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Abstract. The statistical properties of a population of neurons is examined by a study of the 
invariant measures generated by a coupled map lattice. The coupling between lattice neighbors is 
extended beyond nearest to include all members of the lattice (mean field coupling), to a portion of 
the lattice, and as a decreasing function of distance between lattice members. Sufficient conditions 
for the asymptotic stability of these lattices are discussed. 
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1. Introduction 

A characteristic of the central nervous system is that each neuron in interconnected to 
large numbers of neurons (......, 103 - 104 ) (1, 16]. These interconnections occur on two length 
scales: short range connectivity (......, 200-500 µ) and long range connectivity (,...., 1 - 30 cm.). 
The relationship between the activity of a single neuron, measured by recording neuronal 
spikes, to that of a population of neurons, measured by, for example, the electroencephalo­
gram (EEG) requires considerations of the statistical properties of neuronal populations 
[1,2,14,17]. Under baseline conditions neurons of the same type and in the same cortical 
layer, or region, display very similar histograms of interspike intervals (ISH) [9]. In the ter­
minology of dynamical systems, the ISH corresponds to a measure. Here we examine the 
relationship between the invariant measure generated by a single neuron to that generated 
by a population of neurons. 

The study of the invariant measures generated by spatially extended dynamical sys­
tems, such as turbulent fluids, has recently attracted a great deal of attention (3,5,8,15). 
Particular attention has focused on establishing the existence of these measures for diffu­
sively coupled map lattices. Typically, for one space dimension, diffusively coupled map 
lattices are written in the form [4] 

, - ( )S( ') € [s< ,-1) S( ,+1 )] ( 1 xt+ 1 - 1 - € x, + 2 x, + x, , € E 0, 1 j = 1, • • • , L, (1) 
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where the map S : [O, 1] ~ [O, 1] determines the local dynamics and generates a unique 
invariant measure and t: is the coupling coefficient. The index j = 1, · · · , L specifies the 
lattice position; j = L + 1 is to be identified with j = 1, so the boundary conditions are 
periodic. 

It is tempting to initiate the study of the statistical properties of neuronal populations 
by using the formulation provided by (1 ). For example1 if we restrict our attention to short 
range connections, then S could be imagined as describing the t-th interspike interval 
produced by the j-th neuron due to the influence of the long range afferents. However, 
in contrast to diffusively coupled dynamical system in which interactions are limited to 
nearest neighbors on the lattice, in neuronal networks interactions are not so restricted 
but may occur over many neighbors. 

Here we discuss sufficient conditions to insure that a unique invariant measure exists 
in which the coupling terms in (1) extends beyond nearest neighbor. One example is mean 
field coupling, in which (1) becomes 

L 

xi+i = (1 - t)S(xi) + L ~ 
1 

L S(xf) 
k=l,k#j 

= W(xL · · · , xf) j = l,··· ,L. (2) 

However, our conditions also apply to cases in which the coupling includes any number 
~ L - 1 of the elements of the lattice. These results can also be extended to situations in 
which the coupling decreases with inter-lattice element distance as is known to occur in 
the nervous system [13] 

After some mathematical preliminaries in section 2, in section 3 we review some 
recent results on the existence of invariant measures for (1). In section 4 we demonstrate 
how these properties can be extended to maps with spatially extended coupling. 

2. Mathematical Preliminaries 

Here we briefly review the evolution of densities under the action of the map W: X ~ X 
[6]. By a density we mean a positive normalized L1 function f: X ~ R, i.e. f is a density 
if f ~ 0 and J x f dx = 1. Given a density f, then the corresponding measure µ1(A) of 
a set A C X is defined by µ I (A) = J A f ( x) dx, and / is called the density of the measure 
µ, . Having a density f, the associated measureµ/, and a non-singular map W: X ~ X 
then Wis said to be measure preserving with respect to µJ if µ1(W- 1(A)) = µ1(A), 
where w-1 (A) is the counterimage of the set A. Alternately, this is expressed by saying 
thatµ/ is an invariant measure with respect to W. 

Since Xt+i = W(xt), the evolution of a density funder the action of W is formally 
given by 

J Pwf(u)du = f f(u)du 
A lw-i(A) 

AcX, 
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where the operator Pw is known as the Frobenius-Perron operator corresponding to 
W. If there is a density f. such that Pwf. = f., then we call f. a stationary density 
of Pw. If f. exists, then it can be shown that this is equivalent to the invariance of the 
measure µ f. with respect to the dynamics W. 

Since the dynamics W generate a sequence of densities {P~/}~0 , it is interesting to 
know the types of convergence that this sequence may display. The first is ergodicity. We 
say that a Frobenius Perron operator Pw is ergodic if there exists a stationary density 
f. of the operator Pw such that 

t-1 

lim ! """"'< P~f,g >=< f.,g > 
t-+oo t D 

for all initial densities f. 
k=O 

Ergodicity is important because it also implies that the stationary density f. is unique and 
thus it is the density of a measure invariant with respect to the dynamics [6]. Furthermore, 
by the Birkhoff individual ergodic theorem if a system is ergodic statistical averages may be 
calculated either along trajectories, or across the phase space with appropriate weighting 
by J •. 

Beyond ergodicity is mixing, a second type of convergence behaviour for densities. 
We say that Pw is mixing if there exists a unique stationary density J. of the operator 
Pw and 

lim < P:.VJ, g >=< J., g > 
t-+oo 

for all initial densities f. 

Finally, the third type of convergence is known as asymptotic stability [6]. We say 
that Pw is asymptotically stable if there exists a unique stationary density f. of the 
operator Pw and 

lim IIP:.Vf - f.11 = 0 
t-+oo 

for all initial densities f. 

Asymptotic stability implies mixing which implies ergodicity, but not vice versa. 

3. Nearest Neighbor Coupling 

The correct form of Sin (1) which describes the local dynamics of the j-th neuron under 
the influence of its long range afferent inputs is not known. Therefore, we illustrate our 
approach with a very simple choice of S, namely the Renyi map [12] 

S(x)=T(x) mod 1 0 ~ x ~ l, (3) 

where T : [O, 1) -+ [O, oo) is a piecewise C 2 function such that infx T1 > o > 1 and T(O) = 0. 
Extensions to cases in which the slope of S changes sign are discussed elsewhere [Mackey 
and Milton, in preparation]. 

Consider lattices of nonsingular maps S : (0, 1] -+ [O, 1] such that S(O) = 0. and 
assume that the full lattice dynamics W defined by (1) operate in a phase space XL 
consisting of the £-dimensional unit cube XL = [O, 1] x · · · x [O, 1], and we specifically 



3122 M. C. Mackey and J. G. Milton 

do not associate the point 1 with 0. W maps the triple (xi-I, xi, xi+ 1
) to a point xi so 

xi = W(xi- 1 , xi, xi+I ), or Xt+i = W(xt) where x = (x 1 , • • · , xL). 
To study systems like (1) we make the following observations. We will say that a 

mapping W : XL ---+ XL is expanding if there exists a constant ). > 1 such that the 
differential dW satisfies lldW(x)xll 2:: >-llxll at each x E XL, where llxll denotes the norm 
of the vector x so llxll =< x, x > ½ and<·,· > denotes the scalar product. Then we have 

Theorem 1. Let S satisfy the properties above, W: XL -+ XL be given by (1) and Pw be 
the corresponding Frobenius Perron operator. If W is expanding then Pw is asymptotically 
stable. 

Proof. The proof of the theorem follows from the derivation of the Frobenius Perron op­
erator Pw corresponding to W, demonstrating that Pw has a nontrivial lower bound, 
and showing that the existence of a lower bound function is necessary and sufficient for 
asymptotic stability. 

From Theorem 1 it is possible to determine sufficient conditions for the aymptotic 
stability of broad classes of CMLs. In particular when S is given by (3) we have the 
following corollary. 

Corollary 2. Let the map S : [O, 1] ---+ [O, 1] satisfy S(O) = 0, and infz: S' > a > 1. Then 
W is expanding and, consequently, Pw is asymptotically stable when a> 1/(1 - t). 

Results like the above for asymptotic stability in a CML with constant coupling can be 
extended to the case of variable coupling [Mackey and Milton, in preparation], specifically 

x{+ 1 = (1 - t(S(x{))] + t(S~{)) (S(x{-1
) + S(x{+ 1 

)], j = 1,··· ,L. 

In this case it is assumed that the full lattice dynamics operate on a finite dimensional 
smooth connected compact C00 manifold with a Riemannian metric, and some technical 
requirements are placed on t. 

4. Spatially Extended Coupling 

The obvious extension of nearest neighbor coupling embodied in (1) is the type of mean 
field coupling illustrated in (2), and for many situation of physical interest this is appro­
priate. However, in a neurophysiological context, it is perhaps more realistic to consider 
the situation in which 

N 

x{+I = (1 - t)S(x{) + ; L S(x~), 
k=1,k'¥i 

so each lattice site is coupled with the same strength to N ~ L - 1 neighbors with the 
same strength. Alternately, since measurements of the connectivity of cortical neurons 
indicate that the probability of connectivity between two neurons decreases exponentially 
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with distance [13], one might examine 

N 

j (1 )S( j) + € ""' S(x
1
k)e-,clk-il_ xt+l = - € xt N ~ 

k=l,k::;cj 

Situations like both of these have been considered by Keller and Kiinzle (5] and Mackey 
and Milton (in preparation], and once again sufficient conditions for asymptotic stability 
are relatively straightforward to obtain. 

5. Discussion 

Our results illustrate that previous results on the existence of invariant measures for (1) 
can be extended to lattices in which the coupling extends beyond nearest neighbors. The 
invariant measure generated by the lattice through W is not, in general, the same as that 
generated by S. These results do not exclude the possibility that the lattice can generate 
an invariant measure whereas S does not. 

The neural analogue of ( 1) would be a population of interconnected identical neu­
rons each with the same "long range" input. It has long been felt that neurons in the 
central nervous system are organized into modular units composed of ~ 200 - 300 neurons 
("mini-columns") or ~ 105 neurons ("macro-columns") [16]. The identification of these 
functional columns, or units, rests on anatomical and physiological evidence indicating 
that the neurons have similar afferent inputs. The formulation of a network in terms of 
(1) becomes more realistic as better choices of S are made and as both inhibitory and 
excitatory inter-connections are included. One possibility is to consider that the map S 
describes the dynamics produced by a recurrent inhibitory loop (i.e. a pyramidal neuron 
plus its inhibitory interneurons) and its long range input. Using a delay-differential equa­
tion model for recurrent inhibition proposed by Mackey and an der Heiden [7], we have 
derived 

S(x) = A - Bx</>" 
</>" + x" 

where A, B, <p, n are positive constants. When this map is onto a closed finite interval, then 
many of the results quoted above and presented elsewhere [Mackey and Milton, in prepara­
tion] can be shown to also hold, but significant mathematical difficulties present themselves 
when this condition is not attained in spite of the fact that the map is still physiologically 
realistic and numerical simulations reveal a variety of interesting phenomena. 

Neurons are excitable elements and hence a network of neurons might be anticipated 
to be dynamically similar to an excitable medium [18]. A variety of beautiful and self­
maintaining complex spatio-temporal patterns including traveling spiral waves can arise in 
chemical media and cardiac tissue. Although it is still uncertain whether traveling waves 
of cortical excitation occur [11], it is likely that they can arise, particularly in certain 
pathological situations such as spreading depression (10] and the spread of activity from 
an epileptic focus. We have not yet been able to produce self-maintaining traveling waves 
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in the network described by (1). At present we do not know whether the apparent inability 
of (1) to produce self-maintaining traveling waves reflects our choice of S or whether the 
limitation lies in the rna;mer by which neighbouring elements on the lattice interact. 

Understanding phenomena such as cognition and the generation of an epileptic seizure 
ultimately requires the study of dynamics of large ( rv 106 - 1010 ) populations of neurons. 
Although numerous techniques exist to study properties of single neurons, techniques ca­
pable of measuring functional properties of large populations of neurons are limited to 
EEG and radiological techniques such as magnetic resonance and positron emission to­
mography. An important step will be the demonstration of how the properties of single 
neurons contribute to these population measures. 
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