t~ "), which
is valid for any time interval, short or long.

By analogy with the continuous time case we consider a random process with long
memory for which the statistical ensemble cumulants of the state variable f(u) have
the product form (42) for t, # t¥. In the case of continuous time systems the
divergence generated by the equality ¢, = t disappears due to the integration in Eqgs.
(30) and (32). In the case of discrete time, however, the divergence is not removed by
summation and thus we should assume that for t, = t¥ Eq. (29) is not valid anymore
and that in this case the corresponding cumulant is given by a finite constant. By
evaluating the cumulants of the time average in the limit of large times we get a scaling
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law similar to Eq. (44)
KLSTu()II" ) (t) ~ const. ¢~ Hmim—1), t>»0. (69)

Just as in the case of continuous systems for positive fractal exponents 1 > H,, >0
[Eq. (45)] the system is ergodic as t -+ oo whereas for fractal exponents equal to zero
residual correlations different from zero exist for large time differences and the ergodic
behavior does not hold anymore. By analogy with the case of continuous systems it is
casy to show that for the violation of ergodicity it is enough that the condition (51)
holds and then

KL )11 M () = Cu(0) #0. (70)

4. Long range correlations of nucleotide sequences in DNA

Recently extensive studies of the statistical correlations of the nucleotide sequences
in the DNA molecule have been reported [14-16]. Special attention has been paid to
the identification of different self-similar features of the coding and non-coding
regions of DNA (exons and introns, respectively) with the purpose of establishing
statistical tests for the location of these regions.

For the statistical study of correlations the notion of DNA walk has been introduc-
ed [14-16]. Given a strand of DNA made up of ¢t nucleotides for each of the ¢ sites

t'=1, ... ,t we attach a spin-like variable s,-, t' = 1, ... ,t where
sy = + 1 if the site is occupied by a pyrimidine, (71)
s = — 1 if the site is occupied by a purine. (72)

For the set of t sites we introduce the overall variable
t
yoy =3y s (73)
=1

which is a random function of the total number of nucleotides t. Concerning the
physical interpretation of the random variable y(t) from Eq. (73) we notice that it is the
difference between the number n. (¢) of pyrimidines in a chain of ¢ nucleotides

n.(t)= Z O+ 1)se0 » (74)

t'=1

and the corresponding number of purines

n_®=Y 6-us - (75)

t'=1
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We have
ni(t)+n_(0)=t, (76)
n.(t)—n_() = y(). W)

According to Eq. (77) we can use the name of pyrimidine excess for the function y(z).

The methodology of identifying the long-range correlations in the nucleotide
sequences suggested in the literature consists in the experimental study of the stochas-
tic properties of the pyrimidine excess y(t) as a function of the total number of
nucleotides t. These stochastic properties can be characterized in terms of the cumu-
lants of the pyrimidine excess corresponding to different total numbers of nucleotides
iy eee sty

Kyt - ytm)», m=12,.., (78)

which are defined by means of a cumulant expansion of the characteristic functional of
the pyrimidine excess

<exp(i ) y(t’)é(t’))> = exp(
t'=1 m

- &(tm) Ky(t1) - y(ﬂ..)))) - (79)

I8

1|5
||M~
uM“‘

The data reported in the literature [14-16] concern only the equal-site-number
cumulants of the first and second order, «y(t)>> and <{y*(t)}). It has been shown
that for a large class of DNA sequences these two cumulants obey the scaling laws

«y(¥))> ~ const ¢, t>1, (80)
Ky @)Y ~const 12, t>1, (81)

where g, is a positive fractal exponent. In many cases the proportionality constant in
Eq. (80) is equal to zero, a situation which corresponds to an average ratio of
pyrimidines to purines of one to one; otherwise for const. > 0 there is a pyrimidine
excess and for const. < 0 there is a purine excess. Concerning the value of the fractal
exponent o, attached to the second cumulant of the pyrimidine excess there is
a controversy in the literature. Peng et al. [14] claim that g, is very close to unity for
the coding regions of DNA (exons) whereas for the non-coding regions (introns) it is
bigger than the unity ¢, = 1.2-1.3 and that this difference may serve as a basis for
identifying the exons by means of a statistical analysis. On the other hand Voss et al.
[15] claim that the difference of the o,-values for exons and introns is an artifact
generated by the statistical approach used by Peng et al. for the analysis of experi-
mental data. By using an alternative statistical approach Voss et al. obtain fractal
exponents bigger than unity and smaller than two both for exons and introns and
draw the conclusion that the value of the exponent o, cannot be used for identifying
the exons.
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In the following we try to establish a connection between the experimental scaling
laws (80), (81) for the first two cumulants of the pyrimidine excess and the possible
existence of an ergodic behavior for long sequences of nucleotides. To accomplish this
we establish a connection between the DNA walk and the discrete formalism intro-
duced in Section 3. First of all we notice that the total number ¢ of nucleotides plays
the same role as the time variable  and that the value of the label u is given by the spin
variable s; the state space is made up of only two states s = + 1 (u =1) ands= —1
(u=2)and M =2.

The time average (or rather the length average) of the spin variable s corresponding
to a nucleotide sequence of total length ¢ is given by

s =1/ Y st)=y@/t, (82)

t'=1

and thus the pyrimidine excess is the product of the total length ¢ of the sequence and
of the time average of the spin variable

y(@) = ts@) (0). 83)

Now we introduce the one-length characteristic function of the pyrimidine excess,
which is a particular case of the characteristic functional (79) corresponding to

£) = 340, 4
that is
(exp@ 0 =on( 3 L0 m0»), ®)

and the characteristic function of the time average s(t') s(t') (t) of the spin variable s(t'),
Cexp(is(t) ()b(®)) = GXP( P o p KOs ()1 (t)b"‘(t)> (86)
=1

We insert Eq. (82) into Eq. (86) and compare the result with Eq. (85); we come to
Kym"@» =t"LsE)]™ N, m=1. 87)

By using Eq. (87) we can apply the general relationships derived in Section 3 for the
study of ergodic behavior for discrete systems to the case of DNA walks. If the spin
variable s has a short memory, then from Egs. (58) and (87) we get the following
expressions for the cumulants of the pyrimidine excess:

Ky =t¢sy =t[Ps=+1)—Pls=—11, t>[(1/H)"", (8

Kym®)» xconst' t, t > [In(1/H]™, m>2, (89)
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equations which are consistent with the results of Peng et al. for the exonic regions
[14]. Note that the proportionality constant in Eq. (88) is also consistent with the
results from Refs. [ 14] mentioned before, that is, the proportionality constant is equal
to zero if the probability of occurrence of a pyrimidine P( + 1) is equal to the
probability P( — 1) of occurrence of a purine, P( + 1) = P(— 1) =4, and it is 20 if
P(+ 1)Z P( — 1), respectively.

Similarly for long memory we get

Ky@O» =t [P(+)—-P(-1)], >1, (90)
«y™t))) = const’ t°m, t>1, 91)

where the fractal exponents g,, are related to the fractal exponents H,, introduced in
Section 3 by the relationship

Om=m(l —H,)+H,, m>=2. 92)
As 1> H,, > 0 [see Eq. (43)] we have
mzao,>1. (93)

The behavior of the average pyrimidine excess is the same as in the case of short
memory. The cumulants of order bigger than one attached to the pyrimidine excess
obey a power law with a fractal exponent depending linearly on the fractal exponent
of statistical ensemble cumulants of the spin variable. This situation corresponds to
the results obtained by Peng et al. [14] for introns and with the results of Voss et al.
[15] both for introns and for exons.

Concerning the possible existence of the ergodic behavior for the spin variable s in
the limit of large DNA lengths, t — 00, a complete discussion is not possible because
the literature [14-16] reports only results concerning the cumulants of the first and
the second order of the pyrimidine excess. Note that the violation of the ergodic
behavior as t - co may occur only for long memory with fractal exponents equal to
zero, H,, = 0, that is, for scaling exponents g, equal to

Om=m. (94)

As far as we know the results presented in the literature give o, < 1.4 [14-16], which
is compatible with ergodicity. Although the violation of ergodicity due to the equality
6,, = m for the cumulants of the pyrimidine excess of order bigger than two, m > 3,
cannot be completely ruled out, it seems to be rather improbable; indeed usually the
cumulants of the second order give the most useful information about the fluctuations
of a set of random variables. A definite answer to this question can be given only if
information concerning the cumulants of superior order of the pyrimidine excess is
extracted from the experimental data.
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5. Ergodic behavior for stochastic cellular automata and generalized fractional
Brownian motion

In this section we discuss briefly two additional applications of our approach for
studying the ergodic behavior, in the case of a class of stochastic cellular automata
and of generalized fractional Brownian motion. The stochastic cellular automata
considered here [12,13] are made up of a finite number of cells arranged on a regular
ds-dimensional lattice. To each cell we attach a finite number of states and for each cell
we define a local neighborhood and a stochastic local function which assigns an
elementary state of the cell for each occupation of the neighborhood. The evolution of
the cellular automaton is followed step by step, on a discrete time scale t = 1,2, ... .
Depending on the way a cell is evaluated, we distinguish synchronous cellular
automata for which all cells are evaluated at the same steps; otherwise, if the
evaluation of the cells is sequential and only one group of cells is evaluated in a given
step, then the automaton is asynchronous.

In Ref. [13] a general approach for investigating the ergodic behavior has been
suggested which is independent of the detailed definition of the neighborhood, the
stochastic local function and of the evaluation rule (synchronous or asynchronous). The
main assumption made is that, at least in principle, it is possible to identify all possible
states in which the whole lattice may exist. The total number of configurations M,
although possibly very large is always finite for a finite lattice for which the cells may
exist in a finite number of states. The finite number of states makes possible the
replacement of the local description of a cellular automaton by a giobal description by
attaching a numerical label u=12,...,M to each global state of the
lattice. Since the evaluation of the cells takes place step by step according to a given
stochastic local function, in this global description the whole automaton performs
a Markovian random walk among the M states of the lattice u=1,...,M. The
Markovian nature of the random walk is due to the action of the local function which is
localized in time and establishes a correspondence between the states of the cells
corresponding to two successive time steps. This Markovian behavior is independent of
the detailed structure of the automaton defined by the type of neighborhood chosen, the
type of local function or the synchronous or the asynchronous evaluation of the cells.

By assuming that all M states of the automaton are connected [21] and using
a Lippman-Schwinger expansion technique in Ref. [13], it has been shown that the
cumulants of first and second order of the sojourn times ¢, attached to the different

states of the automaton u = 1, ... , M have the following large time behavior:
LLy®=p*wt, t>0, (95)
Lty by, >»(t) = const. ¢, t>»0, (96)

where P*'(u) is the stationary probability of occurrence of the state u. Egs. (95), (96) are
consistent with the ergodic behavior of the cellular automaton as ¢t — co. The
asymptotic behavior of the cumulants of the sojourn times ¢,, u =1, ... , M of order
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bigger than two could not be evaluated even though exact analytical expressions for
all positive moments of the sojourn times have been derived [13].

In addition to this Markovian type of stochastic cellular automata in Ref. [13]
anon-Markovian type has been also considered for which the local function, although
local in space, is non-local in time and defined for a succession of many time steps. By
assuming that a stationary random behavior emerges in the long run, such stochastic
cellular automata with long memory can be described by an infinite chain of probabil-
ity densities

POy, 15 sugt), Y - Y POy, 1; . sut) =1,

1 U

t=12,.... 97

A general approach for computing the moments and the cumulants of the sojourn
times has been suggested in Ref. [13] by assuming that the joint probabilities (97) are
known. By assuming the stationarity of the random process described by Egs. (97)
only the asymptotic behavior of the cumulants of the first and the second order has
been evaluated [13]. The resulting expressions are

Kp@=Pwt, t>0, (%8)

<<tu1 ty, >>(t) = tPs'(ul)[auluz + PSt(u2)]
+ i t—e[o2 0,0+ (0], t>0, (99)

e=1

where

¢|(4T),..um(t1s ’tm) = P(t)(uhtl; vee s Umy tm) - P(ul) P(um)’ (100)

is a measure of the correlations of the states u,, ... ,u,, which plays a similar role to
the statistical ensemble cumulants < f(z,) --- f(tw))) in our approach. A straightfor-
ward analysis shows that if

¢.m,(t1,t2)—’0 as |t; — ;| > o, (101)
then
KL Tu@)P D (o0) = lim t ™2 3, Y f (ur) f (12) Kby, 10, > (1) = 0, (102)

a condition which is compatible with the ergodic behavior. On the other hand if
residual correlations different from zero exist for large time differences

bint1,6) > 02, (0) #£0 as |ty — 15| = oo, (103)

UL u2
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then

KLUV D (0) = ¥ X f i) f (w3) 62, (), (104)
and thus the second cumulant of the time average is generally different from zero and
the ergodic property does not hold anymore.

By describing the long memory correlations among the different states of the
cellular automaton, not in terms of the joint probability densities (97) and of the
functions (100), but in terms of the statistical ensemble cumulants < f(t1) --- f(tm)>»
the analysis presented in Ref. [13] for the asymptotic behavior of the cumulants of the
first and second order of the time average can be easily extended to cumulants of any
order. It is easy to see that by using a cumulant description the cellular automaton
problem is isomorphic with the general discrete problem discussed in Section 3. In
particular the asymptotic expressions (98), (99) for a Markovian cellular automaton
are equivalent to the first two of the Markovian equations (62), (63). In addition to
Eqgs. (62), (63) for the cumulants of order one and two, our systematic expansion
technique also provides information concerning the cumulants of the time average of
order bigger than two which all tend to zero as t — oo and thus the ergodic property
holds.

Similarly for long memory the general approach presented in Section 3 is consistent
with the results from Ref. [13]. In particular, for both approaches the ergodic property
is not valid if residual correlations different from zero exist for large time differences.
The main difference between the two methods is that in Ref. [13] the correlations are
expressed in terms of the functions (100) whereas in the approach presented here they
are given by the statistical ensemble cumulants ¢ f(t;) --- f(t))>- Another difference
is that our approach allows us to compute the asymptotic behavior of all cumulants of
the time average in contrast with the non-systematic approach from Ref. [13] which
leads to asymptotic expressions for large times only for the cumulants of first and
second order.

Even though more complete than the study presented in Ref. [13], the analysis
presented in Section 3 does not exhaust the study of the ergodic behavior of stochastic
cellular automata. One question remains unanswered for systems with long memory;
unlike in the case of Markovian processes [13], our approach does not show under
what circumstances a stationary random process eventually emerges for stochastic
cellular automata with long memory. Note however that, although our physicaily
oriented approach does not provide an answer to this question, similar problems have
been extensively studied in the mathematical literature [ 9]. Further research should
include a comparison between our approach and these mathematical studies.

The fractional Brownian motion (FBM, [22,23]) is a simple example of a fractal
random process introduced by Mandelbrot in the late sixties [22]. Due to its
simplicity, the FBM is a popular means for describing a variety of statistical fractals
corresponding to various phenomena such as floods, the fluctuations of the stock
market or of the heartbeat, the random topography of certain surfaces, anomalous
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diffusion, etc. [22-24]. In this section we investigate a simple multidimensional
generalization of the FBM model. We start out from an M-dimensional random
vector x with zero average value

x(1)) =0, (105)

and assume that the corresponding random process in Gaussian and stationary. It
follows that all stochastic properties of the random vector x = x(t) are characterized
by its cumulants of the second order which can be arranged in a correlation matrix

C(tlatz) = [Cuxuz(tl’tZ)]u1,u2=l, e ,m3 m= 1a2’ [ER Y (106)

where the matrix elements C,,,, obey the condition of temporal invariance
Culllz(tl’ tZ) = <<xu1(t1)xu2(t2)>> = <<xu1(t1 - tz)xuz(o) >>’ for tl i,
= <<xu1(0) xuz(tz - t1)>>: for 2] = t .
(107)
We assume that these correlation functions obey scaling laws of the negative power
law type
Culuz(tl’tz) = (1 - Huluz)Auluz(tl - t2)-Hu‘u” 1 > Huluz 0: tl ? t2 >
= (1 - Hllzul)Auzlu(tZ - tl)_H"zu" 1 > Huzul > 07 t2 2 tl H
(108)

where H,,.,, H,,., are fractal exponents between zero and unity and A,,,, are the
elements of a matrix with non-negative diagonal elements. Since we do not assume
microscopic reversibility, the matrix H = [H,,] of the fractal exponents as well as the
matrix A = [A,, ] are generally non-symmetric.

Our aim is to characterize the stochastic properties of the time integral [22-247]:

t

y(t) = fx(t’)dt' . (109)

0

In Appendix E we show that the random behavior of the vector y(f) is described by
a non-stationary random process with long memory with zero average value and with
the characteristic functional

FIK({)] = <exp <i j‘K(t’) 'y(t’)dt’)>
0

- exp( %) j f & ur 01) Yur 23 Ko (t1) Klt2) dty dt;)

“l uz

(110)
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where K(t') = [K,(t')] is a suitable vectorial test function conjugate to the random
vector y(t),

<<yu1 (tl)yuz(t2)>> = };uu(tl) + juzlu(tl)
— Fuu(ty — B2) Aty — t2) — Fupu, (t2 — t1) Btz — t4),
(111)

is the correlation matrix of the random vector y(t), h(t) is the usual Heaviside function
and the functions ¢, ,,(?) are given by:

Furalt) = f (t = 1) Caya(0) dt = Ay (2 — Hopay)™* 12 B 112)
0

The m-point joint probability density of the random vector y(t)

P™ (it o iPmtm)dyy .. AP, j fP""’dyl dym=1, (113)
is given by a multivariate Gaussian law (see Appendix E)

P™(pi,te; o i ¥mrtm) = [det B]V2(2m) M2 exp(— 2 YR ™' Y7). (114)

Y=[pJu=1,...m; B=[L" C)9t) D) uiwa=1,...m- (115)

The generalized fractional Brownian motion considered here is a multivariable
analogue of the one-dimensional FBM model, which is recovered as a particular case
for M = 1. Other important particular situations include the multidimensional classi-
cal Brownian motion which results in the limit

VH, -1, (116)
and a random process with infinite memory for which
VH, =0. 117

Concerning the ergodic behavior of the random vector x = x(t) we notice that for
the generalized FBM model considered here there is a proportionality relationship
between the time average

t

) (@) =t"! .[x(t’)dt’, (118)

¢

and the random vector y(t) which is similar to the relationship (83) derived in
Section 4 in the case of DNA walks

y@® = tx(t) (1) . (119)
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Since the random process describing the behavior of the random vector y(f) is
Gaussian and with zero average values, the possible existence of the ergodic behavior
can be investigated by computing the cumulants of the time average of the second
order which are the only cumulants different from zero. By using the method
developed in Section 2 we obtain

<<x"l(t’) xﬁz(t') >> (t) =Au1u2(2 - Hluuz)- t t—H“"‘=
+ Ay, (2 = Hypy) 17 B, (120)

Note that for H,,. # 0 all these cumulants tend to zero as t -+ oo and thus the ergodic
property holds. If at least one fractal exponent H,,- # 0 and A,,- # 0 then at least one
of the cumulants (120) tends towards a value different from zero as t - o0 and the
ergodic property does not hold anymore.

6. Conclusions

The investigation of the conditions of existence of the ergodic behavior is of
importance both from the theoretical and practical point of view. The ergodicity is an
important feature of a stochastic process; if it exists it simplifies the evaluation of the
average values of the state functions depending on the stochastic variables. Although
the investigation of ergodicity of stochastic processes is an active field of mathematical
research little attention has been paid to this problem by the physicists. In this paper
we have suggested a physically oriented approach for the study of the conditions of
existence of ergodic behavior for a stationary fractal random process; our method is
based on the observation that for a finite time interval the time average of a state
function is random and that the transition from the non-ergodic to the ergodic
behavior corresponds to the passage from the random to the deterministic behavior of
the time averages. For investigating the transition from the random to the determinis-
tic behavior a systematic approach has been suggested based on the evaluation of the
cumulants of the time average. By using this technique a number of examples of
biological and physical interest have been investigated namely the DNA walks
describing the long range correlations of nucleotide sequences, the stochastic cellular
automata with long memory and a multivariable generalization of Mandelbrot’s
fractional Brownian motion. The analysis of the examples presented in this paper
shows that for stationary fractal random processes with long memory a violation of
the ergodic behavior may occur provided that long-range correlations different from
zero exist for large time differences.

Our approach outlines a fundamental difference between two different types of
fractal random processes which are often confounded in the literature. The type of
fractal random processes considered here is characterized by finite moments and by
probability densities with short tails. These processes display self-similar features of
the fractal time type; the statistical ensemble cumulants of the process have long tails
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for large time differences of the inverse power law type. For the second kind of fractal
processes, which is not considered here, the probability densities are of the Lévy type
being characterized by infinite moments and by long tails for large values of the
random variables. The problem of ergodicity is properly defined only for the fractal
random processes belonging to the first type. For the second type of fractal random
processes, due to the wild fluctuations of the random variables, the ensemble average
cumulants do not exist and the notion of ergodicity has no physical meaning.
Further research should concentrate on the topic of establishing a connection
between the physically oriented approach presented here and the mathematical
analysis of the same problem presented in the literature of probability theory [8,9].
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Appendix A

For proving Eq. (30) we use the integral identity

t t tm-1

t f
J. jF(tl, ver sty dty - dt,, =m!jdt1 fdt2 J dt, F(ty, ... stm),
] 0

[} 0 0

(A.1)

which is valid for any function F(t,, ... ,t,) which is symmetric with respect to any
permutation of the integration variables t,, ... ,t,. We denote by ! the subscript of the
smallest of the time variables ¢, ... ,t,:

t =ty =min(ty, ... ,t,), (A2)
and introduce the integration variables

T,=t,—tk u=1,..,I-1, Ty—1 =Lty — L)X, v=I1+1,..,m.
(A3)

By combining Egs. (21) and (29), taking into account that C,,(ty, ... , Tm— 1) is Symmet-
rical with respect to ¢, ... ,t, and using the integral identity (A.1) we obtain

t

KLTEEDIHO = ! [daste-a), (a4

0
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t T1 Tm-2
J(t)=jdfl Jde s J dTm—l Cm(tlﬁ .ee ,Tm_l). (A.S)
0 0 0

By using again the integral identity (A.1), now for the function J(t), for which the
integrand C,,(14, ... ,Tm-1) is symmetric with respect to 7,, ... ,T,,—1, We have

t t

1
J(@) =mj‘drl dem—1 Chn(Tey oo 3 Tm—1) - (A.6)

o 0

Inserting Eq. (A.6) into Eq. (A.4) we come to Eq. (30).

Appendix B

Following Refs. [11,18,25] we consider the shot noise generated by a Poissonian
distribution of point events occuring with a constant frequency £, each event having
an exponentially decreasing effect characterized by the contribution

cot—t), (B.1)
ot —t)=vexp[ —v(t—1t)]), fort>1t,

=0, fort<t,
(B.2)

where ¢’ is the time of occurrence of the event, t is the current time, v is the frequency of
the decay of the effect and c is a random amplitude factor selected from a given
probability density

p(c)dc, Jp(c)dc =1. (B.3)

A realization of the random state function f at time ¢ is given by

N
f= Zl ot —t), (B:4)
us
where N is the total number of events, ¢}, ... ,ty are the times of occurrence of these
events and c,, ... ,cy are the realizations of the amplitude factors corresponding to
the different events.
Considering a large time interval of length T the probability P(N; T ) of occurrence
of N events is given by the Poissonian law

P(N;T)=[QT]I¥(N!) ‘exp(— QT). (B.5)
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We introduce the characteristic functional

Grlw®) ] = <exp(i f f(t’)w(t’)dt’)>, t<T, (B.6)

of the random function f(f) corresponding to the time interval of length T. The
characteristic functional G [ w(t'); t] given by Eq. (10) corresponds to the limit T — oo :

Glo@')t] = lim Grlw(t')t]. (B.7)

T

The average in Eq. (B.6) can be easily evaluated by taking into account the distribu-
tions of all possible values of N, t;, ... ,ty and ¢4, ... ,cy. We have

T
an [y
T T
V]

N
Xexp<i ) Jcm(t—t..)w(t)dt p(cy) - plen)

=1

N
GT[w(t');rJ=§‘9NT!) exp(— QT) f de; - j

ob,‘..]

- - fdt Jrcra] 1 - o(i o~ 10001

(B.8)

By passing to the limit T — o0 we get an explicit expression for the characteristic
functional G [ w(t'); t] which has the same form as Eq. (B.8) with the difference that the
upper integration limit for ¢ is t' = c©

From Eq. (12) it follows that the camulants < f(t;) --- f(t.))) of the state function
f(t) can be evaluated by computing the functional derivatives

" InGlw(t') =0;t]
[Ber(ty) - da(tm)]

By evaluating these derivatives we obtain (for a similar computation see Ref. [25]):

Kf@) - ftm)D =(—0)"

(B.9)

44

K@) - ftm)D) = Q4™ Jw(h — ) - oltm — t')dt’, (B.10)

as Vt,—» oo, u=1, ...,m with 1, =1¢, — t¥ = constant u = 1, ... ,m. By inserting
Eq. (B.2) into Eq. (B.10), computing the integral over ¢’ and evaluating the limit we
have

Lf@) - fEm) D ——9<C"‘> H [vexp[ —v(t. — tm)1], (B.11)

u*l
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which has the same form as Eq. (33) where the factor 4,, is given by

Ap=02{c™>/m, (B.12)
and where
{c™) = fc"' p(c)dc, (B.13)

are the moments of the amplitude factor c.

Appendix C

We start out from a stationary random process with short memory characterized by
the statistical ensemble cumulants C,(z;, ... ,T,—1) Which have short tails for large
values of the time differences 74, ... ,7,,—1; we assume that as 7, - oo these tails
decrease exponentially or even faster towards the asymptotic value zero. Following
Shlesinger and Hughes [19] and Vlad [20] we apply to these cumulants a succession
of scale transformations of the renormalization group type, each time difference
Ty, ... ,Tm—1 being treated independently

9]

@© m—1
Cm(rl, s Tmm1) = z Z l—[ [(1 - Au)('%u)qu]

7=0 gm-1=0 u=1
X Cm(Tl(bl)-ql’ ...,Tm_l(bm_l)_ﬂm-l),
by>1, 134,50, u=1,....m—1, e

where Cu(t1, ... , Tm-1) are the renormalized cumulants, by, ... ,b,_, > 1 are charac-
teristic multiplicative scaling factors attached to the different time differences
Ty, o sTm—rand 1 24,2 0,u =1, ... ,m — 1 are the probabilities that a scaling step
takes place for each of the time differences ,, ... ,7,,—1, respectively. Eq. (C.1) has
a structure typical for a stochastic renormalization group equation [19-20], which
generates negative power law tails in 74, ... ,7,-; for the renormalized cumulants
Cp(t1, --- ,Tm-1), characterized by the fractal exponents

H,=In(1/4,)/Inb,, u=1,....m—1, (C2)

modulated by logarithmic oscillations in Inz,,...,Iln7,_; with the periods
Inb,, ... ,Inb,_,, respectively. In order to get rid of the logarithmic oscillations in
Inz,y, ... ,In7,_; we introduce the limit

b,N1, 4,71, H,=constant, u=1,..., m—1. (C3)

This limit has been introduced for one variable systems in Ref. [26]; it leads to the
vanishing of the logarithmic oscillations even though the long tails of the negative
power law type are left unchanged.
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By using the technique developed in Ref. [26] in the limit (C.3) we can derive
a partial differential equation for the renormalized cumulants CnlTiy coe T 1)

m—1 a a
l_[ (I;—E-Fl)ém(’rl"":Tm-1)=cm(113---stm—1), m=2’3"" (C4)
u=1 m u

In Egs. (C.4) we have taken into account that, due to the symmetry of the nonrenor-
malized and the renormalized cumulants with respect to any permutation of the time
differences t,, ... ,Tn—1, the fractal exponents H, should be independent of the label
u of the time differences; however for cumulants of different orders the corresponding
exponents may have different values, H,, ... ,H,,, ... :

H=H,, m=12, .. (C5)
For solving Eqgs. (C.4) we consider the boundary conditions
Conlis oo 3 Tme1) 2 Con(Tas oo 3 Tme1) as H,— o, m=23,.... (C.6)

which express the fact that for very large fractal exponents, H,, — o0, the numbers of
scaling steps tend to zero and thus the renormalization transformation does not lead
to a change of the expressions of the cumulants. The corresponding solutions of Eqgs.
(C4) are:

- Hm S Hm-1
Con(Tey o T y) = (nru) (Hn)™ 1 J j (l_[ a,,)
u o o u
XCp(@y, -.. ,am—1)day, ... ,dap-1 . (C.7)

Note that the tails of the renormalized cumulants C,.(t;, ... ,7m-1) given by Egs.(C.7)
have the same form as Egs. (42) where the constants B,, are given by

Bi=Ci,  Bn=Hn)"" T T(]‘[ a,>H'"_1
0 0

X Culay, ... ,am-1)day, ... ,da,—y, m=23,.... (C98)

The convergence of the integrals in Egs. (C.8) is ensured by the fact that as
dy, ... ,am—_1 — oo the tails of the non-renormalized cumulants decrease exponenti-
ally or faster to zero.

Appendix D

For computing the cumulants of the sojourn times t;, ... ,t) for independent and
discrete random processes with M states we introduce the multitime characteristic
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function

Eky, - sk t) = <exp (i ‘E k,,t,,)>. (D.1)
u=1

which is the discrete analogue of the characteristic functional E[K(f’,t'); ] of the
density of states n(f, t) defined by Eq. (11). For independent random processes this
characteristic function can be easily evaluated by computing the average in Eq. (D.1)
over all possible values of the intermediate states of uy, ... ,u, of the system:

M M
E(kb ’kM;t)= Z Z P(ul) P(u!)exp( z k Z a(u)(uc )>
u=1

ur=1 =1

( iP(u)exp(ikJ)t =exp[tln(1 + AZl:P(u) [exp(ik,) —1])].
u=1 u=1

(D.2)
We expand the characteristic function E(k,, ... ,ky; ) in a cumulant series
® )m M
E(kla"',kM;t)=exp<Z _T Z Z “'kum<<tll1 "'tum>>(t)>’
= 1= um=1
(D.3)

and perform a similar expansion in Eq. (D.2) by expressing the logarithm in a Taylor
series. By comparing the resulting equation a with Eq. (D.3) we get Egs. (67).

Appendix E
In this section we derive the main stochastic properties of the random vector y(t)

defined by Eq. (109). We notice that as the random vector x(t) is Gaussian and with
average zero its characteristic functional is given by:

G[W(t');t] = <exp(iJ‘W(t’)'x(t')dt'>> (E.1)
=exp(—%jJWth)C(tl,tz)W(tz)dtldt2>. (E.2)
oo

As, according to Eq. (109), y(t) is a linear functional of x(t), the random vector y is also
Gaussian,; its mean value can be evaluated by direct averaging of Eq. (109), resulting in
{p(t)> = 0.1t follows that the characteristic functional # [K(t') ] of the random vector
»(t) has the form (110). For computing the correlation functions < y,, (t1) y,(t2))) we
insert Eq. (109) into Eq. (110) and express the resulting equation in terms of the
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characteristic functional G[W(t'); co]. We obtain

w t t2

F[K()] = exp(-%zz ” f j Cu,u,(th,15) dty dt) K,,l(tl)Kuz(tz)dtldQ).

0O 0 0
(E.3)
By comparing Eq. (110} with Eq. (E.3) we come to
ty t2
P ts) Yunlt2)3) = f j Corea(tint3) dtydt} (E4)
0o 0

Taking into account the condition of stationarity (107) of the random vector x(¢) after
some changes of variables and rearrangements of the integrals Eq. (E.4) can be
rewritten in the form (111).

The multiple Fourier transform of the joint probability density
P(M)(ylatl; ;ym’tm):

P(M)(kl,tl; ;kmatm) =Jjexp(l 2 ku.yu)-P(M)(ylatl; ;ym’tm)dyl dym’
u=1

(E.5)
can be expressed in terms of the characteristic functional % [K(t')]:
P™(ky,ty; ... ;Knytm) = .?'(K(t’) =) ko —t, )). (E.6)
u=1

The joint probability density P™ (yy,t;; ...;¥m, tm) can be computed from Eq. (E.6) by
means of an inverse Fourier transformation

P™(yi,ts; oo s Ymstm) =(2n)‘"'"'f-~ J?(K(t’) = f k(' —t,,))dk, - dky,.
u=1
(E.7)

By inserting Eq. (110) into Eq. (E.7) we get a multidimensional Gaussian integral over
ki, ... ,k,. By computing this multidimensional integral after lengthy manipulation
we obtain Eq. (114).

Note added in proof

The different definitions for FBM suggested in the literature are not equivalent to
each other, even though they all lead to fractal time scaling. According to its original
definition [22,23] FBM is a linear integral transformation of the usual Brownian
motion. Other definitions relate the FBM to the white noise by means of different
linear functional transformations, such as the fractional integral (Maccone, Nuovo
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Cimento B61(1981)229; B65(1981)259; Cherayil and Biswas, J. Chem. Phys.
99(1993)9230). Studies of DNA statistics [14-16] have suggested a definition of the
FBM as the first integral of a non-Markovian Gaussian noise with long memory. The
generalization suggested in Section 5 is based on this last definition. Recently Sebas-
tian (J. Phys. A Math. Gen. 28(1995)4305 has pointed out some differences between
two definitions of FBM. Further research would extend Sebastian’s analysis to the
model discussed in Section 3.
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