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This paper describes the statistical properties of coupled map lattices subjected to the influence of sto-
chastic perturbations. The stochastic analog of the Perron-Frobenius operator is derived for various
types of noise. When the local dynamics satisfy rather mild conditions, this equation is shown to possess
either stable, steady state solutions (i.e., a stable invariant density) or density limit cycles. Convergence
of the phase space densities to these limit cycle solutions explains the nonstationary behavior of statisti-
cal quantifiers at equilibrium. Numerical experiments performed on various lattices of tent, logistic, and
shift maps with diffusivelike interelement couplings are examined in light of these theoretical results.
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I. INTRODUCTION

For the past decade or so, the dynamics of coupled
map lattices (CML’s) have been the focus of intense in-
vestigation (cf. [1] for a sample review). They are a natu-
ral extension of low-dimensional dynamical systems and
provide spatially extended models that are particularly
well suited for analytic and numerical investigations.
They were originally introduced as alternatives to more
complicated partial differential equations in an attempt to
understand the generic properties of coupled chaotic
units.

CML’s have also been used to model various properties
of reaction-diffusion systems [2], population dynamics
[3], and genetic networks [4,5] and parallel image pro-
cessing algorithms [6—8] to mention but a few applica-
tions. In all these models, however, the dynamics are
deterministic. Though there are numerical investigations
of the influence of stochastic perturbations on CML dy-
namics (see, for example, [9]), analytic insight into the
statistical behavior of stochastic CML’s is lacking.

The present paper is based on the study of the transfer
operator for stochastically perturbed CML’s and extends

previous analytic descriptions of the Perron-Frobenius
operator associated with deterministic lattices [10-12].
To draw an analogy with more familiar physical systems,
the transfer operators discussed here describe the ensem-
ble properties of stochastic CML’s much as the Liouville
equation describes the ensemble dynamics of ordinary
differential equations (ODE’s), the Fokker-Planck equa-
tion those of the Langevin equation, or the Perron-
Frobenius operator those of deterministic maps. See
Table 1. i

The approach presented here rests on the observation
that the transfer operator induced by noisy CML'’s is a
Markov operator defined by a stochastic kernel. We can
therefore apply results available concerning such opera-
tors to the statistical description of noisy CML dynamics.

The types of models investigated here are introduced in
Sec. II. Their behavior is discussed numerically in Sec.
III. Section IV is a description of the thermodynamics of
CML’s and highlights the need to focus on the properties
of the transfer operator to understand the behavior dis-
cussed in Sec. ITI. The main analytic results are presented
in Sec. V. Implications for the proper construction of the
thermodynamics of stochastically perturbed high-
dimensiornal dynamical systems are discussed in Sec. V1.

TABLE 1. Brief summary of the probabilistic descriptions associated with various types of discrete

and continuous-time models.

Description of the model

_ Description of ensemble dynamics

Deterministic maps

Stochastic maps

Deterministic ODE’s

Stochastic ODE’s (white noise)
Stochastic ODE’s (nonwhite noise)
Differential delay equations

Perron-Frobenius operator
Transfer operator

Generalized Liouville equation
Fokker-Planck equation
Kramers-Moyal equation

7Ho‘pf equation for the characteristic functional

le
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II. STOCHASTIC CML’S

A coupled map lattice is a mapping ®:RV—R¥ govern-
ing the evolution of a vector x, representing the state of
the lattice at time ¢

% =®(x,), t=0,1,.... )

We consider cases where the phase space X of @ is a re-
striction of RY to the N-dimensional hypercube:
X=[0,1]X -+ X[0,1]. In two spatial dimensions, the
evolution of each site of a deterministic coupled map lat-
tice with linear interelement coupling is given by

x,‘ff’l =p*(x,)=(1—¢)S (x*)

+< 3 s, e€0,1), @
p nearest
neighbors
where S:[0,1]—[0,1] describes the local dynamics.
When p =4, the coupling in (2) mimics a discrete version
of the diffusion operator and when the p neighborhood
encompasses the entire lattice, the coupling is known as
mean field.

As mentioned in the Introduction, it is of interest to
understand and clarify the influence of noisy perturba-
tions on the evolution of these CML’s. The perturbations
considered here are random vectors of N numbers (for an
N element CML), whose components are independent of
one another, each being distributed according to a one-
dimensional probability density g. The density g of the
vector random variable £=(£, ..., ™) will therefore
be constructed as the product of these identical com-
ponents T

N : =
g&)=T[e&™, i=12,...,N. (3)

i=1

There are various ways in which a stochastic perturba-
tion can influence the evolution of a coupled map lattice:
the perturbation can be additive or multiplicative and it
can be applied constantly or randomly. The influence of
the noise on the dynamics depends on which of these is
considered. T e

A. Additive and multiplicative perturbations

These are perturbations applied at each iteration step.
When the stochastic perturbation is constantly applied, it
can be either added to or multiplied by the original trans-
formation ®. In the former case, the evolution of a lat-
tice site is given by a relation of the form

X =0 M(x, )+ 0= 0ltl(x, @

and £ is then referred to as additive noise. In the latter,
we have

x (M) =M(x,) X gM = K(x,) (5)

and £ is then referred to as multiplicative or parametric
noise. In general, the effects of additive and multiplica-
tive noise on CML’s can be different since they model
different perturbing mechanisms. The noise density (3) of
the perturbations present in (4) and (5) is always defined
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so that the phase space of the perturbed transformations
remains the N-dimensional hypercube X defined above.
In other words, ®,44: X—X and P ,: X—X. Before
analytically discussing the dynamics of stochastic CML’s,
we numerically illustrate typical behaviors using several
transformations that have been introduced in the litera-
ture.

III. NUMERICAL INVESTIGATION
OF STOCHASTIC CML’S

Many deterministic CML’s of the form (2) with chaotic
local transformations S display “phases” that correspond
to qualitatively different statistical behaviors. In some
cases the lattices are statistically stable, while in others
the lattices display statistical periodicity. This periodici-
ty is the high-dimensional analog of the so-called noisy
periodicity present in certain one-dimensional maps and
discussed in [13,14] for the logistic and tent maps and in
[15] for certain stochastically perturbed piecewise linear
Keener maps. It has been described numerically [16] and
analytically [17,12] in deterministic lattices and similar
behavior has also been reported in cellular automata
[18-20], where it is referred to as quasiperiodicity. A
short discussion of the phenomenology is given in [21].
We now demonstrate its presence in stochastic CML’s
and verify that it provides a mechanism for collective
behavior in these spatially extended models. Note that
for all the systems described in the remainder of this sec-
tion, periodic boundary conditions were implemented. In
addition, the updating rule for the models presented here
is, as usual, parallel (though the rigorous results present-
ed in Sec. V are independent of this assumption).

The statistical descriptors used here to characterize the
evolution of the various CML’s are the temporal and spa-
tial correlation functions, the Boltzmann-Gibbs entropy
and the density of activity on the lattices. The rationale
for choosing these rather than, say, the mutual informa-
tion or the Lyapunov spectrum is that they provide
sufficient information to unambiguously determine
whether a given CML is in a statistically stable or statisti-

- cally periodic phase. Before proceeding we therefore

briefly review the definitions of these descriptors (for
more detailed discussions, see [17]).

The density f, of activity across a lattice of N elements
at time ¢ is implicitly determined by

(x,) =%zx,"‘”};(x§"“) , (6)
k,l

where ( ) denotes the expectation of the quantity inside
the angular brackets. Numerically, f. is approximated
by the histogram of activity on a lattice at time ¢. It is in-
vestigated here because it reflects the behavior of the ac-
tual phase space (or ensemble) density f, defined in Sec.
IV, which is computationally costly. To briefly summa-
rize the link between the numerically computed f; and
f:» we note without proof (cf. [17] for details) that if £ is
eventually time invariant for almost all initial prepara-
tions, this invariance indicates that the CML generates
an invariant measure, whereas if f, does not reach time
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invariant f, then the corresponding ensemble density f,
does not reach equilibrium.

The other statistical quantifiers of the motion discussed
here are the Boltzmann-Gibbs entropy of the density 7,

H(ﬂ):-folft(x)lnf,(x)dx )

and the linear autocorrelation function of a trajectory
{»;}£-1, which may be either the temporal evolution of a
single site or the activity along one spatial direction

N G 12¢

p)I=—, == ;=N — ). (8)
Co Q j=1

Given these preliminary definitions, it is now possible to

describe the evolution of various stochastic systems

whose deterministic counterparts have been investigated
[12,18].

A. Tent map and logistic map lattices

These CML’s are of the form (2), with p =4 in dimen-
sionality 2, and the local map § is either the generalized
tent map

S(x)= min {ax,a(1—x)}, a€(1,2] )
x€[0,1]
or the logistic map
S(x)=ax(1-x), ac(1,4]. (10)

The tent map is discussed here because much information
is available about the statistical behavior of the single

map [14,22]. The transformation (9) is chaotic and it can
be either statistically stable or statistically periodic.
More precisely [14],

21/2"+1 <q <2177

==statistical cycling of period 2",
n=0,1,2,.... (11)

This ‘“band-splitting” behavior survives diffusive cou-
pling, modulo a dependence of the location of the band
splitting on the strength of the diffusive coupling [23].

The logistic map (10) has been the subject of intense
scrutiny and, despite its apparent simplicity, is known to
display a wide range of dynamical behaviors [13,24,25].
It possesses stable periodic orbits that bifurcate via the
period-doubling scenario as the parameter a increases
from 3 to the critical value @, ~3.5699. For a, <a <4 the
chaotic trajectories correspond either to statistically
stable regimes (described by invariant measures) or to
banded chaotic windows (described by metastable mea-
sures). At a =4 and for a set of a values of positive mea-
sure, it is statistically stable.

1. The tent map lattice

The behavior of the CML (2), with S given by the tent
map (9), perturbed as in (4) remains qualitatively similar
to that of the unperturbed system. As the local slope a is
decreased from 2 to 1, for a given € and a given noise am-
plitude, the period of the banded chaotic behavior dou-

500 = 500 - 250 - Fo : -
Se(x) fi(=) fi(z)
250 250 - - 125 —
0 A A o ) o W\\ .
0.485 0.588 0.481 0.591 0.455 0.618
T T @
-1 - <1 0
H(f) H775 =
-2 v:‘."- -..'. o % a0 0 o -2 B
_ - -1 P
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Time Time Time

FIG. 1. Noise-induced band merging in a lattice of 200 X200 tent maps coupled diffusively, with @ =1.175 and £=0.1. The evolu-
tion of the system is described by (4) with & given by (2) and S by (9). Top row: left, the function f;(x) defined in (6), which is a histo-
gram of the values of all the sites on a lattice at time # =103 in the absence of noise; center, same histogram when the lattice is per-
turbed by additive noise uniformly supported on {0,0.003]; right, additive noise supported on [0,0.03] [the three noise densities are
given by (17), where b =0 and c increases from left to right]. The subintervals of [0,1] displayed in these figures are chosen so that the
support of f,(x) occupies the entire panel. Each histogram was produced with 200 bins on [a —a’/2—c,a/2+c] (which is the subin-
terval of [0,1] on which the activity of a single tent map with additive noise on [0,c] is supported). Bottom row: from left to right,
the panels display the temporal behavior of the Boltzmann-Gibbs entropy (7) associated with the histograms displayed in the top row.

As expected, the lattices are statistically stabilized as the noise amplitude increases.
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bles successively from period 1 to period 2 to period 4
and so on. As the period increases, the separation be-
tween different bands in the deterministic system dimin-
ishes without bound away from 0. As expected, in the
stochastic system, the doubling stops when the amplitude
of the noise becomes larger than this band separation.
Figure 1 illustrates this noise-induced band merging,

when two bands merge into a single one, under the action
of additive perturbations. Numerical investigations of
this and other CML’s indicate that in certain regions of
parameter space, the systems are more sensitive to the ac-
tion of parametric noise than to that of additive noise.
This is striking, for example, in the case of the lattices of
tent maps when the parameters are such that the deter-
ministic lattice is in the period-two regime. In this case
the transition between period 2 and period 1 (stability)
behavior is induced for additive perturbations that have
an amplitude of about & or multiplicative perturbations
that have an amplitude of about  (i.e., in this case the
variable £ is uniformly supported on [0.995,1.005]). High
sensitivity to multiplicative noise is also observed in lat-
tices of logistic maps and lattices of piecewise linear maps
introduced in Sec. III B. Preliminary investigations of a
CML introduced in [12], where S is smooth (sigmoidal)
and the interelement coupling is nonlinear, show that this
system is also more “sensitive” to multiplicative than to
additive noise. We should point out, however, that this
apparent greater susceptibility to parametric noise is not
observed everywhere in the parameter space.

A surprising effect of the perturbation of a system by
noise is the resulting “statistical hysteresis” shown in Fig.
2, which displays a bifurcation diagram for the
Boitzmann-Gibbs entropy of the collapsed density of
various lattices subjected to noise. As explained in Sec.
IV, the abrupt changes in the behavior of H as the con-
trol parameters are varied are signatures of phase transi-
tions in the corresponding lattice. When H asymptotical-
ly reaches a periodic cycle, reflected by the cycling of en-
semble densities, the statistical quantifiers of the motion
are also time periodic. This cycling is similar to the
“periodicity on average” described in various cellular au-
tomata [21]. Similar behavior has also been reported in
deterministic CML’s by Chaté and Manneville (Sec. 3.2.2
of [18]). Note that the bifurcation diagram of Fig. 2 de-
pends, in certain regions of parameter space, on whether
the parameter is being increased or decreased. This indi-
cates that the ensemble properties of the CML depend on
the initial ensemble density. We will return in Sec. V to
an explanation of this phenomenon, which is expected in
large classes of stochastic CML’s (including the systems
whose behavior is displayed in Fig. 2) on the basis of the
spectral properties of the transfer operator.

Pattern formation in the tent map lattice is illustrated
in Fig. 3. As expected, as the noise amplitude is in-
creased, patterns gradually disappear. Numerical obser-
vations indicate that pattern formation coincides with
statistical cycling in this system (this is clearly illustrated
by the top panels of Figs. 1 and 3). To understand this
connection, note that when the lattice cycles statistically,
the density of activity is supported on disjoint supports
(as in Fig. 1, for example). The diffusivelike effect of the
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coupling in Eq. (2) ensures that nearby sites tend to be-
long to the same “band” (or support of the distribution)
and if this coupling is not strong enough to force all sites
into the same band, the state of the lattice at time ¢ con-
sists of clusters of sites that belong to the different bands
[strictly speaking, the discretization of the diffusion
operator yields a coupling of the form (2), where the p

neighborhood includes only the nearest neighbors, but

when more neighbors are taken into account, the cou-
pling still mimics the effect of diffusion in a system with a
large diffusion coefficient]. If there is only one support of
the collapsed density f, (cf. the rightmost panel of Figs. 1
and 3), no discernible patterns occur since the entire at-
tracting interval is occupied with nonzero probability, ir-
respective of the coupling strength.

As expected [26], the transients leading to the various
states of equilibria can be extremely long. The length of
those transients is determined by the specificities of the

H(f)

2

Logistic CML Logistic CML
-4 1 1
2.8 3 3.5 38
a
0 T
H(f)
2k
3
Logistic CML Tent CML
-4 . . 45 :
28 3 35 38 1 1.35 17
a a
FIG. 2. “Adiabatic” bifurcation diagrams for the

Boltzmann-Gibbs entropy of the distribution of activity in lat-
tices of diffusively coupled tent and logistic maps. For each
value of a, the CML’s were iterated 10’ times, with an initial
condition given by the last one of the 10? iterations correspond-
ing to the previous a value (the increment is Aa =0.002 and the
arrows indicate the direction in which the parameter is
changed). Top row: hysteresis in a lattice of logistic maps, with
£=0.1, and additive noise supported uniformly on [0,0.05] (for
a =2.8, the initial condition was spatially isotropic and uniform
on [0.5,1]). The bifurcation diagram for H depends on whether
a is increased (left panel) or decreased (right panel), a feature
that is shown in Sec. V to reflect the asymptotic periodicity of
the transfer operator (cf. also Definition 1). Bottom left: same
parameters as above, with multiplicative noise supported uni-
formly on [0.95,1]. Bottom right: diagram for a diffusively cou-
pled tent map lattice with £€=0.45 (as in Fig. 3) and additive
noise supported on [0,0.01]. The hysteresis observed in the top
row is also observed in tent map lattices and when the noise is
multiplicative.
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FIG. 3. Three snapshots displaying the state of a 200X 200 lattice of diffusively coupled tent maps at time ¢ =103, with ¢ =1.175
and £=0.45. The evolution of the system is described by Eq. (4) with @ given by (2) (with p =4) and S given by (9). The noise density
is given by (17) and the interval on which it is supported (called [b,c] in (17)) is changed from panel to panel. From left to right the
support of the additive noise is widened as in Fig. 1 (¢ =0,0.003,0.03). For each panel the initial preparation of the lattice was
featureless: the initial value for every site was a random variable distributed uniformly on [0.5,1]. The value of each x‘l’;’; is

represented by a gray pixel. Our coding scheme contains 256 gray levels that cover the interval within which the x *’s are contained:
black corresponds to x ‘¥ =0.484—c [note that 0.484=a(1—a /2)], while white corresponds to x K =0.5875+¢ (0.5875=a /2).

10

local map, the interelement coupling, and the size of the
lattice.

2. The logistic map lattice

The effects of the noise on the dynamics of the logistic
map lattice depend to a large extent on whether the un-
perturbed CML is periodic in time and/or space or
chaotic. A comprehensive overview of the dynamics of
-system (2) with S given by (10) is presented in [18]. When
a<a,==3.5699..., the CML can possess stable spa-
tiotemporal orbits (i.e., such as the “coherent structures”
discussed in [27,28]). In this scenario, each lattice site
then eventually settles onto a periodic cycle and the lat-
tices reach frozen spatial structures consisting of domains
that contain different phases in the cycle. When noise is
present, the system can become either statistically period-
ic or statistically stable, depending on the strength of the
perturbation. In the case of additive noise, when the per-
turbation is small compared to the amplitude of the
periodic cycle, the solutions are statistically periodic and
are reminiscent of the banded chaotic trajectories. If the
amplitude of the perturbation is increased, possibly prex-
isting spatiotemporal structures are gradually lost and
eventually the CML’s are seen to be spatiotemporally
chaotic in the sense that correlations in time and space
decay exponentially. )

When a >a,, and the unperturbed CML is chaotic,
the influence of additive noise is exactly as for the cou-
pled tent map lattices discussed above and the resulting
system is again either statistically periodic or statistically
stable. It is of interest to note that the evolution of the
statistical quantifiers of the motion in the deterministic
case has been conjectured to be quasiperiodic or chaotic
(see, for example, the discussion surrounding Figs. 19 and
20 of [18]). We do not observe such statistical evolutions
when the transients are long enough. The linearity of the
Perron-Frobenius operator for the deterministic lattices
[17] implies that statistics in these CML’s asymptotically
reach either stable steady states or periodic cycles. The
results of Sec. V (and more specifically the linearity of the

transfer operators for stochastic CML’s) imply the same
conclusion in the presence of noise.

The influence of parametric noise on the evolution of
the logistic map lattices is qualitatively the same as the
influence of additive perturbations, but, as with tent map
lattices, in some regions of parameter space it is observed
that the amplitude of parametric noise needed to statisti-
cally stabilize the lattices is much smaller than the addi-
tive noise amplitude required to produce the same effect.
We now discuss the influence of noise on a CML that
possesses chaotic regimes that cannot be described by
probability densities in the absence of noise.

B. Keener map lattices

Here the local transformation is a piecewise linear map
with constant slope on [0,1], which was considered by
Keener [29]:

S(x)=(ax +b)modl, a,b€(0,1), xE[0,1]. (12)

There exists a range of values for the parameters a and b
such that the trajectories are chaotic in the sense that
they are attracted to a subset of [0,1] of zero Lebesgue
measure (a Cantor set) [29]. Numerically, this is reflected
by the fact that if the histogram along a trajectory is con-
structed, the number of histogram peaks will increase as
the bin size decreases.

For this type of system the Perron-Frobenius operator
does not possess a fixed point in the space of probability
densities. In fact, it asymptotically transforms almost all
initial probability densities into generalized functions. A
rigorous treatment of such operators is possible and
studying the nonequilibrium statistical properties of the
corresponding CML’s involves the reformulation of the
problem in terms of the evolution of measures. However,
this picture is simplified by the presence of noise in the
map (12) because under the influence of noise, the map in-
duces a transfer operator acting on well defined densities
[30]. Furthermore, the ensemble densities asymptotically

reach a limit cycle in density space (as in Fig. 1) that
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FIG. 4. Left: Gray scale representation of the state of a 200X 200 lattice of diffusively coupled Keener maps without noise, at time
t =10° with @ =0.5, » =0.571, and £==0.45. The 256-level gray scale is such that if x‘l’gﬂ’ =0 it is represented by a black pixel, while if

x‘l’g;) =1 it is represented by a white pixel. Center panel: 200-bin histogram of the state of the lattice displayed on the left panel. The
fractal nature of the support of this distribution is suggested by the right panel, which was obtained from a larger lattice (10° sites)

and larger number of bins on [0,1] (10°%).

reflects the underlying asymptotic periodicity of the
transfer operator (a property rigorously discussed in Sec.
Iv).

Figure 4 shows that the fractal nature of the attractor
of the single map survives linear coupling. The effects of
adding noise in the system are shown in Fig. 5§ and it is
clear that the activity of the lattice is no longer supported
on a Cantor set (in RY). In addition, the temporal evolu-
tion of densities is reminiscent of the statistical cycling
described above for the tent and logistic map lattices.
Figure 5 provides a clear illustration of period-3 statisti-
cal cycling (also described as quasiperiodicity). It has
been proposed (Sec. 3.2.2 of [18]) that deterministic
CML'’s do not display such behavior. Figure 5 demon-
strates that this observation does not hold for noisy
CML’s. In addition, the fact that we have not found

period-3 cycling in the absence of noise in the tent and
quadratic map lattices is probably due to the absence of
statistical period 3 in the local transformations (9) and
(10) for the parameters used here in the simulations. It is
likely that when the local map does possess period-3 sta-
tistical cycling, the CML will display the same behavior
(at least for small enough values of the coupling). An ex-
ample of noisy period 3 in the logistic map is given by
Lorenz [13]. Lukin and Shestopalov illustrate the same
behavior in a map relevant to the modeling of resonant
electromagnetic cavities with nonlinearly reflecting boun-
daries [31].

Note also that the stochastic perturbation of system (2)
with (12) yields a (mathematically) simpler system than in
the absence of noise. As mentioned above, the Perron-
Frobenius operator associated with the deterministic map

*¥ ]
cE gt .
y’* PR G . ,’: "‘;ﬂ

FIG. 5. Noise-induced statist-
ical cycling in a lattice of
- . 200X200 “Keener maps,” with

L w5 ¥ a=05 b=0.571, £=0.1, and
® 7 c:.ome. . additive noise uniformly sup-

t =103 +2 ported on [0,0.05]. The top

ft(z)4 L » : 4 4 1 .

panels display three successive
iterations and the bottom panels
display the corresponding histo-
grams (produced with 200 bins).
The gray scale for the top row is
the same as in Fig. 4.
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acts on (singular) measures, whereas the transfer operator
associated with the stochastic map acts on densities. The
results describing the dynamical properties of operators
acting on densities are more numerous than those associ-
ated with measure evolving operators and, consequently,
analytic investigations of the stochastic CML’s are more
straightforward than those of their deterministic counter-
parts (for a discussion of the evolution of measures under
the action of linear operators, refer to Chap. 12 of [32)).
Before proceeding, we briefly summarize our numerical
experiments. Deterministic CML’s undergo the follow-
ing, changes when subjected to stochastic perturbations.
(i) Not surprisingly, the addition (multiplication) of
noise to (by) a system generating a deterministic periodic

cycle yields a statistically periodic system if the noise am- -

plitude is small and a statistically stable one if the noise is
large enough to “wash out” the underlying periodicity.
Similarly, the addition (multiplication) of noise to (by) a
system generating a chaotic trajectory associated with a
probability density yields a system that is either statisti-
cally periodic or statistically stable at equilibrium. Again,
temporal periodicities in this case survive only small per-
turbations and disappear when the noise is sufficiently
strong.

(ii) Perhaps less intuitive is the observation that sto-
chastic perturbations (no matter how minute) of CML’s
can result in fundamental qualitative changes in both the
topology of the attracting sets and the statistical evolu-
tion of the model. Section III B illustrates this by using a
CML of Keener maps that possesses a Cantor set as an
attractor in the absence of noise and cycles statistically
(with period 3) in the presence of noise.

(iii) CML’s that display quasiperiodicity when they are
subjected to stochastic perturbations are also likely to
display statistical hysteresis displayed in Fig. 2. In this
case, the asymptotic value of the statistical quantifiers of
the motion are seen to depend on the initial preparation
of the system (this property is explained analytically in
Sec. V).

In general, dynamical systems need not possess stable
thermodynamic equilibrium states and it is therefore in-
teresting to note that perturbations of CML’s by noise
yields systems that seem to often eventually reach equilib-
rium conditions, even if the notion of equilibrium must be
extended to include statistical periodic cycles.

In Sec. V we examine these numerical observations
analytically using the theory of Markov operators defined
by stochastic kernels. As illustrated in the next section,
these operators arise naturally in the thermodynamic
description of stochastic CML’s.

1IV. THERMODYNAMICS OF CML’S

To clarify the notion of a thermodynamic state for
CML’s (stochastic or deterministic), suppose that the dy-
namics of a physical system are modeled by a (determinis-
tic or stochastic) coupled map lattice denoted by
T: XX (many examples of such systems can be found
in [33]). Suppose further that some observable O(x,),
which depends on the state x, of 7, is being measured at

time ¢ (the observable O is arbitrary, though it must be a
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bounded measurable function). The expectation value of
this observable, denoted E(@®,), is the mean value of
O(x,) when the measurement is repeated a large (ideally
infinite) number of times. Mathematically it is given by

E0)= [ f(y)0y)dy, (13)

where f,(x) is the density of the variable x,, i.e., the
probability p(x;) of finding x, between x; and x; +3x; is

x, +5x;
pxp=[ filydy .

X,

All thermodynamic functions that characterize the en-
semble properties of a system are observables whose ex-
pectation values are defined by (13) since O was arbitrary.
Therefore, the thermodynamic state of the CML T at
time ¢ is completely characterized by the density function
f:+ Hence a complete description of the thermodynamics
of T must focus on the behavior and properties of f;. To
this end, we introduce the transfer operator associated
with 7, denoted P4, which governs the time evolution of
f, (again, when T is a deterministic nonsingular discrete
time map, P is known as the Perron-Frobenius opera-
tor):

ft+1(X)=?7-ft(X) , 1=0,1,.... (14)

Of particular interest is the behavior of the sequence of
densities {f,}, which is intimately linked to the equilibri-
um and nonequilibrium properties of the CML. For ex-
ample, 7 is ergodic if and only if the sequence is weak
Cesaro convergent to the invariant density f, (x),
t—1 ‘
lim =3 [ fu(xlgxdx= [ f,(x)q(x)dx
=0

t—»ootk

for all g€L *(X),

and all initial probability densities fo(x). A stronger (but
familiar) property—mixing—is equivalent to the weak
convergence of the sequence to f,:

lim [ f(x)q(m)dx= [ f,(x)g(x)dx

for all g €L *(X)

and all initial probability densities fy(x). An even
stronger type of chaotic behavior, known as exactness (or
asymptotic stability) is reflected by the strong convergence
of the sequence {f,} to the invariant density f,:

Tim [Prf, —f 4l

for all initial probability densities f,(x). Exactness im-
plies mixing and is interesting from a physical point of
view because it is the only one of the properties discussed
so far that guarantees the evolution of the thermodynam-
ic entropy of 7 to a global maximum, irrespective of the
initial condition f [34].

The hierarchy of chaotic behaviors

exactness = mixing = ergodicity

is discussed here because it is shown in Sec. V that a large
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class of stochastic CML’s is_either exact or possesses
another dynamical property, known as asymptotic period-
icity, of which exactness is a special case.

Asymptotic periodicity is a property of certain Markov
operators that ensures that the density sequence {f,}
converges strongly to a periodic cycle [recall that 7 is a
Markov operator if it is linear and if for all probability
densities f it satisfies (i) Pf=0 for f 20 and (ii)
WPl e=IAN )

Definition 1: Asymptotic periodicity. A Markov opera-
tor @ is asymptotically periodic if there exist finitely
many distinct probability density functions vy,...,v,
with disjoint supports, a unique permutation y of the set
{1,...,}, and positive linear continuous functionals

ry,...,T’,, on L(X) such that, for almost all initial den-

sities f, )
r
t— o0 =1 L‘
and
?Ui=vy(i) ) 7i=1,...,r .

Clearly, if P satisfies these conditions with » =1, it is ex-
act (or asymptotically stable). If r >1 and the permuta-
tion y is cyclical, asymptotic periodicity also implies er-
godicity [34]. A rigorous discussion of asymptotically
periodic Markov operators is given in [35]. A more intui-
tive presentation is given in [32]. W

The dependence of the functionals I'; on the initial
density f, implies a dependence on the initial conditions
much stronger than that usually discussed in relation to
chaotic dynamical systems. Here the ensemble properties
depend on the initial ensemble. Though there appears to
be no rigorous characterization of this sensitivity, exten-
sive numerical experiments suggest that apparently
“similar” initial densities can give rise to very different
cycles [the difference being always confined to the
coefficients I'; weighing the various v;’s in the linear com-
bination (15)].

V. ANALYTIC RESULTS

Section III numerically illustrated the influence of
noise on the evolution of several CML’s. The numerics
demonstrated the ubiquity of statistical cycling and that
of the statistical hysteresis displayed in Fig. 2. In this
section, these results are examined in light of a theoreti-
cal framework based on the properties of the transfer
operator (denote by P+ above). Using basic results from
the theory of functions of bounded variation, the Perron-
Frobenius operator associated with certain deterministic
chaotic CML’s was shown in [12] to be asymptotically
periodic. The approach presented here to determine the
spectral characteristics of the Perron-Frobenius operator
associated with stochastic CML’s is somewhat more “in-
direct” since it relies on proving a property, known as
constrictiveness (defined in the Appendix A) which, by a
theorem due to Komornik [35], implies asymptotic
periodicity and the decomposition (15).

First, we derive the evolution equation for the density
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f, introduced in Sec. IV, for CML’s perturbed by various
types of noise. This evolution equation implicitly defines
the transfer operator. Second, it is shown that P¢ is a
Markov operator defined by a stochastic kernel and we
use this fact to investigate the convergence properties of
the sequence {f,}. The relation between these properties
and the numerical results of Sec. III is then discussed.
Before proceeding, we remind the reader that a func-

“tion K XX Xi—R is a stochastic kernel if it satisfies

K(xy)20, [ K(xydx=1.

(The integral is understood as a Lebesgue integral with
respect to the Lebesgue measure, but in general the mea-
sure of integration can be different. Consult {32] for de-
tails.) To simplify the algebra the model (2) is replaced
by a one-dimensional version so that the double super-
scripts of (2) and (4) are replaced by a single space index
denoted i,

X0, =80s, )7

—(1—8)S(x“) 2 S (j))_l_é—gi)’

p nearest
neighbors

e€(0,1) .

The boundary conditions need not be specified explicitly.
The only requirement they must meet is that the evolu-
tion of the elements on the boundaries be well defined
(the frequently encountered periodic and no-flux bound-
ary conditions obviously satisfy this requirement.)

A. Additive noise

In this case, the lattice transformation is (4). Consider
an initial density f,: X+—R that describes an ensemble of
initial lattices. If the noise perturbation is distributed ac-
cording to density g [cf. (3)] the evolution equation for
this density is [30]

fen0)= [ fiy)gx—B)My, n=0,1,..., (16)

which also defines the transfer operator ?q’add for CML’s
perturbed as in (4) since Py f,(x)=Ff;(x). Without
loss of generality, in the remainder of this section we will

assume that the density associated with the stochastic
perturbation is piecewise constant and given by

N
g&=TIxp "), 0Sb<c=1, 1”n

i=1
where the indicator function Y is defined by

X5,e(x)=(c —b)"! if xE€[b,c] and ¥4 (x)=0 other-
wise.

1. Statement of the result

If the CML ®,,, is written in the form (4), where the
density of the perturbation £ is given by (17), and the lo-
cal map S of (2) is bounded and nonsingular, then ?’q,add
defined by (16) is symptotically periodic. This is a conse-
quence of the following theorem.
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Theorem 1. (Lasota and Mackey [32]). Let
K: XXX—R be a stochastic kernel and P a Markov
operator defined by

Pfx)= [ K(xy)f(y)dy . (18)

Assume that there is a non-negative A <1 such that for
every bounded BCX there is a §=8(B) >0 for which

fAK(x,y)dxsx for p(A)<8, yEB, ACB.  (19)

Assume further that there exists a Lyapunov function
V: Xi—R such that

J Y @Pf(x)dxza [ Vix)f(xdx+B,

a€[0,1), B>0 (20)

for every density f. Then P is asymptotically periodic
and therefore admits the representation (15). [Recall that
a non-negative function ¥:X—R is known as a
Lyapunov function if it satisfies limy,_, , V' (x)= 0.]

To show that the operator ‘Pq,add defined in (16) satisfies

the conditions of Theorem 1, note that (16) can be written
in the form (18) with
|

fg(x ®(y))V(x)dx= f bec(x(‘)—Q(‘)(y))V(X)dx

Xi=1
(c—b)"¥ H f

c__,b NN
= [ec _2 H[CXPIQ(i)(y)l]

i=1
_|et—=e?
c—b

N
By definition, S is bounded, so [ ,[exp|S(y'")|] is
finite. As a result, it is always possible to choose a €(0,1)
and a finite but arbitrarily large B such that

N

N s N -
IIlexplS(GN)1<aI][exply®|1+B
=1 i=1

c+ ol (y)
b+aly )

i=1

c

e
¢c—b

Thus we have
fxg(x—Q(y))V(x)deaV(yHﬁ ,
ae(0,1), >0, (24

which implies (20). Hence all conditions of Theorem 1
are met and ‘Pq,add is asymptotically periodic.

This is a general result. The two main assumptions that
are necessary for its derivation are that S be nonsingular
and bounded. In light of this result, the numerics of Sec.
III on the dynamics of the tent, quadratic, and Keener
map lattices are seen to reflect the cyclical spectral
decomposition (15) of the transfer operator associated
with these CML’s. In particular, the statistical hysteresis
of Fig. 2 is a consequence of the dependence in (15) of the

functionals T'; on the initial density f,.

N
[T lexplS(»I7.
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K(x,y)=g(x—®(y)) . 1)
Clearly g >0 and since it is a normalized probablity den-

sity, f (K (x,y)dx=1, so (21) defines a stochastic kernel.
In addition, it is straightforward to show that 7 “ is a

Markov operator. To verify that (19) holds when K is
given by (21), remember that since g is integrable, for
every A >0, there is a 8 >0 such that

ng(x)dx<k for u(A)<8 .
Hence

J Kxydz= [ g(x—(y)dx= fA_My)g<x)dx<x

for u(A(y))=p(A)<8. Thus (19) holds for all bounded
sets B. -

We now check that when S is bounded, (20) holds. To
do this we pick

N
V(x)=TJ explx| . (22)

i=1

Using (17) and (22), one obtains

(i))dx(i)

(23)

[

The presence of asymptotic periodicity in systems of
the form (4) also has important consequences for the ther-
modynamics of CML’s and for the proper interpretation
of the behavior of their statistical quantifiers. Before dis-
cussing these consequences in detail, we consider the
behavior of CML’s perturbed by multiplicative noise.

B. Multiplicative noise

Here the transformation ®,, is given by (5). In this
section it is proved that the effects of multiplicative noise
on CML dynamics are usually similar to the effects of ad-
ditive noise discussed above. However, the formalism
describing these two situations is different since the
mechanisms by which additive and multiplicative pertur-
bations operate are themselves different. Our discussion
is inspired by the treatment of the effects of parametric
noise on one dimensional maps given by Horbacz [36].

To derive the expression for the operator that governs
the evolution of ensemble densities, we introduce an arbi-
trary bounded measurable function 4 : X+—R, which can

be written
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N
h(x)= Hh(i)(x(i)) .
i=1

The expectation value of H(x,,) is given by
Eh(x,40)= [ h(x)f;iy(x)dx . (25)
However, from (5), we have

E(h(x, 1) =E(h(®yy(x,))

_.f ff,(Y)Hh(')(qu)m(Y))

i=1
Xg(z'P)dzdy . (26)

Equation (26) can be simplified by recalling the following
identity. Let ®: X+—X be a nonsingular dynamical sys-
tem that induces the Perron-Frobenius operator .
Then for all L! functions u: X—R and an L * function
v: Xi—>R, we have

fx’Pq,u(x)v(x)dx=fxu(x)v(Q(x))dx . 27

The operator # 4 such that

Fov(x)=v(P(x)), for all x€EX and all vEL

is called the Koopman operator induced by ®. Equation
(27) expresses the fact that P, and #4, are adjoint and is
written

(Pou,v)={u,Hqev) ,

where {, ) denotes the scalar product between two func-
tions.

where

frnm)=Po fi)= [ [ (,,7’¢f,<y)H

N
=fxl(1v) T fxlmft(y I_;I

(p(t)(y)

Applying this identity to Eq. (26) yields
. X (0,0
E(h(x,+1))=fxfx?¢f,<y>£11h (zPy @)

Xg(z"dzdy , (28)

where Py, denotes the Perron-Frobenius operator induced
by the deterministic CML ®. Now let

(— ds(i)
P
Using this change of variables, (28) becomes

E(h(x¢+1))
1
(l) y(i)
(29)

= [ J PoriII
i=1
=X} X -++ XXy is a product space with each
interval in the product defined to be I; =[0,y?]. Chang-
ing the order of integration in (29) yields

E(h(xt+1))

=IJ, ‘Pd,f,(y)n

i=1

2y D=3 D e gy

B (x g dxdy

hP(xV)g —— |dydx,

y(z)

(30)

where Y’ is a product space of intervals ¥; =[x‘?,1]. By
assumption h is arbitrary. Therefore, comparing (30)
with (25) and (28), we obtain

1 :
— |dy (31)
y(i)

dy, (32)

_ 1
q)(l')(y)

which is the expression for the Perron-Frobenius operator induced by the stochastic CML (5). We are now in a position

to discuss the asymptotic properties of the iterates of g, u
m

1. Statement of result

A CML of the form (5), perturbed by the noise term £, distributed with density (3) will induce a transfer operator

Pg_  defined by (32).

If the deterministic part of the transformation (denoted &) is bounded and nonsingular, then

‘Pq,m is asymptotically periodic. This result follows from the application of the following theorem, proved in the Ap-

pendix.

Theorem 2. Let K : X XX+ R be a stochastic kernel and P the Markov operator defined by

?f(X) f f (“K(X,Y)f(y dy ’

(33)

and assume that inequalities (19) and (20) are satisfied. Then ? is asymptotlcally periodic.

In the remainder of this section, it is shown phat ?’q,

, defined in (32), is of the form (33), that the corresponding ker-

nel satisfies (19), and that inequality (20) holds if ® is bounded

To see that Py, .
m!

is a Markov operator, note first that from (32)
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N
fx?Q;xlurf(x)dx= fxfxl(m Tt fxl(l)?Qf(Y)LIl g
(N
=1y

(N)
I

38 N
7 Pof I (e |2
i=1
() N

i=1

x (D
y(i)

y(l)

dydx

1

dxdy
y(i)

y(i)

dx ]dy

N
=fx7)¢f(y) [fol ce foln[g(z(i))]dz ]dy
i=1

= [ Pofty)dy
= [ fydy=1

since Py, is itself a Markov operator. Clearly 7)“’.“1 is

linear and this completes the demonstration that it is
Markovian. Furthermore, from (32), ?q,mm can be written

as in (33) with the kernel given by

N

K(x,y)=1I (g

i=1

(1) 1

(I)(i)(y)

X
<I>”)(y)

Since g is a normalized probability density on X,
K(x,y)=0and fo(x,y)dx=1 and therefore K is a sto-
chastic kernel.

To verify that inequality (19) holds when K (x,y) is
given by (35), fix an arbitrary A < 1. Choose BCX, bound-
ed, and ACB. The function g is integrable and so there
must be §, >0 such that

ng(x)deA. for w(A)<8, , ACB. (36)

Define

N N
Sy o, foax=[ M=f - [ ST e

. N

=fxfx1(1v) Tt f;m?aaf(y ’I;I

45
=

= ol
—fxpmf(y)il;lly()fo

35

(1) N
. .foy 2of I |2 |
i=1

(34)

f

Since XCRY is finite, the set A is a direct product of the
form A=TJ[M.,4;, where each 4;CR is also finite.
Denote by A—®(y) the direct product .4, /9" y).
If u(A) <8, u(A/P(y)) <8, and therefore

[ K(x,y)dx= p|-x2 |1
A xylax q)(i)(y) (I)(i)(y)
= d
fA_Q(y)g(x) x

<A

-

by (36). This verifies inequality (19).
If @ is bounded, it is possible to choose a,;€(0,1)
andf3; > O such that

N » N s
0< [I2x) <a,IIx"“"+8,
i=1 i=1

for x’€[0,1]and all i . (37)

We now show that when ® satisfies (37) the inequality

(200 is wvalid. Choose a Lyapunov function
V(xx)=TIN x ‘. From (32),

(6]

J(C) (.} dydx

P(y) | Y(y) ~
x® x(x’)

— |dydx
(x) y(t)

x @

=5y |dxdy

N
foln[g(z(i))z(i)]dzdy
i—1

N N .
=fxf(y)]'[@‘)(y)fxn[g(z“’)z“’]dzdy , (38) -
i=1 i=1 .

LN
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where the change of variables z?=x /" was used be-
tween the third and fourth equalities. Since X is the N-
dimensional unit hypercube,

(z)=fxf[[g(z“))zm]dz<1 .

i=1

Therefore, from (37)

N
(2) [ FOTI@Vy) <(z)a [ £V (ydy+(z)B,

i=1

and, as a consequence, there is a a=a,{z) €[0,1) and a
B=pB,{z) >0 such that

<
SV @wPy fixdxzaf Vixfixdx+p,

thus proving that (20) is satisfied. To summarize, all the
conditions of Theorem 2 are met by the transfer operator
associated with the stochastic coupled map lattice (5) and
it is therefore asymptotically periodic when the deter-
ministic part of this CML satisfies condition (37).

So far, we have considered the statistical behavior of
CML’s perturbed by noise at each and every time step.
As mentioned in Sec. IT A, these perturbations are known
as “constantly applied perturbations.” There is another
class of perturbations, known as “randomly applied,”
which were considered in [32]. These results are briefly
reviewed in the next subsection.

C. Randomly applied perturbations

These perturbations are “strong” in the sense that
when they are applied at a time t,, the value x;*'} | be-

comes independent of its preimages. Mathematically, a
CML @ with randomly applied perturbations is written

xK = 0M(x,)=v{Md(x,)+ (1)K | (39)
(kD) -

where v\* is a random variable that takes the two values
0 or 1 with the probabilities

prob(vi¥'=1)=(1—q), prob(vi*'=0)=g¢ ,

where ¢ €(0,1] is a control parameter, which is itself dis-
tributed with density g. Randomly applied perturbations
are in a category that is apart from the (more familiar)
constant perturbations of Sec. IIA. However, their
influence on CML dynamics can be investigated using
analytical tools related to those presented in the previous
sections. In fact, there are strong results concerning the
behavior of the iterates of the transfer operator for these
systems[32].

Systems of the form (2) with randomly applied pertur-
bations are always asymptotically stable. To see this, note
that the transfer operator for (39) is [32]

Py f=(1—q)Pof+ag . @

Clearly, ?q,m f>qg, which implies that gg is a nontrivial
lower bound function for ?q,mf (since g >0) and this in

turn implies [32] that there exists a unique density f,
such that Pq,m f«=Ff and
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lim ||Pg_ f—f«ll,1=0 for every density f . (41)
n—o ma

This property (exactness, sometimes referred to as
asymptotic stability) implies mixing (which in turn im-
plies ergodicity) of the CML. Hence we have the rather
general result that the slightest perturbation of any non-
singular CML by a stochastic term as in (39) yields a sys-
tem that is always exact, irrespective of the statistical
properties of the original lattice transformation.

It is possible to go one step further in our discussion of
randomly perturbed CML’s and give an exact expression
for the invariant density f, of the operator ?q,m. Recall

that if 7 is a Markov operator, it satisfies
1271 <A1l forall fEL' 42)

(this property is known as the contractiveness of Markov
operators, not to be confused with constrictiveness defined
in the Appendix). Applying (2) to the Perron-Frobenius
operator P, associated with the deterministic transfor-
mation gives H(l—q)"?’é,gnLlS(l—q)k{ IgHL,. Hence
the series 3 o(1 —¢)*Pkg is absolutely convergent. Sub-
stituting this series into the expression (40) yields

Py_q 3 (1—qVPhg=(1—q)P |¢ 3 (1—q)Phg | +gg
k=0 k=0
=q| 3 (1—¢)"Pig —g | +ag
o k=0
=¢ 3 (1—q)Phg . 43)
k=0

In other words, if f,=3F-o(1—¢)*Pkg, we have
?’¢,mf « =S« and f, describes the state of thermo-

dynamic equilibrium of the CML (39).

V1. DISCUSSION

The presence of asymptotic periodicity in CML’s has
important consequences for our understanding of their
thermodynamic behavior. It is well known [37] that if a
transformation 7 is ergodic, the average of an observable
O along a trajectory {x,}5 of T is equal to its average
with respect to the probability density of occupation of
the phase space (the so-called ensemble density).
Mathematically, if f, denotes the invariant ensemble
density, we have

. lt_l

lim Tkzo@(x, )= fx@(x)f,(x)dx . (44)
If, as in all the numerical examples of Sec. III, T is
asymptotically periodic with ¥ of (15), a cyclical permu-
tation of the set {1,...,7}, then T is also ergodic and
(44) holds. However, almost all initial densities converge
in a strong sense (cf. Definition 1) to a cycle in density
space. Hence, from relation (15), if a sequence of average
{E(@,)} is computed with respect to a sequence of densi-
ty iterates {f,}, where f,=P4(f,), then {E(O®,)} will,
for almost all f, be time periodic (for ¢ large enough).
This oscillatory behavior is the origin of the statistical cy-

Eed



cling described numerically in Sec. III. On the other
hand, if statistics are computed with respect to a single
trajectory the time dependence is lost because in this case
the statistical quantifiers are time averaged. Thus, for
practical applications, when considering ergodic systems
that are also asymptotically periodic (which, by the re-
sults of Sec. III, are not uncommon), computing phase
space averages will not, in general, yield the same answer
as computing time averages. There is no inconsistency
here since ergodic systems are not guaranteed to con-
verge (in a strong sense; cf. Sec. IV) to their invariant
measure when they are prepared out of equilibrium. The
presence of asymptotic periodicity renders this apparent-
ly technical observation relevant because systems possess-
ing this property are likely not to converge to their in-
variant measure.

As discussed in Sec. IV, the notion of equilibrium is
usually associated in statistical mechanics with that of an
invariant measure f,, which describes the ensemble
properties of a given physical system. The results present-
ed here indicate that this paradigm can sometimes be too
restrictive and needs to be extended for the proper
description of the thermodynamics of nonlinear stochas-
tic spatially extended systems modeled by coupled map
lattices. More precisely, the results of Sec. VA 1 and
V B 1 suggest that the notion of a “thermodynamic equil-
brium state” for stochastic CML’s should be extended to
finite sets of states that are visited sequentially in time.
The considerations of Sec. IV show that this statistical
cycling at equilibrium reflects the underlying asymptotic
periodicity of the transfer operator and provide an ex-
planation for the presence of phase transitions in stochas-
tic lattices. The period r of the statistical cycle (15) de-
pends on the parameters of the transformation and when
this period changes, the lattice undergoes a phase transi-
tion.

Another interesting consequence of asymptotic period-
icity comes from the dependence of the I';’s of Definition
1 on the initial density f, since it implies a dependence
on the initial conditions that is stronger than that usually
discussed in reference to chaotic dynamics. Thus the en-
semble properties of an asymptotically periodic CML de-
pend on the initial ensemble. This explains the ‘“statisti-
cal hysteresis” demonstrated in the bifurcation diagrams
of Fig. 2. Similar properties of the transfer operator
probably underlie the similar behavior reported earlier in
deterministic lattices of logistic maps (cf. Sec. 3.2.2 of
[18]).

The numerical investigations of Sec. III indicate that
the presence of asymptotic periodicity also facilitates the
formation of large-scale transient patterns in certain re-
gions of parameter space. To understand the connection
between asymptotic periodicity and pattern formation,
note that asymptotically periodic systems occupy only
small regions of their phase spaces determined by the
support of the various v;’s of Eq. (15). The support of
each v; is a product of N intervals: v;=M ;X -+ XMy,
where there are r distinct M, C[0,1] if i also runs from 1
to r (think of the situation for a lattice of tent maps when
r =2 and each site belongs to one of two subintervals of

[0,11). Denote the r distinct attractive subsets of [0,1] by
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the symbols I, ...,I,. Hence
N r N, r
o= [IM=II | IIY |, ZN;=N.
k=1 i=1lk=1 j=1

The exact form of the I;’s depends on S and the coupling
architecture. If the interelement coupling in the lattice
tends to correlate the activity of neighboring sites (as is
the case for diffusivelike couplings), the evolution of the
lattice will be accompanied by the formation of clusters
of sites whose values will tend to belong to the same I;.
If the diffusive effects are too strong, all sites will eventu-
ally belong to the same I; at the same time and there will
be no pattern formation. On the other hand, if the
diffusive effects are too weak, neighboring sites will not
tend to belong to the same I; and the lack of correlation
between nearby elements will be reflected in the lack of
large scale patterns. Thus the appearance of large-scale
patterns would appear to be the result of a balance be-
tween: (i) a coupling induced tendency to synchronize
neighboring sites and (ii) a tendency (due to the asymp-
totic periodicity) of all site activities to belong to small
disjoint subsets of the phase space. If there is only one
attractive I; (ie., »=1), so the system is statistically
stable, patterns should not form spontaneously. This is
numerically observed to be the case in all the systems we
have investigated.

Finally, the presence of asymptotic periodicity in spa-
tially extended dynamical systems points to the possibili-
ty of this behavior in related continuous-time models. For
example, there is a strong connection (explored in detail
in [38]) between dynamics in certain differential delay
equations and coupled map lattices. Our results on sto-
chastic CML’s are presently being extended to the study
of these functional equations, which play a prominent
role in various fields in investigations, ranging from non-
linear optics to theoretical population biology.
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APPENDIX

In this appendix the proof of Theorem 2 is given. it
rests on a result, originally published by Komoronik,
which states that a Markov operator P is asymptotically
periodic if and only if it is constrictive. We therefore
show here that an operator P satisfying the conditions of
Theorem 2 is constrictive and then invoke the Komornik
result. The proof of the theorem is inspired by similar
proofs given in Chap. 5 of [32]. Before proceeding, we in-
troduce the notion of constrictiveness.

Definition 2: Constrictiveness. (Let (X,B,u) be a finite
measure space. A Markov operator P is said to be con-
strictive if there exists a §>0) and k<1 such that for

every density f, there is an integer n,(f) for which
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J Pfxudx) Sk for nZno(f), pE)SS. (A1)
This property ensures that the iterates P"f of any initial
density f are not eventually concentrated on a set of
small or zero measure. If the space X is not finite (as
would be the case for CML’s with a local transformation
defined on R rather than [0,1]), a slight generalization of
this definition is desired to rule out the possibility that

P"f be dispersed throughout the entire space. In this

case P is said to be constrictive if there is a measurable
set B of finite measure such that for every density f there
is an integer ngy(f) for which

fXOpenBUEPf(X)#(dX) <k

for nZny(f) , u(E)<6 .
If X is finite and B=X, (A2) reduces to (Al). B
Next, we recall the Chebyshev inequality. Let (X,B,1)

be a measure space, ¥: X+—»R a non-negative measurable
function, and for all densities f set

EWIf)= [ V(0 (xpdx) .

(A2)

If G,={x: V(x)<a}, then
fo(x)y(dx)zl———l—E(:‘ Lo

(the Chebyshev inequality )-‘.

The proofis given in [32]. For futu;é reference, we define

E,(VN=[ V0P, f(x)dx

JEROME LOSSON AND MICHAEL C. MACKEY 52

|-

Proof of Theorem 2. From (20),
E,(VIf)SaE,_((VI)+B .

By indpction,
n .
E,(VI)SBS o' '+a"Ey( Vlf)<T—f—a-+a"E0(Vlf) .
k=1

Recall that a€[0,1) and that Ey(V]f) is finite for all f,
so that there is a n0=n0( f) such that

E,(VIf)STE—+1 forall nZno(f) .

Hence, .usjn_ghGa deﬁned as in the Chebyshev inequality,
one finds .

fX\ (Sr'a?)$mulf(x)dx

fx\aauf% S(x)dx< fx\cf% fxdx+ ffq,m f(x)dx

<e+ fAPq)mu (x)dx

et [ fom

f K (% y)?’"“‘iﬂy dydx

set [ [, [R&yPiL 5y

<e+ [ P4 f(yMdy [ K(xy)dx
Set [y Poni/ 0y [ Kxyids+ [

(VT
1= o P3,f(m)dx< L)
<L [1+—§— for all n > n(f) . (A3)
a 1—a ]
Let e=1(1—A). If we choose a such that
T LB |, (Ad)
€ 1—a
we have
fx\c,,?%u f(x)dxZe for nZno(f).
Hence, using (33)
—l(y)dyf K{x,y)dx . (A5)

From (19), the integrals over A in (AS) are bounded above by A, the mtegral over X\ G, is bounded above by ¢, and the

integral over G, is bounded above by 1, so we have

fX\GaUA

?q,'mrf<x)dxsze+x=1—s for n Zny(f)+1,

which is the definition of constrictiveness when X is infinite. However, in our case, X is the N-dimensional hypercube,

so it is not infinite and the definition of constrictiveness is given by (A1l).

To obtain this inequality, note that a as

defined in (A4) is arbitrary and we can choose it to be large enough so that G, =X. If we do so, the previous inequality

becomes

S Pon

which is equivalent to (A1). Hence Py, u
[35]. m

x)dx=<2e+A=1—e for nZny(f)+1,

is constrictive. Since it is a Markov operator, it is also asymptotically periodic
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