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Abstract. Solution sensitivity to initial conditions in a first order delayed partial dif­
ferential equation is investigated around the Hopf bifurcation and around higher order 
bifurcations. The presence of multistable limit cycles and the geometry of their basins 
of attraction are then investigated systematically for three different first order nonlinear 
ordinary differential delay equations. 

1991 Mathematics Subject Classification: 34A34, 35B30, 35B40. 

1. Introduction 

In this paper, we investigate the dependence of solution behavior on perturbations 
of the initial conditions in a class of delayed differential equations. The first system 
considered is a model for proliferating and maturing cell populations framed as a 
first nonlinear delayed partial differential equation (DPDE). Solution dependence 
on initial conditions if first discussed around the Hopf bifurcation (Section 3) and 
then around higher order bifurcations (Section 4). 

One technique used to study solution dependence on initial conditions is the 
method of characteristics. Along the characteristics, the DPDE reduces to an ordi­
nary differential delay equation (ODDE). This led us to investigate solution depen­
dence on perturbations of the initial functions in different ODDE's in Section 5. 

2. A model for proliferating and 
maturing cellular populations 

We consider a model for cell replication in which the cells are both proliferating 
and maturing [9, 10]. 

Let a denote the cell age, x the maturation variable, t time, "Y the rate at which 
cells die, and V ( x) the maturation velocity where a ranges from O to T and x 
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ranges from Oto 1. If U(t, x, a) denotes the density of proliferating cells then 

8U 8U 8[V(x)U] __ U 
at + 8a + ox - "Y 

is the conservation equation for U ( t, x, a) with initial condition 

U(O, x, a) = r(x, a) for (x, a) e [O, 1] x [O, T]. 

The total number of proliferating cells is given by 

u(t,x) = 1' U(t,x,a)da 

and the boundary conditions for the system are 

U(t, x, 0) = 2U(t, x, r) = F(u(t, x)) 

(1) 

where F is the input flux of the total number of cells at a given maturation level. 
If we assume that the maturation velocity V is given by 

V(x) = rx, r > 0, 

then integrating (1) over the age variable a and applying the boundary conditions, 
yields 

au au 
ot + rx ox= -bu+ .Xu.,.(1- u.,.) 

where the input flux F has been taken as 

F(u) = u(l - u), 

and 6, .X and u.,. are defined by 

6 = "Y + r, .X = ce-{,+r)-r, u.,. = u(t - r, xe-r-r). 

The initial condition is: 

u(t - r, xe-r-r) = <p(x) for (t, x) E [O, r] x [O, 1]. 

We pick r = 1 without loss of generality. 

(2) 

(3) 

3. Solution behavior around the Hopf bifurcation 

In this section, we summarize some of the results from Rey and Mackey [9, 10]. 
We consider the effects of two slightly different initial functions <p( x) = x + 0.1 and 
ip(x) = x. To study the effects of these initial functions two numerical approaches 
are used: the Galerkin finite elements method and the method of characteristics. 

When <p( x) = x + 0.1, for O < .X < 6 the trivial solution is the only biologically 
meaningful stationary spatially homogeneous solution. For .X > 6 there is a second 
stationary spatial solution, (.X-6)/ .X, which coexists with the trivial solution. When 
(2) is linearized about either steady state, it yields a single bifurcation diagram 
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consisting of three regions: two stationary spatially homogeneous solutions and a 
periodic spatially homogeneous solution delimited by the line ,\ = 6 and by the 
Hopf bifurcation curve. 

When <p( x) = x, for O < ,\ < 6 the trivial solution is again the single stationary 
solution. For ,\ > 6 there is no longer a unique globally asymptotic stable steady 
state, instead there are three families of stationary solutions: a trivial solution, a 
spatially nonhomogeneous solution ,\ = ( 6 + r )ert, 

{ 
0 when x = 0 

and a singular solution >.~'5 
" when x > 0 

depending on the values of (6, .\, r). By linearizing (2), we obtain three bifurcation 
diagrams depending on whether r is less than, greater than, or equal to 1. For 
r = 0. 7 455, the bifurcation diagram consists in three regions: two stable station­
ary solutions and a traveling wave solution delimited by the stationary nonho­
mogeneous solution and the Hopf bifurcation. For r = 1, the bifurcation diagram 
consists in three regions: two stable stationary solutions and a slow traveling wave 
solution again delimited by the stationary nonhomogeneous solution and the Hopf 
bifurcation. For r = 1.1, the bifurcation diagram consists in only two regions: a 
stable stationary solution and a chaotic waves solution delimited by the stationary 
nonhomogeneous solution. 

4. Higher order bifurcations 

In Figure 1, ,\ is plotted versus the period of u( t) while 6 and r remain fixed. 
Figure 1 shows that the Hopf bifurcation occurs at ,\ ~ 4.3 followed by a higher 
order bifurcation at ,\ ~ 5.3. At ,\ ~ 5.8 the numerical solution appears to be 
"turbulent". This is followed by a reverse bifurcation as ,\ increases further. One 
can see this in Figure 2 where the local extrema of u(t) are plotted as a function 
of.\. 

Focusing on the area between ,\ = 5.7 and ,\ = 5.9, Figure 3 clarifies the 
transition from the higher order bifurcations to the turbulent solution behavior 
and from the turbulent solution behavior to the reverse bifurcation. 

The initial function used to obtain Figures 1-3 was <p(x) = x. To obtain these 
figures, we used the method of characteristics: (2) is rewritten as 

du 
dt = -6u + -Xu-r(l - u-r) (4) 

along the x characteristic, x(t) = t:ert, where 

u(t, x(t)) = u(t, x(t) = t:ert) 

and 

u-r(t, x(t)) = u (t - 1, t:er(t-l)). 
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Figure 1. Higher order bifurcations 8 = 1, r = .001. When the period equals O the 
solution is chaotic, when the period equals -1 the solution diverges to -oo. 
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Figure 2. Local extrema of u(t) versus ,\ for the same 8 and r as in Figure 1. 
Here we can clearly see the Hopf bifurcation, the chaotic windows, and the reverse 
bifurcation. 

We now take as an initial condition the time segment [, 0, r] of the solution of (4) 
for,\= 5.7 which was generated by cp(x) = fert fort E [-r, O] . r, 8, and fare the 
same as in Figure 3. The turbulence has completely disappeared and instead there 
is a smooth transition from the first bifurcation to the reverse bifurcation. Other 
interesting behavior has been observed by using the solutions of (4) for various ,\'s 
as initial function. 
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Figure 3. Blow up of the local extrema of u(t) versus ,\ for 8 = 1 and r = .0001 
for ,\ E (5. 7, 5.9] where the initial condition is u(t - 1, xe-r) = x = cp(x ). 

The only difference between Figures 3 and 4 is a change in the initial function. 
This clearly indicates that the asymptotic behavior of the solutions of ( 4) is sen­
sitive to changes in the initial function. In the next section, we investigate this 
property in ( 4) as well as in two closely related equations. 

5. Multistability in first order ODDE's 

We consider in this section the dynamics of first order differential delay equations. 
The equations describe the evolution of a variable x which is being destroyed at a 
rate 8 and produced, with some delay, via a nonlinear production mechanism: 

dx_ () + dt - -8x + F x,,. , 8, r E 1R , (5) 

where x,,. = x(t - r). F, the feedback function, is the rate of production which 
depends on the history of the variable. The initial function is denoted by <p: 

x(t) = cp(t) for t E (-r, 0). 

The wealth of dynamics displayed by equation (5) depends to a great extent on the 
feedback F. We are interested here in the case where F is nonmonotone, modeling 
so-called mixed feedback control loops. Although (5) looks simple, it corresponds to 
a class of semidynarnical systems which can display a remarkable range of solutions: 
from steady states bifurcating to limit cycles of arbitrary complexity to chaotic 
trajectories as a control parameter is varied (2, 6]. 
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Figure 4. Local extrema of u(t) versus,\ for 8 = l and r = .0001 where the initial 
condition is u(t - 1, xe-r) = solution for,\= 5.7. 

Equations like (5) have been used to describe the dynamics of physiological 
control systems [8], multistable optical devices [1, 3, 4, 5] (and references therein), 
and agricultural commodity markets [7], to mention a few applications. They also 
provide a natural extension of one dimensional discrete-time maps. This extension 
makes use of a simple singular perturbation limit procedure: In (5), taking the 
limit 8 ---+ oo, keeping F / 8 finite, and then discretizing time in units of T yields a 
1-d map [6]. 

We study the problem of solution multistability in these differential equations 
by focusing on three paradigm systems. 

5.1. The logistic ODDE 

The logistic ODDE, 

dx_ ( ) + dt - -8x + ..\xT l - xT , ,\ E JR (6) 

is constructed as the singular perturbation of the logistic map. We encountered this 
equation in the first part of this paper since it is the x characteristic of equation 
(2). 

The initial functions we consider are 

cp(t) = A sin(wt) + B, A, w E JR+, B E JR. 

Figure 5 displays bistable limit cycle solutions of (6). 
It appears numerically that the bistable limit cycles are born out of a single 

limit cycle which loses stability as two stable ones arise. The single original limit 
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Figure 5. Two coexisting solutions of (6). The parameter values in both cases are 
8 = l, A= 5.81, T = l. a) The initial function is cp(t) = 0.4 sin(0.3t) + 0.5. b) The 
initial function is now cp(t) = 0.4 sin(l.3t) + 0.5. 

cycle is a descendant of the Hopf cycle around the unstable positive fixed point. 
Figure 6 shows the structure of the basins of attraction of the two cycles displayed 
in Figure 5. 

This sensitive dependence on the initial conditions is common in nonlinear 
dynamical systems, but it has not been described for delay systems in the past. 
We now show that a different kind of bistability is observed in a similar sys~em 
which has also been used as a model in biomathematics. 

5.2. The Mackey-Glass equation 

The following equation was first introduced as an attempt to model the oscillations 
of neutrophils observed in some cases of chronic myelogenous leukemia [8]: 

dx = -hx + {3x.,. . 
dt l + x~ 

(7) 
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a 

w= 10 
Frequency of cp(t) 
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W = 0.421672 

Frequency of cp( t) 

Figure 6. This figure displays which values of w ( the frequency of cp) give rise to 
the solution of Figure 5b, keeping all other parameters at the values specified in 
Figure 5b. The vertical bars are placed at the values of w giving rise to the solution 
of Figure 5b. The part (a) the ODDE (6) was solved with 5000 different values 
of w uniformly distributed between O and 10. In part (b) (6) was solved with 500 
different values of w distributed uniformly between 0.421552 and 0.421672. No other 
solution types were observed for these parameter values. The convergence time tc to 
the asymptotic limit cycle ranges from tc ~ 10 delays to tc ~ 6000 delays, depending 
on w in a complex manner. 

Equation (7) possesses steady, periodic, and aperiodic solutions in different regions 
of parameters space (ibid.). 

If n is even, (7) is invariant under the transformat ion x(t) --+ -x(t). This 
bistability is illustrated in Figure 7. It appears numerically that the bistable limit 
cycles arise from the two Hopf cycles around the nonzero fixed points. No stable 
limit cycle around the origin was found. 

The bistability in the Mackey-Glass equation may be a simple example of 
a more general situation: an equation possessing invariance under a coordinate 
transformation will display bistability between one limit cycle and its transformed 
version. 
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Figure 7. Two bistable solutions of the Mackey-Glass equation. The parameters 
in both panels are 8 = 1, {3 = 3, n = 8, T = 1.25. The initial function in both is 
cp(t) = l.5sin(wt) + 0.6. In a) w = 0.3. In b) w = 0.7. Transients were discarded. 
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Figure 8. This figure displays a subset of the basin of attraction for the solution 
of (7) . Every black dot represents a locus in A - w space giving rise to the limit 
cycle shown in Figure 7a. The initial functions were cp = Asin(wt) + 1. The white 
areas do not dip below 1 since a strictly positive (negative) <p gives rise to a strictly 
positive (negative) solution. 

The apparent simplicity of Figure 8 could make the Mackey-Glass equation an 
interesting candidate for an analytic investigation of the structure of its basins 
of attraction. Such a discussion falls outside the scope of this paper, and we now 
examine the cubic ODDE which displays a bistability due to its invariance un­
der x(t) --+ -x(t) and bistability between strictly positive (negative) limit cycles 
reminiscent of the behavior displayed by the logistic ODDE. 
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Figure 9. Several multistable solutions of equation (8) . In all five panels, the pa­
rameters are 8 = 1, ,\ = 3.5, r = 1. The quantity which is being varied in the figure 
is the offset B of the initial function. In a <p = 0.01 sin(3.6t) + 1.3. In b <p = 0.01 
sin(3.6t). Inc <p = 0.01 sin(3.6t) + 1.1. Ind <p = 0.01 sin(3.6t) + 1.2. In e <p = 0.01 
sin(3.6t) + 0.3. 
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5.3. The cubic ODDE 

The cubic ODDE is equation (5) with a cubic odd nonlinearity: 

dx _ ( 2) + dt - -ox + AX-r 1 - x-r , o, A E JR • (8) 

We study the multistability in (8) with sinusoidal initial functions, and illus­
trate numerically that it displays a bistability due to its invariance under the trans­
formation x(t) ---+ -x(t), and bistability reminiscent of the situation discussed in 
Section 5.1: Thus, two positive cycles arise from a single positive limit cycle which 
loses its stability at a bifurcation point. 

Preliminary numerical results indicate that the structure of subsets of the basins 
of attraction will be as complicated in this equation as they were in the logistic 
ODDE. Numerical simulations of ODDE's is computationally costly. It is therefore 
desirable to introduce a nonlinear first order ODDE which is known to display the 
wealth of dynamics characteristic of nonlinear first order ODDE's while remaining 
tractable analytically. 

6. Conclusion 

The first order delayed partial differential equation (2) shows sensitivity to small 
perturbations to the initial function, cp, around the Hopf bifurcation. For cp(x) = 
x + 0.1, just past the Hopf bifurcation, the solution is periodic spatially homoge­
neous. For cp( x) = x, just past the Hopf bifurcation, the solution consists in either 
traveling waves or chaotic waves depending on (A, 8, r). This DPDE also shows 
sensitivity to the initial condition around higher order bifurcations. 

Asymptotic solution behavior in first order ODDE's can depend in a sensitive 
way on the initial function. In some cases, the basins of attraction of multistable 
limit cycles appear to possess intricate structure at all scales. One possible mech­
anism giving rise to bistability in ODDE's, is invariance of the ODDE under a 
coordinate transformation. A simple example of this mechanism is observed in 
the Mackey-Glass equation. In the logistic ODDE and the cubic ODDE the ori­
gin of multistable cycles can be described as follows: A single stable limit cycle 
loses its stability at a bifurcation point, and two new stable limit cycles appear. 
These bifurcations giving rise to multistability are observed far from the Hopf 
bifurcation(s) at the fixed point(s). 

References 

(1] Gibbs, H.M., Hopf, F.A., Kaplan, D.L. and Shoemaker, R.L., Observation of chaos 
in optical bistability, Phys. Rev. Lett. 46 (1981), 474 

(2] an der Heiden, U., In: Delay equations: Approximation and application (ed. by G. 
Meinardus and G. Nunburger), Intern. Ser. Num. Math 74 (1985), Birkhauser, Basel 



3136 R. Crabb, J. Losson and M.C. Mackey 

[3] Hopf, F.A., Meystre, P., Drummond, P.D. and Walls, D.F., Anomalous switching in 
dispersive optical bistability, Optics. Comms. 31 (1982), 245 

[4] Ikeda, K., Multiple-valued stationary state and instability of the transmitted light 
by a ring cavity system, Opt. Commun. 30 (1979), 257 

[5] Ikeda, K. and Akimoto, 0., Successive bifurcations and dynamical multistability in 
a bistable optical system: A detail study of the transition to chaos, Appl. Phys. 28b 
(1979), 170 

[6] Ivanov, A.F. and Sharkovskii, A.N., Oscillations in singularly perturbed delay equa­
tions, Dynamics Reported (ed. by H.O. Walter and U. Kirchgraber) 3(1991), 165, 
Springer-Verlag 

[7] Mackey, M.C., Commodity price fluctuations: Price dependent delays and nonlin­
earities as explanatory factors, J. Econ. Theory 48 (1989), 497 

[8] Mackey, M.C. and Glass, L., Oscillation and chaos in physiological control systems, 
Science 197 (1977), 287 

[9] Rey, A.D. and Mackey, M.C., Multistability and bounded layer development in a 
transport equation with delayed arguments, Can. App. Math. Quar. 1 (1993), 1 

[10] Rey, A.D. and Mackey, M.C., Bifurcations and traveling waves in a delayed partial 
differential equation, CHAOS 2 (1992), 231 


