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Abstract 
The a u e n c e  of the memory effects on the Poissonian clocks with fluctuat- 
ing counting rates is investigated by using the technique of characteristic 
functionals. A general approach for computing all cumulants of the number 
of counts is suggested based on an analogy with the theory of rate pro- 
cesses with dynamical disorder. The large time behavior of the cumulants is 
investigated for stationary random processes with short and long memory, 
respectively. For short memory in the long run all cumulants increase lin- 
early in time and the averaged stochastic process describing the statistics of 
the number of counts, although generally non-Poissonian, is non- 
intermittent and can be used as a clock. For finite long memory described 
by a stationary fractal random process, even though the cumulants of the 
number of events increase faster than linearly in time, the fluctuations are 
still non-intexmittent and the averaged random process is also a clock. For 
infinite memory, however, the fluctuations of the number of counts are 
intermittent and the averaged random process is not a clock any more. An 
alternative stochastic approach is developed based on the use of a dynami- 
cal analogue of the Porter-Thomas formula; the results are consistent with 
the first version of the theory. Three applications of the general theory are 
presented. The 6rst application is related to the connection between the 
Kimura's neutral theory of molecular evolution and the Gillespie's episodic 
clock for the rate of amino acid substitutions through the evolutionary 
process. If the fluctuations of the rate of substitution have short memory or 
long finite memory then Gillespie's episodic clock is consistent with 
Kimura's theory. Only the infinite memory is not consistent with the 
neutral hypothesis. The second application is the study of a hopping 
mechanism for enhanced diffusion. A biased random walk is investigated 
by assuming that the distribution of the number of jumps is given by a 
Poissonian process with a fluctuating counting rate. If the fluctuations of 
the counting rate have short memory then the resulting biased diffusion is 
normal and obeys Einstein's linear equation for the mean square displace- 
ment of the moving particle. For long memory the mean square displace- 
ment of the moving particle increases faster than linearly in time and the 
diffusion is enhanced. An alternative approach for a random walk in the 
velocity space is developed. In this case the diffusion process is even more 
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efficient than for a random walk in the real space. The third application is 
the study of Porter-Thomas relaxation for systems with dynamical dis- 
order. It is shown that for small and moderately long times the relaxation 
function obeys a scaling law of the negative power law type followed by a 
fast decaying exponential tail which is determined by the fluctuation 
dynamics. This type of relaxation behavior is of interest both for nuclear 
and molecular physics and corresponds to a non-ideal statistical fractal. 

1. Introduction 

The use of a stochastic process of the Poisson type as a 
clock has been suggested in connection with the use of the 
radioactive decay for the evaluation of time intervals 
(Olsson [l]). If initially there are N o  nuclei characterized by 
the decay rate k the probability P ( N ;  t )  that in a time inter- 
val of length t ,  N disintegration events have occurred is 
given by the Poissonian law 

where 

I = k N o ,  

is the activity of the chemical element considered. For the 
Poissonian distribution (1) all cumulants of the number N of 
disintegration events, ((N"(t))), m = 1, 2, . .. are equal to 
each other and to the product of the activity I with the 
length t of the time interval considered 

(3) ((N"(t))) = I t ,  m = 1, 2, . . . 
The linear increase of the cumulants of the number of disin- 
tegration events with the length t of the time interval leads 
to a non-intermittent behavior of the fluctuations which is 
the theoretical basis for the use of the process of the decay 
as a clock for time measurements. 

The idea of a random Poissonian clock has been bor- 
rowed from nuclear physics to molecular biology. Zucker- 
land1 and Pauling [2] showed that the observed rates of 
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protein evolution measured by the number N of amino acid 
substitutions can be approximately represented by a Pois- 
sonian law of the type (1) where now A is the rate of amino 
acid substitutions. The approximate Poissonian distribution 
of the number of amino acid substitutions is an argument in 
favor of Kimura’s neutral theory of molecular evolution 
(Ohta and Kimura [3]; Kimura [4]) according to which the 
fixation of a gene in a population is entirely due to random 
fluctuations of the gene frequencies. 

Recently the Poissonian nature of the clocks has been 
questioned both for the radioactive decay and for the molec- 
ular substitution of amino acids in evolutionary biology. In 
nuclear physics experimental evidence has been accumu- 
lated which shows that for certain nuclei the Poissonian dis- 
tribution is not valid and that the data can be better 
represented by an llf noise stochastic process (see for 
instance Azhar and Gopala [5]). In this case the violation of 
the Poissonian law (1) seems to be due to the nuclear 
process itself. Note however that early studies of the radio- 
active clocks have reported random variations of the activ- 
ity due to the transport of the nuclei in the system; of course 
such variations have nothing to do with the disintegration 
process itself which is assumed to be Poissonian (Olsson [l] 
and references therein). 

Similar violations of the Poissonian law for other random 
processes of the counting type have been reported for the 
particle detection (Kobayashi [6]) and for the statistics of 
the jump events for dispersive transport (Haus and Kehr 
[7], Bouchaud and Georges [8]; Weiss [9]). 

In molecular biology the possible occurrence of an epi- 
sodic clock has been suggested for which the substitution 
rate A is a stationary random function of time (Gillespie [lo, 
111). This episodic clock is equivalent to the socalled doubly 
stochastic Poisson point process introduced independently 
by mathematicians (Cox and Isham [12]). In connection 
with the episodic clock a controversy has occurred in the 
literature. Gillespie [lo, 111 has claimed that it is incom- 
patible with Kimura’s theory of neutral molecular evolution. 
On the other hand Takahata [13-151 has shown that the 
episodic clock is not incompatible with Kimura’s theory. 

Our interest in the study of Poissonian clocks with fluctu- 
ating counting rates has been stimulated by some unex- 
pected analogies among a number of apparently unrelated 
problems, the theory of rate processes with dynamical dis- 
order, (Zwanzig [MI; Wang and Wolynes [17, 181; Vlad, 
Mackey and Ross [19]; Vlad and Mackey [20, 211; Vlad, 
Ross and Mackey [22]), the study of ergodic behavior of 
stochastic cellular automata with long memory and of Man- 
delbrot’s fractional Brownian motion (Schonfisch [23] ; 
Schonfisch and Vlad [24]; Vlad, Schonfisch and Mackey 
[25]) and the study of enhanced diffusion in disordered 
systems (Araujo et al. [26]; Shlesinger et al. [27]; Wad 
[28]). These analogies have suggested that the doubly sto- 
chastic Poisson process (Cox and Isham [12]) is in fact a 
special type of rate process with dynamical disorder which 
can be studied by applying the characteristic functional 
techniques developed in the physical literature for the study 
of these processes (Vlad, Mackey and Ross [19], Vlad and 
Mackey [20, 211; Vlad, Ross and Mackey [22]). By combin- 
ing this approach with a cumulant expansion technique 
developed for the study of ergodic behavior (Schonfisch 
[23]; Schonfisch and Vlad [24], Vlad, Schonfisch and 
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Mackey [25]) it is possible to investigate the effect of long- 
range correlations of the fluctuations of the counting rate on 
the statistics of the number N of events occurring in a given 
time interval; until now this problem has not been investi- 
gated in the physical, biological and statistical literature. 

The outline of the paper is as follows. In Section 2 we 
relate the stochastic properties of the number of events to 
the stochastic properties of the fluctuating counting rate. 
Sections 3 and 4 deal with the asymptotic behavior of the 
cumulants of the number of events for random processes 
with short and long memory, respectively. In Section 5 an 
alternative approach is developed based on the use of a 
dynamical analogue of the Porter-Thomas probability dis- 
tribution. Section 6 deals with the implications of the for- 
malism for the study of the connection between the 
Gillespie’s episodic molecular clock and Kimura’s theory of 
neutral molecular evolution. In Section 7 a fluctuating clock 
with long range memory is used for describing the biased 
enhanced diffusion in random systems with dynamical tem- 
poral disorder. Section 8 deals with the study of dynamical 
Porter-Thomas relaxation with applications to nuclear and 
molecular physics. Finally in Section 9 some limitations as 
well as possibilities of generalization of our approach are 
mentioned. 

2. Fluctuating Poissonian clocks with dynamical disorder 

For a given realization A@’) of the random counting rate the 
probablity P ( N ;  t )  of the occurrence of N events in a time 
interval of length t is given by the following generalization 
of eq. (1) : 

Since A@’), t 2 t’ 2 0 is a random function the probability 
P ( N ;  t) is itself random. The corresponding average prob- 
ability is given by 

P ( N ;  t)  = ( ( N ! ) - ’ ( P ( t ’ )  dt’)” exp (- P(t) dt’)), (5) 

where the average ( e  * .) is given by a path integral which 
takes into account the contributions of all possible random 
functions A@’), 0 < t’ < t. 

We describe the stochastic properties of the random 
counting rate A@’) by means of a characteristic functional 

E[K(t‘); t] = exp i K(t’)A(t’) dt‘ , (6)  ( (l )) 
where K(t’) is a suitable test function conjugate to the 
random rate A(t’). If the cumulants ((A(t;) . . , A(tg3>>, 
m = 1, 2, . , , of the counting rate exist and are finite then the 
characteristic functional Z[K(t’)] can be expressed by means 
of the cumulant expansion 

x K(t;) .. . K ( t 3  dt; ... dtk . I 
For evaluating the stochastic properties of the number N 

of events we introduce the characteristic function G(b; t )  of 
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the average probability P ( N ;  t )  as a discrete Fourier trans- 
form 

m 

G(B; t )  = exp (ibN)P(N; t), 
N = O  

where b is the Fourier variable conjugate to the number N 
of events. By assuming that the average over all functions 
3,(t'), t 2 t' 2 0 and the sum over the number of events N 
commute we come to 

G(b; t )  = 
CC 

( P ( N ;  t)) exp (ibN) 

= ( 2 P ( N ;  t) exp (ibN)) 

N = O  

N = O  

>> = (exp (b(t') dt'[exp (ib) - 13 

= S[K(t') = -i[exp (ib) - 1]h(t - t')] (9) 

where h(x) is the usual Heaviside function. Equation (9) is 
the main result of this paper. It expresses the stochastic 
properties of the number N of events in terms of the sto- 
chastic properties of the random counting rate A@'), 
t 2 t' 2 0; it is similar, though not identical, to the expres- 
sions for the average relaxation functions derived for rate 
processes with dynamical disorder (Vlad, Mackey and Ross 
[19]; Vlad and Mackey [20, 211; Vlad, Ross and Mackey 

If the cumulants ((Nm(t)> of the number of events exist 
and are finite then we can express the characteristic function 
G(b) by means of a cumulant expansion similar to eq. (7): 

C221). 

By expressing in eq. (9) S[K(t'); t] and G(b; t )  by their 
cumulant expansions (7) and (lo), expanding the different 
terms [exp (ib) - 11" in Taylor series in b, ordering the dif- 
ferent powers of b and comparing the two sides of the 
resulting equation we can express the cumulants ((N"(t))) of 
the number of events in terms of the cumulants <A(t,) ... 
A(t&$ of the fluctuating counting rate. After lengthy compu- 
tations we come to 

((Nm(t)> = f $E) l... l((i(r,) ... 3,(t,)> dt, ... dt,, (11) 

where 

n = l  

(-1)"-kk" $2) = c 
k = o  k!(n - k)! ' 

are the Stirling numbers of the second kind. 
Similarly the average state probability P ( N ;  t) can be 

expressed in terms of the characteristic functional B[K(t')] 
in the form: 

P ( N ;  t )  = ( N ! ) - '  dNG(b = 0; t)/d[exp (ib)IN 
= ( N ! ) - '  dNB 

x [- i[exp (ib) - l]h(t - t')]/d[exp (ib)]Nlb,o. (13) 

For example if the fluctuations of the counting rate A@') 
are described by a Gaussian random process all cumulants 

((A(t,) . . . A(@ of order bigger than two are equal to zero 

((A@,) . A@,)> = 0, m 2 3, (14) 
the characteristic functional S[K(t'); t] is given by 

S[K(t')] = exp [i k(t')((A(t')> dt' 

1 "  
2 0  0 

- - J J K(t'l)K(t;)((A(t~)A(t;)> dt; dt;], (15) 

and the average probability P ( N ;  t )  of the number N of 
events can be easily evaluated from eqs (13) and (15): 

P ( N ;  t) = exp [ - x ( t )  + 3p(t)] 

where the square brackets [N/2] denote the integer part of 
N/2 and [19] 

x(t)  = @(W dt' = W(t )> ,  (17) l 
At) = s' s'<A(tMt3> dt; dt; = <") - W(t)>.  (18) 

0 0  

Note that the stochastic process corresponding to the prob- 
ability P ( N ;  t )  given by eq. (16) is similar to the Gauss- 
Poisson process of Milne and Wescott [29]. Such a 
stochastic process has been used for describing the response 
of neurons and of neuron networks (Hesselmans et al. [30]). 

An important consequence of the calculations presented 
before is that, although being a dynamical superposition of 
Poissonian distributions, the average state probability 
P ( N ;  t) is generally non-Poissonian. 

3. Asymptotic behavior for short memory 

For investigating the clock properties of the stochastic 
process described by the average probability P ( N ;  t), we 
start out with the pure Poissonian process corresponding to 
eq. (1). We introduce the relative dispersion indices of differ- 
ent orders 

I m ( t )  = <"(t)>/<N(t)>, m = 2, 3, * a * (19) 
For a pure Poisson process characterized by a non-random 
counting rate 3, which is constant the cumulants of the 
number N of events are given by eq. (3) and then all disper- 
sion indices I,@) are equal to unity 

I,@) = 1, m = 2, 3, ... 
The randomness of the counting rate A(t') leads to the vio- 
lation of the expressions (19) for the dispersion indices 
which can become either larger or smaller than the unity. In 
literature a random process with a dispersion index I ,  
smaller or larger than unity is called sub-Poissonian or 
super-Poissonian, respectively (van Kampen [31]). 

For computing the cumulants ((Nm(t)> and the relative 
dispersion indices I,@) for a fluctuating random rate A(t) we 
should take into accocunt the condition of stationarity of 
the random process. For a stationary random process the 
cumulants, ((A@,) . . . A(tJ>, obey the condition of temporal 

(20) 
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invariance 

((A(t1) ... A(t,,J>> = ((A(t1 - At) ... A(t, - At))), (21) 

where At is an arbitrary time difference. In particular by 
choosing the time difference At as the smallest of the times 
tl,  tm 

At = t: = min (ti, ,.., t,J, (22) 

we can express the cumulant of the mth order of the fluctu- 
ating counting rate A@') as a function of m - 1 time differ- 
ences 

((A@,) ... A(t,,J>> = C,(t, - t:, ..., t, - t3. (23) 
In particular, as expected for a stationary process, the 
cumulant of the first order, which is equal to the average 
counting rate (A), is independent of time 

((A)) = (A) = independent of t. (24) 
On the other hand, as the cumulant of the mth order should 
be a symmetric function of t,, . . . , t, (Kubo [32]), the func- 
tion Cm(tl - t:, . , , , t ,  - t3 is also symmetric with respect 
to all permutations of t ,  - t:, . , . , t ,  - t:, Under these cir- 
cumstances Vlad, Schonfisch and Mackey [25] have shown 
that the time integrals in eq. (1 1) can be expressed as : 

j'... r ( ( A ( t ; )  ... A(ta>> dt, ... dt:, 
0 0  

= m fb-ldr, ... l-e dTm-iCm(T1, * e * >  Cm-1).  (25) 

If moreover the mth cumulant can be factorized as a 
product of m - 1 time differences 

C,(t1 - t:, . . , t, - t3 = A, I-I q(tU - t:), 

C, = A, = constant, 

then 

U 

(26) 

l... sd<i(i') ... A(ta>> dt', .. . dt:, 

= mA, k([-eq(~) d7)n-l. 

For a system with short memory the cumulants C, are 
exponentially decreasing functions (Vlad, Schonfisch and 
Mackey [25]): 

dimensionless random amplitude factor selected from a 
known probability density with finite moments: 

p(c) dc with p(c)  dc = 1. r 
A realization of the counting rate is given by 

M 

U'1 

where M is the total number of shot events, ti, . . . , tZ are 
their times of occurrence and c1, . . . , cM are the correspond- 
ing realizations of the amplitude factors. By inserting eq. 
(31) into eq. (6)  for the characteristic functional 3[K(t ' ) ;  t ]  
and computing the average ( . a - )  in terms of all possible 
values of the number of shot events M, their time of 
occurrence t',, ..., tb and their amplitude factors c1, ..., cM 
and passing to the limit T + 00, we come to 

I- r m  r m  

E[K(t');  t ]  = exp {- Q Jo dt' Jo PW 

exp [-v(t - t')]K(t) dt 

To save space the detailed derivation of eq. (32) is not given 
here. For similar computations see Van Kampen [31, 331; 
Vlad, Mackey and Ross [19]. By expanding the exponential 
in eq. (32) in a functional Taylor series in K(t') and compar- 
ing the result with the expansion (7) we can compute all 
cumulants of the counting rate. After lengthy computations 
we come to a general expression for the cumulants of the 
type (28), where the frequency v is independent of the cumu- 
lant index m and the factor A, is given by: 

A = m-lQ(cm), (33) 
where 

(P) = [cmp(c) dc, (34) 

are the moments of the amplitude factor. 
Equations (11) and (27)-(28) lead to the following expres- 

sions for the cumulants ((N"(t))) of the number of counting 
events 

n - 1  n!( - I)k 
k = l  k!(n - 1 - k)! 

m 
( ( P ( t ) >  = C An$:) 

n =  1 

(35) 
U 

C,(t, - t:, . . . , tm - t:) = A, n {v exp [ -v(t, - t:)]}, (28) 

where the frequency V is generally dependent on the order 
of the cumulant- A stochastic Process with short memory 
characterized by cumulants of the type (28) can be generated 
by a physical mechanism of the shot noise type (Van 
Kampen[31,33]; Vlad, Mackey and Ross [19]). We assume 

x [l - exp (-vkt)]v-lk-' 

From eq. (35) we note that in the long run t + CO the cumu- 
lants of the number of counting events increase linearly in 
time 

((Nm(t)> 
m 

(36) 1 ng)An as ~ CO, 
that the counting rate A(t') is generated by a Poissonian dis- n = l  

and thus in this limit all dispersion indices I,@) are time- 
independent 

tribution of events occurring with a constant frequency Q in 
a large time interval of length, T ,  each event having an 
exponentially decreasing effect given by the contribution - - 

I,(t) --t I m ( c o )  as t + CO, cq(t - t') = CY exp [ - v(t - t')] for t 2 t', 

where t' is the time of occurrence of an event, t is the current 

= o  for t < t', (29) where 
m 

I,(CO) = + 1 $2)nAjA,, time, v is the frequency of the decay of the effect and c is a n = 2  

(37) 
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By considering the shot-noise model developed before the 
amplitude factor c is non-negative, c 2 0, ( c m )  2 0 and 
therefore 

A,  = m-lS2(cm) 2 0, (39) 

Im(m) 2 1, (40) 
that is, the fluctuations of the number N of counting events 
are generally super-Poissonian. 

Concerning the clock properties of the averaged random 
process, we note that, even though in the limit of large times 
the dispersion indices are generally bigger than in the pure 
Poissonian case, in this limit all cumulants of the number of 
the counting events are linear functions of time and thus the 
average random-process is still a clock. The clock property 
is ensured by the fact in the limit t + 00 all relative fluctua- 
tions 

fm(t) = <N"(t)>/<N(t)>", m 2 2, (41) 

and since $2) 2 0 it follows that in this case 

decrease to zero as 

4. Asymptotic behavior for long memory 

For long memory the cumulants C,(t, - t z ,  . . . , t ,  - t3 of 
the counting rate 1(t') have long tails of the negative power 
law type (Vlad, Schonfisch and Mackey [25]) 

C,(t, - t z ,  . . . , t, - t3 = E, n (tu - t3 , [. 1- 
C 1  = E, = constant, (43) 
where H , ,  m = 1, 2, . . . are non-negative fractal exponents 
smaller than unity 

1 > H ,  2 0, m = 2, 3, ... (44) 
A mechanism generating long tails of this type is based on a 
probabilistic version (Vlad [34-391) of the Shlesinger- 
Hughes [40] stochastic renormalization. We start out with a 
stationary random process with short memory characterized 
by a set of cumulants C,(t, - t z ,  . . . , t ,  - t z )  of the 
counting rate with short tails. As z, = tu - t:, U = 1, 2, . . , , 
m tend to infinity the tails of the cumulants C ,  decrease 
exponentially or even faster towards zero. Following Shle- 
singer and Hughes [40] we apply to these cumulants a 
series of scale transformations of the renormalization group 
(RG) type, each time difference T, = tu - t:, U = 1 ,  . . . , m 
being treated independently 

em(z1, * * * ,  z m - 1 )  

m m m - I  

2,- ,(b,- l ) -gm-l) ,  b, 2 1 ,  1 2 1, 2 0, 

U = 1, . . . , m - 1 ,  (45) 

where e,(z,, . . . , 2,- ,) are the renormalized cumulants, 
b,, . . . , b,- , 2 1 are characteristic multiplicative scaling 
factors attached to the different time differences z,, . . . , 7,- , 
and 1 2 1, 2 0, U = 1 , . , , m - 1 are the probabilities that a 

scaling step takes place for each of the time differences 
zl, . . . , 7,- ,, respectively. Equation (45) has a structure 
typical for an RG equation, which generates negative power 
law tails in z,, ..., T,-, for the renormalized cumulants 
cm(zl, . . . , 7,- ,), characterized by the fractal exponents 

H ,  = In (l/IJ/ln b,, U = 1, ..., m - 1, (46) 
modulated by logarithmic oscillations in In z,, . .., In T,-, 
with the periods In b ,  . . . , In b,- ,, respectively. In order to 
get rid of the logarithmic oscillations in In T,, . . . , In 7,- , 
we introduce the limit 

b,\ 1, I ,  7 1 with H ,  = constant, U = 1 ,  . . . , m - 1. (47) 
This limit has been introduced for one-variable systems by 
Vlad [38]; it leads to the vanishing of the logarithmic oscil- 
lations even though the long tails of the negative power law 
type are left unchanged. In the limit (47) the sums over 
q,, . . . , 4,- , become integrals and after a suitable change of 
variables we come to 

x ( H m ) m - l [ l . . . r - l  (? .)""-' 
x C,(a,, . . . , a,- ,) da, . . . dam-,. (48) 

In eqs (48) we have taken into account that, due to the sym- 
metry of the non-renormalized and renormalized cumulants 
with respect to any permutation of the time differences 
z,, . . . , 7,- ,, the fractal exponents H ,  should be indepen- 
dent of the label U of the time differences; however for 
cumulants of different orders the corresponding exponents 
may have different values H , ,  H ,  , . . . , H , .  Note that the 
tails of the renormalized cumulants e,(,,, . . . , T,-. ,) given by 
eqs (48) have the same form as eqs (43) postulated by Vlad, 
Schonfisch and Mackey [25], where the constants E, are 
given by 

11111-1 

= C , ,  E, = (HAm-'  [... [ (n a,) 

x C,(a,, . . , am- , )  da, .., dam-,, m = 2, 3, . . . (49) 
The convergence of the integrals in eqs (49) is ensured by the 
fact that as a,,  . .., a m - ,  --t 00 the tails of the non- 
renormalized cumulants decrease exponentially or faster to 
zero. 

From eqs (ll), (27) and (43) we get the following expres- 
sions for the cumulants of the number N of counting events 

m 

From eq. (50) we get the following expressions for the 
asymptotic behavior of the cumulants <Nm(t)> as t + 00 : 

((N"()>> - $!(m)lBl(m) l(m)(aE)- '(1 - Hr(,))' -z(m)tuL as t+co ,  

(5 1) 

(52) 

(53) 

where the exponents a, are given by 

a, = m(1 - H,) + H , ,  

a: = max (a,, . , . , a,), 
a; is the maximum exponent from the set al, . . . , n, : 

Physica Scripta 54 



586 M .  0. Vlad, B. Schonjsch and M .  C.  Mackey 

and I(m) is the label corresponding to a: : 

4 = a l ( m )  7 

m 2  am> 1, m 2 2 ;  a1 = 1. 

As 1 > H, 2 0 (see eq. (44)) we have 

Note that in this case in the limit t -t CO the dispersion 
indices I,@) are time-dependent 

m = 2, . . . ~,,,(t) = 1 + 8, tu;- l, (56) 
where 

8, = %~(m)lBlcm,l(m)/[.~(l - Hl(mJr(m)-lBJ, m = 2, . . . (57) 
As a, > 1 it follows that the dispersion indices Im(t) diverge 
slowly to infinity as t -t CO. Despite this divergent behavior 
of I J t )  as t -+ the fluctuations of the number of the 
counting events N are non-intermittent. Indeed the relative 
fluctuationsf,(t) of the number of events decrease to zero as 
t --f 00 provided that the fractal exponents H ,  are positive: 

f,(t) N [bml(Bl)m-l]t-a1(3[r(m)- l’, H1(,) # 0, (58 )  
Thus the long and finite memory does not lead to inter- 
mittency; its only effect is that it leads to a decrease of the 
time exponents in the expressions of the relative fluctua- 

where each amplitude A&’) is a real random variable with 
average value zero 

(54) 
{A&’)) = 0, U = 1, ..., n. (63) 
obeying stationary Gaussian statistics. Each amplitude is 
characterized by the same correlation function (55 )  

g(t, t‘) = 9( I t - t’ I )  = < ~ u W u ( t O > *  (64) 
Due to the stationarity of the Gaussian process considered 
the correlation function g(t, t’) depends only on the absolute 
value of the time difference t - t‘ and is independent of the 
individual times t and t’. Such a model has a justscation in 
quantum mechanics where for a reactive system with n reac- 
tion channels the total rate of transformation is the sum of 
the squares of the individual amplitudes attached to the dif- 
ferent channels rather than the sum of the amplitudes them- 
selves. Such an approach was initially suggested in nuclear 
physics (Porter and Thomas [41], Mehta [42], Brody et al. 
[43]) where usually the possible time dependence of the 
correlation function g(t, t‘) is ignored. The method has been 
recently extended to molecular dynamics (Levine [44]). 

From the above considerations it follows that the ampli- 
tudes A&) are independent random functions selected from 
the same Gaussian probability density functional 

P CA(” 
tions. 
Equation (51) for the asymptotic behavior of the cumulants 
< P ( t ) >  can be rewritten as 

< ~ ( t ) >  - Blt, < ~ ( t ) >  = ~ ~ & ~ t ~ \  m 2 2, t -t 00. (59) 

Note that the first cumulant increases linearly in time, which 
is a typical clock property. As a, > 1, m 2 2, the cumulants 
of second and higher order increase faster than linearly in 
time. However, since the fluctuations are non-intermittent 
this nonlinearity does not affect the clock properties of the 
averaged stochastic process. 

A special situation occurs when the fractal exponents H, 
attached to the cumulants of different orders are equal to 
zero 

with the normalization condition - 

- SSpC/l(t’)lD[A(t’)l = 1, (66) 

s s 
where M(t, t‘) is a continuous commutative matrix which is 
the inverse of the correlation matrix g(t, t‘): 

&(t, t”)g(t”, t’) dt” = g(t, t”)&t”, t’) dt” = 6(t - t’), (67) 

H ,  = 0. (60) 
In this case the stochastic process describing the time evolu- 
tion of the fluctuating counting rate A@’) has infhite 
memory and the fluctuations of the number of events are 
intermittent. Indeed, as t -t CO, the relative fluctuations f,(t) 
tend towards constant values different from zero 

D[A(t’)] is the usual Gaussian integration measure (Kleinert 
[45], Zinn-Justin [46]) and the symbol ss stands for the 
path integration over the space of functiona(t‘). 

The characteristic functional E[K(t’); t] can be expressed 
as a multiple Gaussian path integral over the different reali- 
zations Al(t’), . . . , A,(t’) of the amplitudes corresponding to 
the different terms in the sum (62) 

fm(t) C ? , , , ( B ~ ) - ~ + ~  # 0 as t -t 00, 8, # 0, B ,  is finite. (61) 

Due to the intermittency of the fluctuations of the number 
N of counting events the averaged stochastic process corre- 
sponding to the probability P ( N ;  t )  is not a clock anymore. 

5. Dynamical analogue of the Porter-Thomas distribution 

For clarifying under what circumstances the fluctuations of 
the counting rate A@’) can be described by a given type of 
stochastic dependence in this section we develop an altema- 
tive model, different from the shot-noise model used in Sec- 
tions 3 and 4. We assume that the counting rate A(t’) is made 
up of the sum of n squares of n amplitude factors A, ,  ..., 
A, : 

n 

A@’) = 1 A;@’), 
u = l  
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x exp (i JK(t’)At(t’) dt’) 
u = l  

= [Z,[K(t’); t]]”, (68) 
where 

- 

p[A(t’)]D[A(t‘)] exp 
- 

is the characteristic functional corresponding to a single 
degree of freedom (n = 1). In Appendix I we show how the 
path integrals in eqs (68)-(69) can be computed analytically 
by making use of the trace technique from quantum field 
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theory (Zinn-Justin [46]). The final expression for the char- 
acteristic functional of the random counting rate S,,[K(t'); t] 
is : 

x g(t; ,  tJ * * e  g(t'm-1, t2 

x g(t6,  t l)K(t;)  ... K ( t 2  dt; ... dt',}. (70) 

Equation (70) has a structure similar with the cumulant 
expansion (7) with the difference that the integrands in the 
different terms are not symmetrical with respect to the per- 
mutations of the integration variables. By expressing the 
integrands in eq. (70) in a symmetrical way and comparing 
the result with eq. (7) we get the following expressions for 
the cumulants of the counting rate: 

((l(t,) . . . l(t,,,))) = nm-l2"-' 2 g( t j , ,  tj ,) 
j i .  . . . 3 j m  

x d t j 2 ,  t j 3 )  * * * g ( t j m - i ,  t j&(t jm 9 t j i ) ,  (71) 

where the prime sign shows that the summation labels 
jl, , , . , j, should be distinct. 

The cumulants ((N"(t))) of the number of counting events 
can be easily evaluated from eqs (11) and (71). To save space 
the detailed computations are left to the reader and we 
present only the results. The cumulants ((Nm(t))) are made 
up of the additive contributions of many terms of the form 
(11) where ((A@,) . . . l ( t& is replaced by a multiple product 
d t j l ,  t j J  d t j ,  9 t i l ) :  

m ft f t  

x g ( t j 2 ,  t j , )  - * * g ( t j o - l ,  t j . ) S ( t j , ,  t j i )  dt, - * - dt,. (72) 

From eq. (72) it follows that the asymptotic behavior of 
((N"(t))) as t + 03 is essentially the same as in the case of 
the shot-noise model used for illustration in Sections 3 and 
4. For short memory 

s(At) - do) exp (- v I At I), 
all cumulants of the number of counting events N increase 
linearly asymptotically in time as t + 00 

(73) 

((Nm(t))) - const. t as t + 00, (74) 
whereas in the case of a stochastic process with long 
memory characterized by a fractal exponent H 

g(At) N const. ( I  At I)-= , (75) 

(("(t))) - const. tu", as t + 03. (76) 

we have a scaling law similar to eq. (51) 

The most interesting situation corresponds to the case 
when the fractal exponent H is equal to zero and the corre- 
lation function is constant 

g(t, t') = g independent of t, t'. (77) 
In this case the memory is infinite, all cumulants of the fluc- 
tuating counting rate A@') are time-independent and given by 

( (A(t , )  . . . I&))) = n(m - 1)!2"-'gm, (78) 

and the cumulants ((N"'(t))) of the number N of counting 
events are polynomial functions of time 

m 

((N'"(t))) = $:)(U - l)!ngU2"-'tu 
u = l  - %j,")(m - l)!ngm2"-'tm as t + 00 (86) 

Just like in the case of the shot-noise model with the fractal 
exponents H ,  equal to zero, H ,  = 0, in this case the relative 
fluctuations f,(t) tend towards values different from zero in 
the limit t + 03: 

(79) f,(t) 

that is, the fluctuations are intermittent and the averaged 
stochastic process cannot be used as a clock anymore. 

For the model considered in this section the infhite 
memory corresponds to a system with static disorder which 
is essentially the same as the Porter-Thomas model used in 
nuclear physics (Porter and Thomas [41], Mehta [42], 
Brody et al. [43]) and in molecular physics (Levine [44]). In 
this case the sum in the expression (70) for the characteristic 
functional S,[K(t');  t] can be computed exactly, resulting in 

2 m - l n - ( m - 1 )  $, (m) (m - l)! # 0 as t + 03, 

S[K(t ' ) ;  t] = [l - 2ig K(t') dt']-"/'. (80) s 
From the definition (6)  of the characteristic functional 
E[K(t ');  t ]  it follows that for 

K(t') = ks(t - t'), 

E[K(t'); t] reduces to the Fourier transform of the one-time 
probability density P(l;  t) d l  of the counting rate. We have 

E[K(t') = kd(t - t')] = (1 - 2igk)-"l2 

= s exp (ikl)P(l; t )  dl,  

s 
r 

(8 1) 

from which, by means of an inverse Fourier transformation, 
we get 

P( l ;  t) = (24- l  (1 - 2igk)-"' exp (-ikl) dk 

= [r(n/2)] -'[n/(2(l))]n~zA('~2)n- 

x exp [-nA/(W))I, (82) 

where T(x)  = 

gamma function and 

t'-l exp ( - t )  dt, x > 0, is the complete 

(A) = AP(l; t) d l  = ng, s 
is the average value of the fluctuating counting rate. 

We note that the state probability P(l; t)  is given by a chi 
square distribution which has the same form as the Porter- 
Thomas law in nuclear physics. For the systems described 
by eqs (80) and (82) the fluctuations of the counting rate are 
completely frozen; a fluctuation, once it occurs, it is never 
destroyed and lasts forever and the dynamical average in eq. 
(5 )  is replaced by a static average. The characteristic func- 
tion G(b) can be computed from eqs (9) and (80), resulting in 

G(b) = {n/[n + 2(A>t(l - exp (ib))]}@, (84) 
Physica Scripta 54 
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from which, by applying eq. (13) we get a probability dis- 
tribution P ( N ;  t )  of the number of count events of the nega- 
tive binomial type 

P ( N ;  t) = ' (85) 

It is easy to check that the same negative binomial distribu- 
tion can be obtained by direct averaging of the Poissonian 
(4), applied for 1 = independent of time, over all possible 
values of the average counting rate 1 selected from the 
Porter-Thomas ditribution (82): 

By computing the integral over I, eq. (86) leads to eq. (85). 

6. Overdispersed molecular clocks 

From the point of view of molecular biology our results 
concerning the fluctuating Poissonian clocks are gener- 
alizations of the results of Gillespie [lo, 111 and Takahata 
[ 13-15] concerning the so-called episodic molecular clock. 
As mentioned in the introduction, Gillespie has claimed that 
the consistency with the experimental data on amino acid 
substitutions with a Poissonian distribution with a fluctuat- 
ing rate 1(t) contradicts Kimura's theory of neutral molecu- 
lar evolution because it leads to overdispersion, 
corresponding to a non-Poissonian averaged random 
process. By studying the overdispersed molecular clocks 
with short memory Takahata [13-151 has outlined that 
however the overdisposition does not contradict the neutral 
theory because the dispersion indices have finite values for 
large times and thus this type of overdispersion does not 
lead to intermittency. 

As far as we know the study of long memory effects has 
been completely ignored in the biological literature. Our 
analysis of long but finite memory confirms Takahata's idea 
concerning the consistency between Kimura's neutral theory 
and overdispersion. Although for long and finite memory 
the dispersion indices of different orders diverge to infinity 
for large times, this divergence is not strong enough to gen- 
erate the intermittency of the fluctuations of the number of 
substitutions. For infinite memory however an intermittent 
behavior eventually emerges for large times, the fluctuations 
of the number of amino acid substitution events are very 
large and intermittent and as a result the substitution 
process cannot be used as a clock anymore. At the present 
stage of research it is not clear whether such infinite 
memory can actually exist in biological systems ; for answer- 
ing this question further analysis of the genetic data is neces- 
sary. Anyway an infinite memory seems to be inconsistent 
with the present form of Kimura's theory for which the fluc- 
tuations are of the sampling nature and non-intermittent. 

7. Application to enhanced diffusion in disordered systems 

In this section we apply the theory of fluctuating Poissonian 
clocks developed in this article to the study of enhanced 
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diffusion in disordered systems with dynamical temporal 
disorder. 

We assume a hopping mechanism for the diffusion 
process. For each step, due to the temporal dynamical dis- 
order, the frequency 1(t) of occurrence of a jump is a sta- 
tionary random function of time which plays the same role 
as the counting rate in the theory of fluctuating clocks. The 
number N of jumps occurring in a time interval of length t 
is a random variable characterized by the averaged prob- 
ability P ( N ;  t )  or by its characteristic function G(b; t). For 
each step of the moving particle the length of the jump is 
characterized by a displacement vector Ar randomly selec- 
ted from a given probability density 

p(Ar) dAr with p(Ar) dAr = 1. s 
We assume that the movement is biased in a given direction 
and that the cumulants of first and second order of the com- 
ponents of the displacement vector Ar are finite and differ- 
ent from zero 

<Arul> = Ar,,p(Ar) dAr = finite # 0, (88) s 
<Arul Ar,,> = 1 (Ahl - <Aru~>(<Ar~z><Aruz>)) 

x p(Ar) dAr = finite # 0. (89) 

After N steps the particle has a position equal to the sum 
of the different displacement vectors attached to the steps 1, 
2, . . . , N ,  respectively 

r = Arl + a . .  + ArN, (90) 

where we have assumed, without loss of generality, that the 
particle was initially placed at r = 0. In Appendix I1 we 
show how the cumulants of the total displacement vector r 
can be computed as functions of time. In particular the 
cumulants of order one and two are given by the following 
expressions : 

< r a t )  = <Wt)><Aru>, (91) 

+ < A ~ u l > < A ~ u z > < ~ z ( ~ D *  (92) 

Since for short memory all cumulants <N"(t)> of the 
number of jumps are proportional to the time t as t -, 00 

(eq. (36)) it follows that in this case the correlation matrix 
[<rulruz>(t)] of the position vector at time t is proportional 
to the length t of the time interval considered 

<rulruz>(t) - 2D,,,, t as t -+ a, (93) 
where the diffusion tensor D,,,, is given by 

+ AZ<Aru1><A~uz>. (94) 
It follows that for short memory, after a transient regime, 
for large time a classical (Fick-type) diffusion process even- 
tually emerges for which the components <r,,~r,,>(t) of the 
correlation matrix obey the Einstein's relation (93). 

For long memory, however, the large time behavior of the 
components of the correlation matrix of the position vector 
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is different. In this case we get: 

(95) 

are anomalous and normal diffusion tensors, respectively. 
We notice that if the motion of the particle has an asym- 

metric (biased) component ((Ar,)) # 0 then the diffusion is 
enhanced because the exponent al; is generally larger than 
unity (see eqs (53-(55)). The most efficient diffusion corre- 
sponds to an infinite memory (H, = 0) for which the anom- 
alous diffusion exponent al; has the maximum value 2. If the 
motion of the particle is unbiased, then the memory effects, 
if any, do not show up in the expression of the correlation 
matrix of the position vector and the diffusion is normal, i.e. 
Fickian, and obeys an equation of the Einstein's type corre- 
sponding to al; = 1. 

Our model for enhanced diffusion can be easily extended 
to the case of a super-efficient diffusive behavior described 
by an equation of the type (95) where the anomalous Mu-  
sion exponent al; is larger than 2. The main idea is to con- 
sider that the random additive quantity which is the sum of 
the contributions of the different steps is the velocity of the 
particle rather than the position vector: 

V = AV1 + * * + AvN. (99) 

Here v is the velocity of the particle after n steps and 
AVl, . . . , AV, are speed increments or decrements corre- 
sponding to the different steps. The detailed analysis of this 
model, which is of interest both for physics and population 
biology, will be presented elsewhere. Here we give only the 
main results of the computations. By expressing the position 
vector r(t) as 

ft 

r(t) = qt') dt', Jo 
neglecting the transient inertial effects, and making use of 
the expressions of the cumulants ((N"(t))) of the number of 
steps derived in Sections 3 and 4, we get the following 
expressions for the correlation matrix of the position vector: 

<ru1ru2)(t) - const. t3 as t + CO, (101) 
for short memory and 

<~,l~uz>(t) const. t" for ((Auu)) # 0 as t --t CO, (102) 

((rulru2))(t) - const. t3 for ((AV,) = 0 as t + CO, (103) 

for long memory, where the exponent E is between three and 
four : 

4 > E > 3 .  (104) 
For short memory and for long memory with no preferred 
direction of the random velocity field (((AV) = 0) we get the 
t3 Richardson law which is of interest both in physics 
(relative turbulent diffusion, Richardson [47] ; Batchelor 
[48]; Masoliver [49, SO]; Masoliver and Porrd [Sl]; Porra, 
Masoliver and Lindenberg [52]; Seki, Kitahara and Nicolis 
[53]) and in population biology (anticrowding diffusion, 

Okubo [54]). For long memory with an average velocity 
increment ((AV)) = 0 the process is more efficient than the 
Richardson diffusion, and the anomalous diffusion exponent 
is between three and four, the maximum value four corre- 
sponding to an infinite memory. 

8. Rate processes with dynamical disorder 

In this section we apply the generalized Porter-Thomas for- 
malism developed in Section 5 to the study of rate processes 
with dynamical disorder. We investigate a rate process for 
which the rate coefficient A@') is a stationary random func- 
tion obeying the dynamical analogue of the Porter-Thomas 
formula. Such an approach is of interest both in connection 
with the study of compound reactions in nuclear physics 
(Dittes, Harney and Muller [55]) and with the study of fast 
chemical reactions in molecular physics (Levine [U]). 

The dynamics of the relaxation process is described by 
the average relaxation (survival) function 

4(t) = <Kt))dynamical, (105) 
where the dynamical average (. is given by a 
path integral which takes into account all possible random 
relaxation rates A ( t )  and the instantaneous (fluctuating) 
relaxation function l(t) obeys the differential equation 

dl(t)/dt = -A(t)l(t), l(0) = 1, (106) 
and therefore 

l(t) = exp (- ['A(t') dt'), 
/ Jo / 

From eqs (6) and (108) it is easy to see that the relaxation 
function 4(t) can be expressed in terms of the characteristic 
functional E[K(t'); t] : 

+(t) = 3[K(t') = ih(t - t'); t]. (109) 
By combining eq. (109) with eq. (70) for the characteristic 
functional S[K(t'); t] of the dynamic analogue of the 
Porter-Thomas statistics we come to: 

1 (-1)m-l 4(t) = exp {- - n 
2 m = l  m 

x dt; ... dtk . I 
Further development of the theory requires knowledge of 

the concrete form of the correlation function g(t, t') of the 
amplitude factors A&'). We start out with the case of static 
disorder for which 

g(t, t') = g = constant. (111) 
In this case the evaluation of the integrals and of the sum in 
eq. (110) is straightforward. After some calculations we get a 
relaxation function +(t) with a long tail of the statistical 
fractal type 
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where the average decay rate (A) is given by eq. (83). Equa- 
tion (112) has already been derived in the literature by 
taking the average of the instantaneous survival function l(t) 
given by eq. (110) applied for A(t) = constant, where the 
average is computed in terms of the static Porter-Thomas 
distribution (82) [55] : 

= (1 + 2n-'(A)t)-('/z)n. (113) 

The problem of dynamical disorder cannot be solved in 
the general case. In this paper we limit ourselves to the par- 
ticular case of a very slow exponential decay of the corre- 
lation function of the amplitude factor A&') 

g(t, t') = g exp (- o I t - t' I), g = constant, (1 14) 

where the frequency o of decay of the amplitude fluctua- 
tions is close to zero 

0 - 0. (115) 

In this case the exponential in eq. (110) can be approx- 
imately evaluated by symmetrizing the terms of the sum 
with respect to t1, . . . , t', and evaluating the integrals over 
ti ,  , . . , t', and the resulting series. After lengthy but standard 
manipulations we obtain 

E,(z) = t-' exp ( - t )  dt I" 
is the exponential integral. 

For small to moderate times the relaxation function &) 
is practically identical with the statistical fractal law (112) 
characteristic for static disorder 

$(t) - (1 + 2n-'(A)t)-('/z)n as t < l/o, (1 19) 

whereas for very large times the relaxation function is prac- 
tically exponential 

(w) - f exp ( - Aeff t )  t 2 l/o, (120) 

where the preexponential factor is given by 

and the effective relaxation rate Jeff is determined by the 
frequency co of the attenuation of amplitude fluctuations 

The physical interpretation of these results is simple. The 
amplitude fluctuations correspond to the intranuclear redis- 
tribution of the energy among the intrinsic degrees of 
freedom in nuclear physics and to the intramolecular redis- 
tribution of energy in molecular physics. For static disorder 
t < l/o, the regression of fluctuations is practically inexis- 
tent and the relaxation process is determined by the average 
rate (A) = ng and described by the statistical fractal relax- 
ation law (119). For very large times, t > l/o, however, the 
regression of energy fluctuations is the rate-determining 
process and is taking over the dynamics of the relaxation, 
resulting in the exponential decay (120) of the survival func- 
tion. The passage from an initial negative power law decay 
to an exponential tail corresponds to a non-ideal statistical 
fractal behavior characteristic for many systems with 
dynamical disorder. Such a crossover from a negative power 
law to an exponential decay has been also identified for the 
passage over a random energy barrier with dynamical dis- 
order (Wad and Mackey [21]) and for the statistical 
description of the onset of an epidemic (Vlad, Mackey and 
Schonfisch [56]). 

9. Conclusions 

In this paper the clock properties of the doubly stochastic 
Poisson processes with fluctuating counting rates have been 
studied by using a characteristic functional approach bor- 
rowed from the statistical physics of disordered systems. The 
results of this physical approach have been compared with 
the other less general treatments presented in the mathe- 
matical, physical and biological literature. Special attention 
has been paid to the implications of long memory on the 
clock properties, an aspect of the problem completely 
ignored in the literature, It has been shown that the clock 
properties are related to the non-intermittency of the fluc- 
tuations of the number of counting events. Our investiga- 
tion has led to the conclusion that for long, but however 
finite, memory, even though the dispersion indices diverge 
to infinity as t --t CO, this divergence is not strong enough for 
generating the intermittency of fluctuations and thus under 
these circumstances the double stochastic Poisson process is 
a clock. The clock property is violated only for infinite 
memory, in which case the fluctuations of the number of 
counting events are intermittent. 

The general approach developed in the article has been 
applied to the study of three different biological and physi- 
cal problems. The first application is related to the study of 
overdispersed molecular clocks in evolutionary biology and 
its connections with Kimura's neutral theory of molecular 
evolution. We have extended Takahata's [ 13-1 51 analysis of 
the Gillespie's episodic clock. We have shown that the epi- 
sodic clocks with long but finite memory are compatible 
with the neutral theory. For infinite memory, however, the 
process of amino acid substitution through evolution is not 
a clock anymore and moreover it seems that this possibility 
is incompatible with the neutral theory of molecular evolu- 
tion. 
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The second application is the study of a hopping mecha- 
nism for the process of enhanced diffusion in disordered 
systems. We have shown that the long memory of the fluc- 
tuations of the jump frequency leads to enhanced diffusion 
provided that there is a peferred direction of the motion. 
For a hopping mechanism of the displacement vector the 
theory predicts an anomalous scaling exponent between one 
and two where the maximum value two corresponds to an 
infinite memory and the minimum value one to an exponen- 
tially decaying short memory. For a hopping mechanism in 
the velocity space the diffusion exponent is between three 
and four where the maximum value four corresponds to an 
infinite memory and the minimum value three (the Richard- 
son exponent) corresponds to an exponentially decaying 
short memory. These results are consistent with a comple- 
mentary model for enhanced diffusion recently studied in 
the literature [26, 271. Despite the apparent similarity of the 
predictions of the two models the corresponding physical 
mechanisms assumed by the two approaches are however 
different. In refs, [26, 271 the statistics of the jump events is 
not given by a doubly stochastic Poisson process with a 
fluctuating jump rate but by a non-Markovian renewal 
process. 

The third application is the generalization of the Porter- 
Thomas relaxation for systems with dynamical disorder. A 
dynamical analogue of the Porter-Thomas distribution has 
been suggested by assuming that the correlation function of 
the amplitude factors is time-dependent. The characteristic 
functional as well as all cumulants of the process have been 
computed exactly by using the trace technique from 
quantum field theory for evaluating path integrals. The 
relaxation function of the dynamical process has been 
approximately evaluated for a slow exponential decay of the 
correlation function of the amplitude factors. The relaxation 
function derived for this particular case corresponds to a 
non-ideal statistical fractal behavior: for short to moderate 
times it displays self-similarity followed by a fast decreasing 
exponential tail for large times. 

Further research concerning the approach introduced in 
this paper should focus in many different directions. A more 
detailed study of the stochastic process itself should be 
carried out. Such a study should include the evaluation of 
the grand canonical Janossy and product densities, of the 
multievent correlation functions and of the corresponding 
characteristic functionals. The knowledge of these functions 
is essential for any further applications, especially for a more 
detailed investigation of enhanced diffusion. Concerning the 
problem of overdispersed molecular clocks in molecular 
biology it is necessary to investigate whether an infinite 
memory for the process of amino acid substitution can 
actually exist and under what circumstances. Finally con- 
cerning the dynamical analogue of the Porter-Thomas 
relaxation further studies should consider the connection 
between the non-ideal statistical fractal behavior of the 
relaxation function and the dynamics of the process as well 
as the evaluation of the relaxation function for moderate or 
large regression frequencies. 
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Appendix I 

For computing the path integrals in eqs (68)-(69) we pass to 
a discrete description 

A(t) --+ A,; g(t, t)  + gjy  , A ( t ,  t‘) + djj#, 

K(t’) dt’ + K f ,  (1.1) 

where we take N different points. In this discrete descrip- 
tion the path integral (69) becomes a discrete N- 
dimensional Gaussian integral 

m m 
E, [K( t ’ ) ;  t]discretc = sa.. . j-L27T)-x’i(det g)-li2 

x exp { -4A’g-lA + iA’KA} dA, (1.2) 

A = [ A j ] ,  K = [ S j y  K j , ] .  (1.3) 

where 

The N-dimensional Gaussian integral (A.2) can be easily 
evaluated resulting in 

El [K( t ) ;  t l d i sc ro te  

= ( 2 7 ~ ) - ~ / ~ ( d e t  g)112(2~))K/2[det (g- - 2iK)] - 

= [det (I - 2igK)I - 1/2. 0.4) 

0.5) 
Now we use the standard identity 

In det M = Tr (In M), 

from quantum field theory (Zinn-Justin [46]). We consider 
that 

M = I - 2igK, (1.6) 
expand the logarithm of the matrix in a Taylor series and 
take the trace of the result. After some elementary algebraic 
manipulations we get 

En[K(t’f; t l d i s c r c t e  

= [s[K(t);  t l d i sc rc t c ln  

= exp { - i n  Tr [ln (I - 2igK)l) 

By passing to the continuous limit in eq. (A.7) we come to 
eq. (70) for the characteristic functional En[K(t’); t] of the 
random counting rate A( t ) .  

Appendix 11 

The finiteness of the cumulants of first and second order of 
the displacement vector Ar can be expressed as: 

<ArUJ = (-i)a In p ( k  = O)/ak,, 

= finite # 0, u1 = 1, ..., d , ,  (11.1) 
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= finite f 0, ul, u2 = 1, . . . , d,  (11.2) 

where 

PI$) = s e x p  (ik - Ar)p(Ar) dAr, (11.3) 

is the characteristic function of the probablity density p(Ar) 
written as a Fourier transform, k is the wave vector conju- 
gate to the displacement vector Ar, and d ,  is the space 
dimension. In the literature of condensed matter physics the 
characteristic function p(k) also bears the name of structure 
function (Haus and Kehr [7]). 

By taking into account eq. (90) it follows that the prob- 
ability density of the position r of the particle after N steps 
is the N-fold convolution of the jump probability density 
P(A4 : 

@ I(N) 01.4) 

where the symbol @ denotes the space convolution 
product. The probability density 

P(r; t) dr, with P(r; t )  dr = 1, s (11.5) 

of the position vector at time t can be expressed as an 
average of eq. (11.4) over all possible values of the number N 
of steps : 

m 

P(r; t) = C P ( N ;  t)Cp(r) 8 
N = O  

from which, by introducing the characteristic function 

P(k; t )  = 

we obtain 

exp (ik * r)P(r; t )  dr, s 
(11.6) 

(11.7) 

m 

P(k; t) = 1 P(N; t)jN(k) = G(b = -i In j(k); t). (11.8) 
N = O  

By expressing in eq. (11.8) the characteristic function G(b; t)  
in terms of the cumulant expansion (10) we come to 

r w  
01.9) 

Now we expand the logarithm of the structure function fik) 
in terms of the cumulants of the components of the displace- 
ment vector Ar 

“ 1  
In p(k) = C 7 C - <Arul . . . Arum>kul . . . kum, (11.10) 

insert eq. (11.10) into eq. (11.9), expand the terms Dn jj(k)]” in 
power series in k , ,  . . . , kdS and order the different powers of 
k. By comparing the result of these operations with the stan- 
dard cumulant expansion of the characteristic function 

m = i  m -  u i  um 

m; 0, 

(11.1 1) 

we can compute, at least in principle, all cumulants 
<rul ... rYm))(t), m = 1, ..., m, ... of the components of the 
position vector of the moving particle at time t. The compu- 
tations are tedious, their complexity increasing with the 
order m of the cumulants. In particular, for m = 1, 2, eqs 
(11.9)-(11.11) lead to eqs (91)-(92). 
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