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Abstract

Three models for the fractal time statistics of renewal processes are suggested. The first two
models are related to the industrial replacement. A model assumes that the state of an industrial
aggregate is described by a continuous positive variable X, which is a measure of its complexity.
The failure probability exponentially decreases as the complexity of the aggregate increases.
A renewal process is constructed by assuming that after the occurrence of a breakdown event
the defective aggregate is replaced by a new aggregate whose complexity is a random variable
selected from an exponential probability law. We show that the probability density of the
lifetime of an aggregate has a long tail s(t) ~ t " *® as ¢t — oo where the fractal exponent H is
the ratio between the average complexity of an aggregate which leaves the system and the
average complexity of a new aggregate. The asymptotic behavior of all moments of the number
N of replacement events occurring in a large time interval may be evaluated analytically. For
1 > H > 0 the mean and the dispersion of N behave as (N(t))> ~ t¥ and (AN%(t)) ~ t*# as
t — oo which outlines the intermittent character of the fluctuations.

A second model gives a discrete description of industrial replacement. The aggregates are
assumed to be made up of variable numbers of basic units. Each basic unit has a probability « to
be associated in an aggregate and a probability § of being in an active state. An aggregate can
work if at least a basic unit is in an active state. The mechanism of replacement is the same as in
the first model, the number of basic units from an aggregate playing the role of a complexity
measure. The probability density of the lifetime has a long tail modulated by a periodic function
inlne: y(t) ~ t~**® E(Int), where H = Ina/In(1 — f) and E(Int) is a periodic function of In t
with a period — In(1 — f).

A third model is related to the transmission errors in communication networks. A network is
made up of a large number of communication channels; each channel has a probability « to be
open and a probability § of transmitting a message. The number of open channels is a random
variable which is kept constant as far as the transmission is possible; if a failure occurs,
then the number of open channels is changed in a random way. We show that this model is
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approximately isomorphic with the second one. The probability density of the time between
two successive errors has also an inverse power tail modulated by a periodic function in Int.
The general implications of these models for the physics of fractal time are analysed.

1. Introduction

The term “fractal time” was introduced thirty years ago by Berger and Mandelbrot
[1] in connection with the transmission errors in telephone networks, a problem
which can be formulated by using the theory of renewal processes. However, most
published papers deal with the application of fractal time statistics in physics and
chemistry (see Shlesinger [2] and references therein). As far as we know no simple physical
model for the occurrence of fractal time in renewal processes has been suggested yet.

Recently we have pointed out some relationships between the stochastic theory of
branched chain processes and the fractal time statistics (Vlad [3,4]). These relation-
ships have been analysed in an abstract way, without reference to a concrete physical
model. In an attempt to illustrate our approach we have succeeded to come up with
some models for the possible occurrence of fractal time statistics in the dynamics of
renewal processes. The equations attached to these models are somewhat similar to
the ones derived by using the branched chain approach. From the physical point of
view, however, this similarity is rather superficial: no branched chain description is
needed in the context of renewal processes. Although these models are not appropri-
ate examples of the branched chain formalism, their analysis is however useful. From
their study we can draw some general conclusions concerning the connections
between the fractal time statistics and the behavior of complex systems.

The plan of the paper is as follows. In Section 2 we rephrase some aspects of the
renewal theory in a language which is familiar to statistical physicists. In Section 3
a continuous description of the process of industrial replacement is suggested. A more
detailed description of this process is given in Section 4, resulting in a discrete model.
In Section 5 a discrete model for the statistics of transmission errors in communica-
tion networks is developed. Finally in Section 6 a comparison among the three models
is performed and some general conclusions are drawn concerning the mechanism of
occurrence of fractal time in complex physical and engineering systems.

2. Renewal theory as a continuous time random walk

Alt\h'ough the renewal theory has been already used in statistical physics (Moffat
[5]), it is an approach less known to physicists. That is why we reformulate some basic
aspects of this theory in terms of an approach commonly used in statistical physics,
the continuous time random walk method (CTRW, Montroll and Weiss [6], Haus
and Kehr [7]).
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Although a part of the applied probability theory (Cox [8], Feller [9]) the study of
renewal processes was initially developed in connection with the replacement of
industrial aggregates and with population dynamics (Lotka [10] and references
therein).

We consider an industrial aggregate which performs a certain task. Its lifetime ¢ is
a random variable which obeys a certain probability law

wmm,fwnm=L 1)
0

After a breakdown event the defective aggregate is replaced by a new one. The new
aggregate has a lifetime selected from the same probability law (1). We address the
following question: given y(t) which are the stochastic properties of the number N of
replacement events which occur in a large time interval of length ¢?. We are interested
mainly in the asymptotic behavior so that we neglect the complications related to the
possibility that the stochastic properties of the lifetime of the first aggregate are
different from the stochastic properties of the lifetimes of the following aggregates.

For a physicist this problem is equivalent to a directed CTRW in one dimension. In
terms of y(t) we introduce the probability

I(1) = j Y(r)dr, @

that in the time interval from ¢t =0 to ¢t =t no replacements have occurred. The
probability Py() that from ¢t =0 to t = t, N replacement events have taken place is
a multiple convolution product of ¥(t) and I(¢):

Pyt =y @1"®1I1), G

where ® denotes the temporal convolution product. By introducing the Laplace
transforms

m@=$mm=ﬁmpmmmm etc., @)
0

where s is the Laplace variable, and .# and the overbar denote the Laplace trans-
formation, we have

Py(s) =51 = g™ (s). (5)

Eq. (5) can be used to evaluate, at least in principle, all moments of the random
variable N. We introduce the generating function

G(z,t) =Y zVPy(t), 1z|<1;  G(z,5) = LG(z1). (6)
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Eq. (5) leads to

Gz,s)=s"[1-Y@E)I[1-24(s] " . ()
The Laplace transforms of the factorial moments of N may be computed from Eq. (7)
by taking the derivatives of G(z, s) for z =1. The behavior of the moments in the time
domain depends on the function ¥(t). In the renewal theory one usually assumes that

all moments of the lifetime exist and are finite. As a result J(s) is analytic in s around
s =0:

FEO=1+ 3 (“1DHED) I (ekdst, ®)
k=1

where

«6=[#mﬂm, 9)
1]

are the moments of the lifetime. By using Egs. (7), (8) we get the following asymptotic
expressions for the mean and dispersion of N as t — o0

(N()) =t/<t) ast—o0, (10)

(AN%(t)) = [{A1*)<1) 7]t ast—co, (11)
where

(Ar?) = () — <12, (12)

is the dispersion of the lifetime. In this case the relative fluctuation of the number of
replacement events tends to zero as t — oo:

CAN*@)y'2 ((At2>
NO> ~\ @

12
) t7 1250 ast-o . (13)

In this limit the fluctuations of N are negligible and the mean number of replacement
events increases linearly in time.

The same analysis applies to the transmission errors in communication networks. If
the probability density of the time between two failures has finite moments then as
t— oo the number of errors increases linearly in time and the relative fluctuation
becomes negligible.

By making an analogy with the CTRW theory (Haus and Kehr [7]) it follows that
a fractal time behavior may occur if the moments (7%}, k = 1,2, ... are infinite. In the
following sections we shall present some models which may lead to this situation.
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3. A continuous approach to industrial replacement

We assume that each aggregate is characterised by a continuous and positive
variable X which is a measure of its complexity. During the lifetime of an aggregate
two types of breakdown events may occur: “non-lethal” and “lethal” ones. If a “non-
lethal” breakdown occurs then the aggregate is mended in a time scale which is much
smaller than the characteristic time ¢ in which the replacement events are counted; if
a “lethal” breakdown occurs the aggregate cannot be longer mended and it is replaced
by a new one.

We denote by £(X) the probability that an aggregate of complexity X survives
a breakdown event (i.c. that a breakdown event is “non lethal”). We introduce the rate
pAX of the occurrence of a lethal defect for an aggregate with a complexity between
X and X + AX. We can write the probability balance equation

E(X + AX) = 8(X)[1- pAX], (14)
from which for AX -0 we get the differential equation
08(X)/0X = — pé(X). (15)

We assume that the “lethal” breakdown events are entirely due to chance, i.e. that the
rate pAX is independent of the complexity. We choose a complexity scale for which
a complexity equal to zero corresponds to a probability of lethal breakdown equal to
unity

&0)=1. (16)
By integrating Eq. (15) we come to
&(X) = exp(— pX). (17)

From Eq. (17) it follows that for infinite complexity the rate of lethal breakdown is
equal to zero. The function

Mp(X)dX = — [08(X)/0X ] dX = p exp(— pX) dX, (18)

is the probability density of the complexity of the aggregates which leave the system as
a result of a “lethal” breakdown. The corresponding mean complexity (X ), is equal
to

Xy = ij,(X) dX = 1/p, (19)

and thus the probability £(X) can be expressed as
€(X) = exp(— X/<{XDv). (20)

The probability ¢ (m) that an aggregate is replaced after m breakdown events is equal
to:

(m) = jnn(X) [1— &X)I"~ 1 8(X) dX (21)
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where
1a(X) dX, j 1a(X)dX =1, 22)

is the probability density of the complexity of a new aggregate. Eq. (21) expresses the
fact that the first m — 1 breakdown events should be “non-lethal”, which corresponds
to a probability [1— £(X)]™ ! and that the last one should be lethal, which corres-
ponds to a probability £(X). Finally an average with respect to the possible values of
the complexity measure of a new aggregate is done. To elucidate the conditions in
which Eq. (21) may lead to a statistical fractal we evaluate the average number of
breakdown events at the moment of replacement:

(m> =Y. mp(m) = j 7a(X) Yy dX (23)
where

(myx =3 ml1— EX)]"" 1 6(X) = exp[X/<X D], (24

is the average number of breakdown events for an aggregate of complexity X. The
average number of breakdowns exponentially increases with the increase of the
complexity. A statistical fractal may be realised by means of a compensation mecha-
nism: although possible, the very complex aggregates should be very rare. The
simplest choice of the function 7,(X) dX which fulfills this condition corresponds to
an exponential law similar to Eq. (18):

Ma(X) dX = ({X>a)" " exp[~ X/{X},]dX, (25)

where the corresponding mean value (X ), is generally different from (X ). At first
sight it would seem that the choice of the probability law (25) is somewhat arbitrary;
however in the following section we shall see that it may be justified as a consequence
of the way in which the aggregates may be generated.

Now the function ¢(m) can be evaluated exactly. By inserting Egs. (20) and (25) into
Eq. (21) we get:

¢(m)=HB(m,H +1)=Hm —-1)!/[(H +1) ...(H + m)], (26)

where H is the ratio between the average complexity (X, of an aggregate at the
moment of replacement and the average complexity <X ), of a new aggregate;

H = {X5p/{XDn, 27
and B(p, q) is the complete beta function

1

B(p.q) = jxp-l(l— X ldx,  pg>0. (28)

0
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The factorial moments corresponding to the probability ¢(m) given by Eq. (26) are
equal to

{mim—-1)---(m—1+1))
_[A=1)'TIH Y (~ 1)
k=0

x[k!(l—k—-D)YH—-1-k] !, forl<H, (29.2)
=00, fori>H. (29.v)

Thus the behavior of the number of breakdown events is determined by the ratio
between the two average complexities. If (I + 1)< XD, = (X )y, > I{X), only the first
| moments are finite. In particular, for (X}, ><{(X), >0, ie. for 1 > H >0 all
moments are infinite. The physical significance of this fact is clear. From Eq. (21) it
turns out that the factorial moments of m can be expressed as

{mm —1) - (m — 1 +1))
= I!Inn(X)[é'(X)]"‘[l— S(X)]'dX. (30)

We see that as £(X) —1 the moments are infinite. If (X ), > (X ),, (X) increases
towards its asymptotic value 1 and the very large values of the complexity have only
a small contribution to the moments; in this case only the superior moments are
infinite. On the contrary , if (X, > {X)s, #(X) increases faster as n,(X) decreases
and the contribution of aggregates with very large complexities is significant; in this
case all moments of m are infinite and we expect that ¢(m) has the properties of
a statistical fractal. Indeed, by evaluating the asymptotic behavior of ¢(m) by means of
the Stirling formula, we come to

ém = HI(1+ Hym *® asm— oo, (31)

where
I'(p) = jx”‘lexp(—x)dx, p>0, (32)
0

is the complete gamma function.

Our aim is to determine the probability density y(¢)dt of the time between two
replacement events and the stochastic properties of the number N of replacement
events. By assuming that the time between two breakdown events is a random
variable selected from a probability density with finite moments, yo(t) dt, we obtain:

Y(t) =Y o(m¥o(t) @1 (33)
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By applying the Laplace transform the sum in Eq. (33) may be evaluated exactly. By
combining Eqs. (26), (28) and (33) we get:

1
b =H jy"[g(s) + 91 tdy, (34)
0

where

g(s) = [1 = ¥o(®)1/Po(s) - (35)

By applying a method suggested by Shlesinger and Hughes [11] we replace the
fraction (g + y) ™! by its inverse Mellin transform and perform the integration over y.
The resulting equation is an expression for (s) depending on an integral in the
complex plane over the Mellin variable; by taking into account the corresponding
poles and evaluating the complex integral we obtain

¥(s) =1 — [g(s)]" =nH/[sin(nH)] + A (9(s)), (36)

where .#(g) is an analytic function in g:

M(g)= Y, (=1)"'H(k — H)"'g*. (37)
k=1
Eq. (36) cannot be used to evaluate the probability density y/(z) for arbitrary time;
however, it may be used to evaluate the asymptotic behavior as ¢t —co. Since all
moments of Y, (t) exist and are finite, o(s) may be represented as a Taylor series in
s similar to Eq. (8):

tpo(s) =1+ i (—l)k(k!)_l(‘t">os" x> 1—s{t)g, s—0, (38)
k=1
where
(™0 = f *o(d) dr, (39)
0

are the moments of the time interval between two breakdown events. From Egs. (36),
(37) and (39) we note that for 1 > H > 0 the nonanalytic term of Eq. (36) has the main
contribution to ¥(s). We have:

¥(s) 21— s¥({t)o)nH/[sin(zH)], ass—0, 1>H>0, (40)
which corresponds to the following large-time behavior:

Y(t) = ((ONFHI(1+ H)t™ @Y ast—00, 1>H>0. 41)
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An exact expression of y(t) for arbitrary time may be derived if the time between
two breakdown events is a random variable selected from an exponential law

VYolt) = vexp(— vt), 42)
where

v={t)q" (43)
is the frequency of occurrence of a breakdown event. We have:

[Yo(t) ®T™ = v(rty" ™ [(m —!]™ ' exp(— vt), (44)
and the application of Eq. (33) leads to:

Y(t)y=v He O y(H + 1,v1), (45)
where

wp0 = [yt ep(=ndn px>0, (46)

0

is the incomplete gamma function. The Laplace transform corresponding to Eq. (45) is

¥(s) =1 —(s/vHB[H,1 — H, v/(v +5)], @7
where

Bpa)= [y -yt dy x<1 pg>0, “8)

0

is the incomplete beta function. Egs. (45) and (37) are consistent with the general
asymptotic results derived before. For s - 0 and t —» oo Egs. (45) and (47) reduce to
Eqgs. (41) and (40), respectively.

Now we can proceed to evaluate the stochastic properties of the number of
replacement events occurring in a large time interval of length t. From Egs. (6), (7) we
have

LAN(N =1) -+ (N = 1+1)) =0'G(z,5)/02'), -,
=1L/ P)]'s™, 49)

from which, by using the asymptotic expression (40) and going back to the time
variable, we obtain:

(N(N —=1)--- (N =1+1))
= IY{[sin(zH)]/nH}'[I'(1+ IH)] ' [{z)o "t]¥
ast—o, 1>H>0. (50)
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In particular we get the following expressions for the average value and the disper-
sion of N(t),

sin{nH)
nHI'(H)

_( sin@H) \*( /a[(H +1) _
(AN?(t)) = <7‘er—F(H)> <22”_1F(H 5 - 1) [{(2Do 't1%H,

1>H>0, t->oo. (52)

(N@)Y & =l [1d5 1t]%, ast—oo, 1>H>0, (51)

Thus the increase in time of the mean number of replacement events is slower than the
linear increase given by Eq. (10). The relative fluctuation

(ANz(t)>”2 Jar(H +1)
(N(t)> 22271 (H + 9)

tends towards a constant value rather than decreasing to zero. This illustrates the
intermittent behavior of the fluctuations of the number of replacement events. The
fractal exponent of the time increase of the dispersion is two times bigger than the
fractal exponent corresponding to the average value. It follows that the fluctuations of
the number of the replacement events are not negligible. These results are valid for any
value of the exponent H between 0 and 1 (1 > H > 0). In this range the difference
JAT(H +1) — 222711 (H + 3) is always positive. As H — 1 this difference tends to
zero and the termen in t2¥ in the expression of dispersion vanishes; for H =1 the
dispersion increases linearly in time. For H > 1 the asymptotic expression (40) is no
longer valid. For 2 > H > 1 the average value increases linearly in time and the
dispersion cannot be evaluated in a simple way. For H > 2 the moments {7), and
{A1*) of Yo(t) exist and are finite and Egs. (10), (11) derived in Section 2 are valid.

1/2
—1) , 1>H>0, ast—o0, (53)

4. A discrete approach to industrial replacement

In this section we give a more detailed description of an industrial aggregate. We
assume that each aggregate is made up of the same type of basic units. The number
q of basic units from an aggregate is a discrete analogue of the complexity measure
X used in Section 3. We assume that each basic unit has the same probability « to be
associated into an aggregate and the same probability § of being in an active state. It
follows that the probability #,(q) that an aggregate is made up of ¢ basic units is the
product between the probability a---o = a?”' that g — 1 association events take
place and the probability 1 — « that no further association events occur:

Ma(@) = (1— oot~ 1. (54)

This is an exponential law in g similar to the exponential law (25) used in the preceding
section.
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An aggregate made up of q units is in a passive state if all ¢ basic units do not work,
i.e. if g possible lethal breakdown events can occur. The corresponding probability is
equal to

El@=»1-5). (55)

It follows that in the case of a discrete description Eq. (21) for the probability ¢(m) that
an aggregate is replaced after m breakdown events is replaced by:

<«

$m)= 3. m(a)[1-&@]" " (@

q=1

=(1-0a) i o1 = (1= By ImT 1 - ). (56)
g=1

The factorial moments corresponding to Eq. (56) are:

mm—-1)---(m—-1+1))
=I[I-D)!1*(1 - 3:1 (=) 7RI -1 =R — By —a] 7,
k=0

forl<H, (57)

=0 forl>H, (58)
where the exponent H is equal to

H=Ina/In(1 - B). (59)

The asymptotic behavior of ¢(m) as m — co may be evaluated by computing in Eq.
(56) the sum over g by means of the Poisson summation formula (Titchmarsh [12])
and by keeping the dominant terms as m — co. We obtain:

dmy=m HT*VE(Inm) asm- oo, (60)

where Z(Inm) is a periodic function of Inm with period —In(1 — B),

2= — =%
Eb) = —aln(1— p)
] . 2nk 2nkb
roemea §[r (e n g ol )
~ 2nk ) 2nkb
+F (1 +H, ™ l—ﬂ))sm(—ln(l—ﬁ)):l}’ (61)

and F * (g, c) are the real and the imaginary parts of the complete gamma function of
the complex argument, respectively

Ft(a,c)=[Re,Im]I(p=a+ci). (62)
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From these equations we note that the main difference between the two models is that
the discrete description of the complexity of an aggregate leads to the logarithmic
oscillations described by Eqs. (60), (61), a phenomenon which is missing in the
continuous case.

The waiting time distribution of the replacement time may be derived by using the
same method as before. By inserting Eq. (56) into Eq. (33) and applying the Laplace
transform we come to:

b =(01—0) i a?” (1= B)ilg(s) + (1 - BY11, (63)

q=1

where the function g(s) is given by Eq. (35). By applying the Shlesinger-Hughes
method (1981) we obtain

¥(s) =1~ [9()]"KIn(g(s))] + A" [g(s)], (64)

where K[Ing] is a periodic function of Ing with a period —In(1 — B)

_ n(l-a) 1
Klngl = — = ﬁ){sin(nH)

® 2n%k i 2nking
”k;[[e"p(lnu— ﬁ))s‘“("H T - B))
2n%k ) 2nking
-+ exp(— —_ln(l — ﬁ)) sm(nH + ————-ln(l — ﬁ))]

4n’k
[cosh (E(T—_ﬂ)) — cos (ZnH)]]} , (65)

and #°(g) is an analytic function of g:

#@)=(1=0) ¥ (~1fgT1—pF ~a . (66

We expect that the logarithmic oscillations in the Laplace variable lead to similar
logarithmic oscillations in the time domain. We have failed to evaluate the logarith-
mic oscillations of y(t) in the general case. By neglecting the oscillatory terms in Ins
and by using Eqs. (35) and (38) we get the following asymptotic expression for y(s) as
s—»0and 1> H>0:

o n(l—a) [{1)es]”
VO =1~ — id =5 sin@H)

ass>0, 1>H>0. (67
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By using this equation we get the following expressions for the asymptotic behavior of
the probability density y(¢) and for the moments of the number of replacements:

I o i

Y(t) =— «1n(1— ) I'(1 — H)sin(zH)’

ast—o0, 1>H>0, (68)

(NN =1) - (N =1+ 1)) =11 (— = _ﬂ))l L d [sin(zH)T,

(1—o)n r'(l1+IH)
ast—o0, 1>H>0, (69)
—_ 1 i
Ny =7 1[_"‘;)‘2;‘;((’;{1;1) [<alt]h, ast—oo, 1>H>0, (70)
_ (= [«Ina]sin@H)\2( /2l (H+1) _
(AN?(1)) —( 0= 9=l ) (m - 1>[<z>o ],
ast—-o, 1>H>0, (71)
AN ([ /alEH+1)  \7
) —(22”“‘F(H+%)_1> , ast—oo, 1>H>0. (71a)

We note that for 1 > H > 0 the intermittent behavior of the fluctuation of the number
of replacement events is still present.

If o(t) is an exponential function given by Eq. (42) then the logarithmic oscillations
in the time domain can be computed exactly. By applying the Poisson summation
method we get an exact expression for y(t):

(o) =(1—a) il 2 1(1 — BYv expl — ve(l — B)]

=3(1— a)v* exp(—v*t) + (v*) " Ht~H+DE*[y*¢ In(v*1)], (72)

where v* = v(1 — ),

1-—
E*(a,b) =———EzTE(laTﬁ) {y(l + H,a)
e + 2nk 2nkb
+2k§1 I:.? (H +,—— ln(1_/3),a>cos<———_ ln(1~B)>
_ 2nk ) 2nkb
i (H LT - ﬁ)’“) s‘“( in(i - ﬂ))]}’ 7

y(1 + H,a) is the incomplete gamma function (Eq. (46)) and & * (1 + H, c,a) are the
real and imaginary parts of the incomplete gamma function of complex argument

Fit(1+H,c,a)=[Re,Im]y(p=1+H+ci,a). (74)
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For t -0 Eq. (72) becomes:
Y(t) = (v*) He #*DE(In(v*t)], ast— oo, (75)

where Z(b) is the periodic function given by Eq. (61).

5. Communication networks

Now we discuss the problem for which the name of “fractal time” was initially
suggested (Berger and Mandelbrot [1]). We consider a communication network made
up of a large number of channels. Each channel has the same probability « to be open.
Not all open channels can lead to a successful transmission. The probability g of
a successful transmission is also the same for all open channels. The network works
according to the following rules: (a) one tries to transmit a message by using all open
channels; (b) the number g of open channels is a random variable which is kept
constant until a failure of transmitting a message occurs. This model is approximately
isomorphic with the discrete model presented in Section 4; however, some minor
differences exist. An aggregate is made up of at least one basic unit; that is why in
Section 4 the number of basic units varies between 1 and co. For a communication
network the number of open channels can take any value from 0 to co. In Section 4 an
aggregate is replaced after at least one breakdown event and thus the number m of
breakdown events varies between 1 and co. For a communication network, however,
there is the possibility that two successive attempts of transmitting a message result in
a failure; it follows that the number m of transmitted messages between two failures
varies from 0 to co. These distinct features do not lead to a difference in the asymptotic
behavior of the model; they only generate different expressions for certain coefficients.

The probability n,(q) that g channels are open is equal to:

Ma(@) = (1 — a)at. (76)

The probability £(g) that for a network with g open channels a failure occurs is given
by Eq. (55) where g can now take the value zero. The probability ¢ (m) that m messages
are transmitted between two failures is given by an equation similar to Eq. (56):

#m) = 3 (@1 - 8@T"6()

=(1-0) i of[1—(1 = By]m(1—B)y. (77
q=0
The asymptotic behavior of ¢(m) is given by:
dm)=m T+ Vg E(nm), asm- o, (78)

where the periodic function Z(b) is given by Eq. (61).
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In this case y,(t) is the probability density of the time necessary for transmitting
a message and ¥(t) is the probability density of the time interval between two failure
events. If Y, (2) is given by an exponential distribution, y(t) is equal to:

¥(@) = (1 — o) Y va®(1 — ) exp[ — ve(1 — )]
=3(1 — ) vexp(— vt) + v Ht " E* Dy ¥y, In(vt)], (79)
where Z*(a, b) is given by Eq. (73). The corresponding asymptotic expression is
Y(t) =oav Ht~@*DE[In(vt)], ast—oo0. (79)

In the general case, when the function ¥, (t) is not necessary given by an exponential
law, only the non-periodic components of /() and of the moments of the number N of
failures can be evaluated:

mH(l—a) (Kyg)fe”®*D

W)g—ln(l—ﬁ)r(l—H)sin(nH)’ ast—oow, 1>H>0, (80)
oy = In( =Y [Keo 11" .
(N(N—l)---(N~l+l)>—l!< T ) T+ TH) [sin(zH)]',
ast—o0, 1>H>0, (81)
(N(t))gM[(t)alt]H, ast—o0, 1>H>0, (82)

(1 - a)ynH?T'(H)

[—Inalsin(mH)\2 [ /x[(H +1) |
(1—arH?T(H)) \ 2P 'TH+1)

ast—o, 1>H>0. (83)

(AN*(1)) = ( ) [<the 111

Eq. (71a) for the relative fluctuation remains valid.

6. Discussion

The above models illustrate a general feature related to the fractal time statistics,
the existence of two opposite factors which compensate each other. The equilibration
of these factors lead to the absence of a characteristic time scale of the system,
a situation which generates a statistical fractal. For the models of industrial replace-
ment by increasing the complexity of an aggregate the probability of lethal break-
down falls off to zero and the average lifetime increases to infinity; however, the
contribution of very complex aggregates decreases to zero as the complexity tends to
infinity. For a communication network, as the number of open channels increases to
infinity, the average time between two failure events increases to infinity. On the
contrary, the probability that a large number of channels are open decreases exponen-
tially to zero as the number of channels increases to infinity.
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A controversial feature is the occurrence of logarithmic oscillations. Their origin is
somewhat mysterious: for some models presented in the literature they exist, whereas
for others they are missing. For the models presented in this paper the logarithmic
oscillations are due to the discrete nature of the complexity measure. If a continuous
complexity measure is used, the logarithmic oscillations disappear.

To show that this is indeed the case we shall try to recover the continuous model
presented in Section 3 as a particular case of the discrete model. Eq. (63) for y(s) can be
rewritten in a self-similar form

Y - Bg(s)] = (1~ a)/[g(s) + 11 + af [g(s)] - (84)

We consider the limit &.#1, B0 with the restriction that the fractal exponent H is
constant,

21, B~O, H=Ina/In(l — f) = constant. (85)
From Eq. (59) we have
a=(01—-—p~1—-BH, as 0. (86)

By inserting Eq. (86) into Eq. (84) in the limit § — 0 we get a differential equation in
W(s)

oy a
095 = 18 (59 - ). ®)
The initial condition of Eq. (87)
Fs=0)=1, (88)

may be derived from the normalization condition of y/(2), | ¢ ¥/(t)dt = 1. By integrat-
ing Eq. (87) we recover Eq. (34) which has been derived by using the continuous
model. In order to clarify the physical significance of the limit (85), we shall write Eqgs.
(54), (55) in a form similar to Egs. (25) and (20) respectively

fa(@) = (@' —1) exp[ — g In(1/w)], (89)
&(q)=exp{—q[—In(1-p)]}. (90)

From these equations we can establish the following correspondence relations bet-
ween the discrete and continuous models:

(Xaor[In(Y/0)]™, ©1)
(XDper[—In(1-p)17". 92)

Thus the limit (85) conserves the ratio of the average complexities of a new aggregate
and of an aggregate at the moment of replacement. In the limit (85) all sums over
q become integrals with respect to the continuous complexity measure X.

It might be possible that the models presented here would be applied to other
physical or engineering systems for which a fractal time statistics exists. From the
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practical point of view we assume that the possibility of application of the first two
models to realistic systems with replacement is rather uncertain. Indeed, in practice it
is usually very difficult to realize aggregates with very large size. We believe however,
that the third model is more than a simple academic exercise. The telephone networks
are finite but sufficiently large so that the existence of a cutoff value for the number of
open channels has little influence on the self-similar behavior of the time distributions.
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