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Abstract 

It is shown that non-markovian random jump processes in continuous time and with discrete 
state variables can be expressed in terms of a variational principle for the information entropy 
provided that the constraints describe the correlations among a set of dynamic variables at any 
moment in the past. The approach encompasses a broad class of stochastic processes ranging 
from independent processes through markovian and semi-markovian processes to random 
processes with complete connections. Two different levels of description are introduced: (a) 
a microscopic one defined in terms of a set of microscopic state variables; and (b) a mesoscopic 
one which gives the stochastic properties of the dynamic variables in terms of which the 
constraints are defined. A stochastic description of both levels is given in terms of two different 
characteristic functionals which completely characterize the fluctuations of micro- and me- 
sovariables. At the mesoscopic level a statistic-thermodynamic description is also possible in 
terms of a partition functional. The stochastic and thermodynamic descriptions of the me- 
soscopic level are equivalent and the comparison between these two approaches leads to 
a generalized fluctuation-dissipation relation. A comparison is performed between the max- 
imum entropy and the master equation approaches to non-markovian processes. A system of 
generalized age-dependent master equations is derived which provides a description of stocha- 
stic processes with long memory. The general approach is applied to the problem of surprisal 
analysis in molecular dynamics. It is shown that the usual markovian master-equation descrip- 
tion is compatible with the information entropy approach provided that the constraints give the 
evolution of the first two moments of the dynamic variables at any time in the past. 

1. Introduction 

There  is an e n o r m o u s  l i te ra ture  dea l ing  with the app l i ca t ion  of the pr inciple  of the 

m a x i m u m  in fo rmat ion  en t ropy  (MIP)  in s ta t is t ical  mechanics .  This  line of research 
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started in 1957 with the seminal papers of Jaynes [1] in which classical and quantum 
equilibrium statistical mechanics were recovered as a consequence of MIP. The first 
attempts of applying the MIP to non-equilibrium problems were based on the 
evaluation of the extremum of the informational entropy subject to the constraints 
that the average values of the relevant macroscopic variables are known at a given 
time. The result of this optimization procedure is the local equilibrium statistical 
ensemble of the Mori [2] type. In 1970 Zubarev and Kalashnikov [3] introduced 
new types of constraints by assuming that the average values of the dynamic 
variables are given not only at the current time t but also at any moment in the past. 
By maximizing the informational entropy with respect to these new constraints they 
recovered the non-local, non-equilibrium statistical ensemble of McLennan [4] and 
Zubarev [5]. Alternative formulations of the Zubarev-Kalashnikov approach were 
given by Schl6gl [6] and by Grandy [7]. Further developments of the theory deal 
with the statistical-mechanical implications of the extremal properties of the in- 
formation gain [7] (Kullback information [8]), the dual distribution and fluctu- 
ations of the Lagrange multipliers [9], the analysis of inversion problems [10], etc. 
Concerning the applications of the theory, the statistical-mechanical information 
approach has been applied to a broad class of problems [11] ranging from nuclear 
and solid state physics and physical chemistry to population geography and ecol- 
ogy. Some of these applications have little or nothing to do with statistical mechan- 
ics, even though the mathematical formalism is almost the same as in statistical 
mechanics. A very active field in which the MIP plays a major role is the surprisal 
analysis in molecular dynamics [12]. 

Our interest in MIP is mainly related to the problem of fractal random pro- 
cesses with long memory [13-14]. In this context two important problems arise 
which have been almost ignored in the literature: (a) given a set of constraints, 
what are the types of stochastic processes generated by the MIP?; and (b) which 
constraints should be used in order to generate a stochastic process with long 
memory?. 

To answer these questions we introduce a new set of constraints which are 
a generalization of the constraints of Zubarev and Kalashnikov [3]. The outline 
of the paper is as follows. In Section 2 we give a formulation of the problem by 
using the surprisal analysis in molecular dynamics as an example. In Section 3 
the new constraints are introduced and the corresponding extremal problem 
is solved. Sections 4 and 5 deal with the stochastic and the statistic-thermodyna- 
mic descriptions of the resulting random process. In Section 6 the comparison 
between the stochastic and the statistic-thermodynamic formulations of the 
theory leads to a general dissipation-fluctuation relation. In Section 7 we come 
back to the problem of surprisal analysis in molecular dynamics, and in Section 8 
an alternative approach to the stochastic processes with long memory is sug- 
gested, based on a system of age-dependent master equations. Finally in Section 
9 some open problems and possible applications of the new approach are out- 
lined. 



M.O. Vlad, M.C Mackey/Physica A 215 (1995) 339 360 341 

2. Formulation of the problem 

Let us consider a molecule [12] which can exist in a discrete number of states 
v = 1,2 . . . . .  M. Here M is usually assumed to be a possibly very large, but finite, 
number. Within the framework of the markovian approximation [12] the probability 
P(v, t) that at time t the molecule is in the state v obeys the master equation 

dP(v, t)/dt = ~ a~,, P(v', t), (1) 

where 

At,,,, = W~,,,,(1 - 6,~,,) - 6~, ~ Wt,~,,, (la) 
I~"  ¢ 1; 

and Wv,,, is the transition rate from the state v to the state v'. At least in principle the 
rates Ww,  W~,,, . .  can be computed by applying the laws of quantum mechanics. For 
large M, solving the master equation (1) is a very complicated task. The MIP offers an 
approximate way for evaluating the probabilities P(v, t) known as surprisal analysis 
[12]. Surprisal analysis is based on the assumption that P(v, t) can be described by an 
ensemble of the Mort type [2]. If E~ is the energy of the molecule in the state v, and 
(E ( t ) )  is the average energy of a molecule selected from an ensemble of the Mort type, 
then the probabilities P(1, t), P(2, t) . . . .  are estimated by optimizing the informational 
entropy 

S = - ~ P~(t) In P~(t), (2) 

subject to the constraints 

(E(t))  = ~ E~V~(t), I3) 

1 = ~ P,,(t). [4) 

The optimal values of P(1, t) . . . .  , P(M,  t) are 

Pt.(t) = Z l(2(t))exp( - 2(t)E~), (S) 

where Z(2(t)) is a time-dependent partition function given by 

Z(2(t)) = ~ exp( - 2(t)E,,), (6) 

and the Lagrange multiplier 2(t) is determined by the equation 

( E(t) ) = -- O lnZ(2(t))/~2(t).  (7) 

Eqs. (5) (7) give an exact solution of the master equation (1) only if the molecule can 
be described by a one-dimensional harmonic oscillator. Otherwise the surprisal 
analysis is only an approximation. It is surprising that this approximation is fairly 
good even if the molecule is not described by a harmonic oscillator [12]. 
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In the markovian approximation the master equation (1) determines not only the 
values of the state probabilities P(1, t), P(2,t), ... at a given time, but also the 
multitemporal joint probabilities 

Pm(Vm, tin; ... ; Vl, tl) = Pm(Vm,t,n), (8) 

with 

E "'" E Pm(vm,tm) = 1, (9) 
vl  /:m 

and 

/3 m = ( V l ,  . . .  , V m ) ,  

We have 

tm = (tl . . . . .  tm)- (10) 

Pm(Vm,tm) : ~ G(vm,tmlvm-l,tm-x) ... G(vbtxlvo, to)P(vo, to). (11) 
t:o 

Here P(vo, to) is the initial value of the state probability and G(v, t[ v', t') is the Green 
function of the master equation (1). That is, G(v, t[ v', t') is the solution of 

dG(v, t lv ' , t ' ) /dt = ~ Avv,,G(v",tlv',t'), with G(v,t'lv',t ') = 6vv,. (12) 
~,, 

The Mori approximation used before cannot be used for the evaluation of the joint 
probability. Rather, a set of constraints of the Zubarev-Kalashnikov type [3] should 
be used. For  an m-gate joint probability Pm(Vm,tm) we introduce the information 
entropy 

S - -  - ~ ' P m ( V m , t m )  l n P m ( V m , t m ) ,  (13) 
Vm 

and the constraints 

(E(tu)) = ~ E v .  Pm(Vm, tm), u = 1,2, ... ,m, (14) 
Vm 

and 

1 = ~Pm(Vm, tm). (15) 
Vm 

The optimal solution is 

Pm(Vm'tm) = FI P(vu,tu), (16) 
u = l  

where P(vu, tu), u = 1, . . . ,  m, are one-time probabilities, given by Eqs. (5)-(7) of the 
Mori ensemble. It follows that the Zubarev-Kalashnikov constraints lead to an 
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independent random process. This result is consistent with the master equation (t) in 

the case of ' s t rong  collision' systems for which the jump rates W~,, ,  W,,v,,, ... do not 

depend on the initial state: 

W~,~,, = W~, independent of v, (17) 

or for harmonic oscillator systems which are canonically invariant [15]. Other- 
wise the master equation description leads to a markovian dependence with an m- 

time joint probability density given by Eq. (11), which contradicts the result (16) 

obtained by applying the MIP.  In order to solve this contradiction we should improve 
the M I P  by using new types of constraints which introduce statistical correlations 
among the states of the system at different times. To do this, we should specify the 

average values of a set of dynamic variables fu(v~,tx; v2, t2; . . . )  which, unlike the 
energy, do not only depend on the state v of the molecule at a given time t, but also 

depend on the different states vl, v2, ... of the molecule at different times tl, t2 . . . . .  

By analogy with the method of Zubarev and Kalashnikov the average values of 

Ju(L~l, tl; U2, t2; . . .  ) are given not only for certain times t~, t 2 . . . . .  but also for any 
times in the past between the current time t and the initial moment  to; to ~< t,, ~< t, 

u = 1,2, . . . .  

3. Variational formulation of the theory 

We consider a continuous time system described by a set of discrete random 

variables 

N =  (N1, N 2 . . . .  ), (18) 

and introduce the multiple joint probability 

Pm+ l(N,~,tm; ... ; N l , t x ; N o ,  to), (19) 

with 

and 

• " ~ P m + l ( N , . , t m ;  ... ;N0, to )=  1, 
Nm No 

(20) 

t u = t o + u A t ,  A t = ( t - t o ) / m ,  u = 0 , 1  . . . . .  m. (2l) 

In the limit m --* ~ (At --* 0), Pro+ 1 becomes a probabili ty functional which describes 
the stochastic properties of a random trajectory N(t ') ,  to <~ t' <~ t: 

B[N(t ' ) ;  to ~< t' ~< t] = lim Pm+l(Nm, t . . . . . .  No , to ) .  (22) 
m ~  oc  

(At~O) 
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This random trajectory obeys the normalization condition 

~ B [ N ( t ' ) ;  to ~< t' ~< t] = 1, (23) 

where ~....~_~ stands for a path sum which is a discrete analogue of a path integral: 

EE . . . .  lim ~ ... E " " '  (24) 
m ~  N ( t o )  N(t.,) (Ate0)  

The information entropy corresponding to B[N(t'); to <<, t' <<, t], is given by 

S = - ~ B [N(t')] In B [N(t')]. (25) 

We introduce a set of functionsfum which depend on the state vectors N(tl), . . . ,  N(tm) 
at different times 

f u m ( N ( t l ) , t l ;  . . .  ;N( tm) , tm) ,  u = 1,2, . . . ,  (26) 

and the corresponding averages 

(Fum( tm) )  = ( F u m ( t l  . . . .  , tm) )  = ( f ~ m ( N ( t l ) ,  tl; ... ;N(t,,), t,,)) 

= ~ B[N(t'); to <~ t' ~ t]fum(N(q), t~ ; ... ;N(tm), tin). (27) 

NOW we formulate the following variational problem: what is the stochastic process 
for which the information entropy (25) subject to the constraints (23) and (27) is an 
extremum?. To solve this problem we construct from Eqs. (23), (25) and (27) a Lag- 
range functional and evaluate its functional derivatives with respect to the probability 
functional B[N(t')] and with respect to the Lagrange multipliers. All these functional 
derivatives must be equal to zero. After some standard algebraic manipulations we get 
the following expressions for the probability functional B[N(t'), to ~ t' ~ t]: 

B[N(t'), to ~< t' ~< t] = Z - l e x p ( , - -  ~ " '  2u,.(t') 
\ u.  

to to 

, . .  , '3 ×f.m(N(q), t]; .. ,N(t,.), t',,) dt'l ... dt , (28) 

where Z is a partition functional depending on the Lagrange multipliers 

2um(q . . . .  , tin) = 2urn(tin), ~,(t) = II 2urn(tin)11: 

t t 

Z [ ) ~ ( t ' , ] = ~ e x p ( - u ~  ~ ' "  ~2u,,(?m,fum(N(t'l,,t'l; ...;N(t'~),t'm)dt', . . . d t ;  ) .  
to to 

(29) 
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The Lagrange multipliers Zum(t,~) are the solutions of the equations: 

In Z[k(t ' )]  
( F,~(tm) ) - , (30) 

and ~ .../52,,,(t,,) denotes a functional derivative with respect to the function Z,,,(t,,) at 
the point t m =  (tl, . . . ,  tin). 

Eqs. (28) (30) for the probability functional B E N ( t ' ) ]  define a stochastic process 
with memory which is generally non-markovian. Its main properties are investigated 
in the following sections. 

4. Stochastic description 

There are two different levels of description for the stochastic process introduced in 
the preceding section: (a) A microscopic one which characterizes the fluctuations of 
the microscopic random vector N( t ' ) ,  to <~ t' <~ t; and (b) a mesoscopic one which deals 
with the stochastic behavior of the f u n c t i o n s f u m ( N ( t ~ ) ,  t~; ...  ;N(tm), tin) with respect to 
which the constraints used in Section 3 are defined. 

At a microscopic level, the stochastic properties of the vector N(t'), to ~< t' ~< t, are 
completely described by the characteristic functional 

t 

to 

t 

to 

(31) 

where K( t ' )  = (K1 (t'l), K2(t~) . . . . .  ) is a suitable vectorial-valued test function, and the 
probability functional B [ N ( t ' ) ]  is given by Eqs. (28)-(30). The central moments 
( N l , ( t O  Nl~(t2) ... ) and the cumulants ( ( N t l ( t l ) N t 2 ( t 2 )  ... )) of N, if they exist and are 
finite, are given by two functional expansions of the characteristic functional c~ [K(t,)]: 

and 

,~[x(t')]=l+ ~]y'...~ (!)-~ i i  q=1 l, t, 11! ... lq! 
to to 

x ( N z , ( t ' ~ ) . . .  N~q( t 'q) )K~,( t ' l ) . . .  K,q(t'q)dt'~ ...  dt'q. (32) 

l n ~ [ K ( t ' ) ]  - ~ "  " '"  ~ '  1~ - -  ! " "  
q = l  l~ l~ ! . . . I q  

fo to 

x ( (N , l ( t ' l )  . . .  Nt,(t'q))) K , , ( (1 )  . "  K,~(t'q) dt'l . . .  dt'q. (33) 
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From these two equations it follows that the central moments and the cumulants of 
N can be evaluated by computing the functional derivatives 

~qff[K(t ')] (34) 
(Ni l ( t1)  ... Ntq(tq)) = ( - i) q ~Kt,( t l )  ... ~Kt,(tq) ~=0 

and 

~q In f~ [K(t')] 
<<N,(t,) ... N,,(tq)>> = ( - i )  q 8K~,-~) [~. ~K-~Atq) g=o" (35) 

At a mesoscopic level we are not interested in the fluctuations of the microscopic 
variables N = ( N 1 , N 2  . . . .  ) but rather in the fluctuations of the functions 
fum(N1, t ~; ... ; Am, tin), u = 1, 2 . . . . .  Denoting a realization of these functions for given 
values of N1 . . . . .  N~ by F~,,(t~ . . . .  ,tin) = F~m(t,,) we can introduce the probability 
density functional: 

~[F(t ' ) ,  to ~< t'. ~< t] D[F( t ' ) ] ,  

with the normalization condition 

m 

f f  ~[F(t ' ) ,  to <~ t'. <~ t ] D [ F ( t ' ) ]  = 1, 

where 

(36) 

(37) 

F(r )  = II F.~(t'.,)II, (38) 

D[F(t ' )]  is a suitable measure over the space of functions F(t'), ~ ,  stands for functional 
integration and the double bars denote a matrix. A difficulty arises due to the fact that 
we do not have a suitable definition for the integration measure D[F(t ')] .  This 
difficulty may be overcome by introducing a characteristic functional similar to 

[K(c)]. 

t t 

G [ ~ ( t ' ) ; t o < ~ t . < < , t ] = ( e x p ( i ~ f  f a u , ( t , )  ' '  m ) )  ' "'" ' F~m(tm)dtl ... dt  
to to 

- -  t t 

=f f__ . . e xp ( i~ ,~ f . . . f a ,~ ( t ' ~ )F . , ( t ' , . ) d t ' l . . . d t ' ~ )  
t o  f o  

x ~ [F( t ' ) l  DEF(f) ] ,  

t where aum(t'l . . . . .  t~,) = aura(tin) are suitable test functions and 

(39) 

~(t') = Ila,,,(t~)II. (40) 
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Due to the structure of the stochastic process introduced in Section 3, the character- 
istic functional G[~(tm)] is independent of the integration measure D[F(t ')] .  To see 
this, note that the probability density functional ~ [F( t ' ) ]  D[F(t ' ) ]  is the average of 
a delta functional 

1 ~  ~" ! t t . . ! t ~ 6 [ F , m ( t m )  - -  f , m ( N ( t , ) ,  t , ,  . . .  ,N(tm), tin)I} D [F(t')] 
u , m  

over all possible values of the microscopic vectors N ( q )  . . . . .  N(tm). We have 

(41) 

;#[F(t ')] DI-F(Y)] = ~ BEN(t')] ~I {6[Fum(t'm) 
u , m  

-f~m(N(t'l),  t'~; ... ; N(tm), t~,)]} D [F(t ')], (42) 

where B[N(t ' )]  is given by Eqs. (28) (30). Inserting Eqs. (28) and (42) into the 
definition (39) of the characteristic functional G [~(t')], and making use of the expres- 
sion (29), of the partition functional Z[~,(t)], we come to 

G[~(t ')] = Z[X(t') - i ~ ( t ' ) ] / Z [ k ( ( ) ] .  (43) 

Thus the characteristic functional G [o(t ')] can be expressed in a closed form in terms 
of the partition functional Z [X(t')], and the corresponding relation is independent of 
the integration measure D IF(Y)]. 

By expressing G[~(t')] in the form of two functional expansions similar to Eqs. 
(32)-(33), we can derive expressions for the central moments and the cumulants of the 
mesoscopic variables F,m(tm), u = 1,2, . . . .  Namely, 

~ q G [ ~ ( t ' ) ]  ,( ,)=o' 
( F  . . . .  (tin,) "'" F .... (t~.)) = (-- i)" 8a . . . .  (tin1) ~.~Uqm.( tm.)  (44) 

and 

6 q In _G [_~(t')] 
((F . . . .  (trn,) "'" Fu,m~(tm,))) = ( - -  i) q ~o" . . . .  (tin,) . . .  ~(7 . . . .  (tmq) n{n=o" 145) 

5. Statistic-thermodynamic description 

In this section we outline some formal analogies between our approach and the 
statistic-thermodynamic formalism. First notice that the partition functional Z [MY)] 
can be expressed as a multiple functional Laplace transform of the density 
g[F(t ')] D [F(t')] of microscopic states compatible with a given set of values F,m(t'), 
u = 1, 2 . . . .  of the mesoscopic state variables 

e r t . e t ] 
yEF(t')] D EF(t')] = ~ I ]  {5[F.m(tm) --.ffum(S(tl ), t l  . . . .  ; S(tm) , t,,)]~ D EFIt')] 

u , m  

(46) 
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F r o m  Eqs. (29) and (46) we have 

(F .... (t~,) ... F,qm,(tm)) = ( -- 1)qZ-~[k(t ' ) ]  

and 

t 

Z[~(t)]= f f  e x p ( -  ~.,,i"" f2~,(t'r,)F~m(t'm)dt'~ .. .dt')y[F([)]D[F(f)].(47) 
to to 

By using Eqs. (43)-(46) we can express the moments  of F(t) in terms of the functional 
derivatives of the part i t ion functional Z[~.(t ')]  with respect to the Lagrange multi- 
pliers 2~,.(tm): 

8 q Z E ~ ( f ) ]  (48) 
84 . . . .  (t,,l) ... 84 . . . .  (tin,)' 

8 q In Z [~,(f)] 
--- (49) ((F . . . .  (tin1) F . . . .  (t.,,))) = ( -- 1) q 84 . . . .  (tin,) ... 84 . . . .  (t,,,)" 

In particular,  for q = 1 Eqs. (48)-(49) reduce to Eqs. (30) derived in Section 3. 
The extremal value of the en t ropy can be computed  by inserting Eq. (28) into 

Eq. (25), to give 

Sext, E(F:(f))] = l n Z E k ( f ) ]  + ~ "" 2,,~(t'm)(F,r,(t'r,))dtl ... dt'~. 
u,nl 

to to 

(50) 

We evaluate the variations of the extremal en t ropy Sextr. [ (F( t ' ) ) ] ,  and of the 
logari thm of the part i t ion functional ln Z[k(f)] due to the variations of the average 
values of the mesoscopic state variables and of the Lagrange multipliers, through 

i t ... ( S l n  Z [k ( t ' ) ]  
8 1 n Z [ k ( f ) ]  = ~ .j g ~  62v,,(t'm)dt'~ ... dtm 

u,m 
to to 

! t 

urn(tin)) 82um(tm)d dtm, - "'" ~1 
to 1o 

(51) 

and 

6Sext'E(F(t'))]= ~ f "" f ( 8 2urn (t'~) 
t o  to 

\ 
, , , ) .  ) ' + 82~m(tm) (Fvm(tm)) + 8(F~m(t'm)) 2~m(tm dtl  ... dt~, 

- ~  ' ' .. ' . . . .  2u,.(t;.) (Fvm(t,,)) dtx . dt,,, 
u ,m  

to to 

(52) 
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respectively. From Eq. (52) we notice that the functional derivative of the extremal 
entropy Sex,~[F(t~,)>] with respect to the average value (Fum(t '~)> is equal to the 
Lagrange multiplier 2um(tm): 

8 Se~t, [<F(t')>] 
2.u~(t~) = 153) 

8 (Fuz( t , . )> 

Eqs. (53) are similar to the relationships (30) for the average values <Fum(t~)>.  

6. Fluctuation-dissipation relations 

We introduce the compliance functions 

8 (F  . . . .  (tin1)> 
q . . . . . . . .  (tm,,t . .~) - 

8 ~  . . . .  (tin3 

and 

(54) 

5 2  . . . .  (tin,) 
Z . . . . . . . .  (tin,, tin2) -- 8 ( F  . . . .  (tin2)>' (55) 

From Eqs. (30) we have 

8 ( F  . . . .  (tin1)) 8 ( F  . . . .  (tin2)> 82 In Z [k(te)] 

52 . . . .  ( t m 2 ) -  5 2  . . . .  (tin,) - -  82 . . . .  (tml)82 . . . .  (tin2)" (56) 

By combining Eqs. (49), (54) and (56) we obtain 

. . . . . . . .  (tml,tm~) ~-- q . . . . . . . .  (tm~, tm,) = - -  (( F . . . .  (tm,) F . . . .  (tm2) )) . (57) 

Similarly, from Eqs. (53) we have 

5 2  . . . .  (tm~) 5 2  . . . .  (tm~) 82 Sext, E(F(t')>] 
(58) 

8 <F . . . .  (tin2)> 8 ( F  . . . .  (tin1)> 8 ( F  . . . .  (tin,)> 8 <F . . . .  (tin=)> " 

Thus the compliance functions Z . . . . . . . .  ( t m , , t ~ )  are also symmetric and 

82 Sextr [<F(t ' )>]  
Z . . . . . . . .  ( t z , ,  tin2) = g . . . . . . . .  (tm~, tin1) = (59) 

8<F . . . .  ttm,)>8<F ..... (t,~)>" 

Between the two types of compliance functions introduced before there is a reci- 
procity relationship which can be easily derived by applying the chain rule for the 
functional differentiation: 

t t 

~ J  J 8Au'm'(tm') 8 ( F  . . . .  (tm~)> , , ' ' 
to 1o 

8~u,m,(t'm, ) 

8 ( F  . . . .  ( tm~)) 
dt'~ ... dt~,, 

= 6 . . . .  fi . . . .  ~(tm~ -- tin3. (60) 
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Using the definitions of the compliance functions ~/ . . . . . . . .  (tml,tm2) and 
X . . . . . . . .  (tm,,t,,~), Eqs. (6) can be rewritten as 

"'"  ~1 . . . . .  ' m ' ( t m : t ' m ' ) ) ~ u ' m  ' . . . .  (t'~,,tm~)dt'l ... dt', = ~ .... ~ . . . .  ~(tm, -- t~). 
u ' , m '  

to to 

(61) 

Writing the compliance functions as matrices with both discrete (u, m) and continuous 
labels (tm), respectively 

q = II n . . . . . . . .  ( t m : t m ~ )  (62) 

and 

Z--IIz  . . . . . . . .  (tm:tm~)[I, (63) 

Eqs. (61) can be expressed symbolically as 

qz  = I, with I = I1~ . . . .  ~ . . . .  ~(tml -- tm2)ll. (64) 

That is, q is the inverse of Z and vice versa. 
By considering a differential variation At ~ 0 of the components of the vector tm of 

the time variables, 

tm = (t l ,  . . . ,  tin) --* (tl + At, . . . ,  t,n + At), (65) 

in the limit At ~ 0, Eqs. (54) lead to a set of evolution equations for the average values 
( F u m ( t m ) )  given by 

t t 

(u,~=l ~,)(Fum(tm)) = u~, ~ "" f ~lumu'm'(tm't'~') 
to to 

where the compliance functions tlumu,m,(tm, t',) play the role of transport coefficients. It 
follows from this result that the relationships (57) between the compliance functions 
~ . . . . . . . .  and the second order cumulants of F(f) can be viewed as a set of fluctuation- 
dissipation relations which establish a relationship between the relaxation behavior 
given by the transport coefficients and the magnitude of fluctuations. 

Similarly, by considering the infinitesimal transformation (65), Eqs. (55) lead to a set 
of reciprocal evolution equations for the Lagrange multipliers 2us(tin): 

t t 

( ~ ~,, ,)2um(t,)= ~ f"'fZumu'm'(tm, tm') 
u "  = 1 u ' , m '  

to to 

x (  ~u,,=l ~ ) ( F u ' m ' ( t " ) ) d t ' ~  ... dtm,. (67) 
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Using the reciprocity relationships (61) and (64), we see that Eqs. (66) and (67) are 
equivalent to each other. By using Eqs. (64) and (57) we can rewrite Eqs. (59) in the 
symbolic form 

2 t 

z = q ' = - I I ( (F . . . .  ( t m , ) F  . . . .  (t,,~))) II-1 = $ZSextr[(F(/~.))] 
][ 62 . . . .  ( t i n , ) 8 2  . . . .  (tin=) " (68) 

Here the inversion of the matrices is considered both with respect to the continuous 
(tin) and discrete ( u , m )  labels. Eqs. (68) are the fluctuation-dissipation relations 
for the reciprocal evolution equations (67). Eqs. (57) and (68) are equivalent to each 
other. 

To complete the discussion of the fluctuation-dissipation relation we investigate the 
relationship between the probabilty of fluctuations and the entropy. We start out by 
considering the case of gaussian fluctuations, in which we assume that only the first 
two of the cumulants (45) or (49) are different from zero. This case presents the 
advantage that the integration measure D [F(t')] can be explicitly evaluated. Expand- 
ing the characteristic functional G[a(t ' )]  in a cumulant functional series, and keeping 
the terms up to second order, we obtain 

t t 

( z f  f ' ' '  G[~(t ')] = exp i -.. a , , ( t , , ) ( F . m ( t m ) ) d t l  . . .  dt '~ 
u , m  

to to 

1 ' t' 
2 ~ ~ "'" a . . . .  ( t , , . , ) o  . . . .  (2m2) 

l / l m l  u 2 m 2  * 
Io /o 

' F ' dt' dr' A-, , ) × ( ( F  . . . .  ( t lm~) . . . .  (t2m2))) 11 . "  1m~'121 . . .  d tzm2 . (69) 

To evaluate the integration measure D[F(t ' )] ,  we return to the discrete-time 
representation used in Eqs. (20)-(22). For  each time vector tm we attach a vector 

b = (bl . . . . .  bin) according to the following rule: 

t~  = t~b --* ( to  + b l A t  . . . . .  to + b m A t ) ,  (70) 

with 

A t  = ( t  - t o ) /m ,  b l  . . . . .  b , ,  = O, . . .  , m .  (71) 

We introduce a matrix representation of the state variables by attaching to each set 

(tmb, U, m )  -*  (b,  u, m )  ~ l ,  I = 1, . . . ,  L ,  (72) 

a label I. We use script letters for the state variables indexed by the label l: 

Fum(lm~) ~ o~,, ~ = ( j , ) .  (73) 
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The discrete analogue of the probability density functional ~l-F(t')] D[F(t')] is the 
(m + 1)-gate joint probability density 

~ m + l ( ~ ) d ~ ,  with _ f ~ m + l ( ~ ) d ~  = 1. (74) 

We have 

~ [ F ( f ) ]  D[F( f ) ]  = lim g~ , ,+ l ( ,~ )d~ .  (75) 
m--* ao 

(ArgO) 

The characteristic function of the probability density ~,n + i ( ~ )  d ~ ,  

Gm+l(k )  : fexp(i~ k~t)~'m+ l(~)d~, with k = (kt), (76) 

can be obtained from the characteristic functional G [~(t')] for a special choice of the 
test functions a'um(tm); 

au,n(t'm) = ~,  kt 6(tmb --  t'm) = ~ kumb 6(tm~ --  t'm). (77) 
t 

From Eqs. (69) and (76) we obtain 

Gin+ l(k) = exp i ~  (o~l) kz - ~ ((~'tl o~l~)) kll kt2 • (78) 
l d z  

The (m + 1)-gate joint probability density ~,n +X(~)do~ can be easily evaluated by 
means of an inverse Fourier transformation to give: 

~m+ 1(~ "~) = (mn) -L/2 (det ((o~ ~ t ) ) ) -  1/2 

x exp [ - ½(~t  _ ( ~ , ) )  ~¢/(o~ - ( ~ ) ) ] ,  (79) 

where ~ ' i s  a symmetric matrix which is the inverse of the covariance matrix 

d Z ( ( ~  ~ t ) )  = ( ( ~  ~ , ) )  ~ ,  = I. (80) 

Eq. (80) for ~ i s  similar to the reciprocity equations (61). By using Eqs. (57), Eqs. (61) 
can be written as 

- -  ~ ,  . . .  ( ( F  . . . .  (t 'm,)Fu'm'(t 'rn')))Zu'm' . . . .  ( t m , ' t m ~ ) d t l  . . .  dt'm, 
u' ,m'  

to to 

= (~ . . . .  6 . . . .  (~(t,n, - -  t , J .  ( 8 1 )  

In the limit m --, oo in the scalar transcription of Eq. (80), the sums over bl . . . . .  bm 
become integrals over t'l . . . . .  t" and the structures of Eqs. (80) and (81) become 
identical; a comparison leads to 

Z . . . . . . . .  (tm,,tm~) = - lim (~t')~ m . (82) 
m ~ o o  

( A r g O )  
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Similarly, by comparing Eqs. (75) and (79) and using Eqs. (82) we obtain the following 
expression for ~ IF(Y)] and for the integration measure D IF(Y)]: 

. ~ [ F ( t ' ) ] D [ F ( t ' ) ] = e x p ( ~  ~. ~ i ' " f  
ulml uzm2 

to to 

F ' F ' ' ' x [ . . . .  (tim,) - ( . . . .  (t1,,1))] X . . . . . . . .  (tl,,,,t2,,~) 
\ 

' F ' dt' - ' ~) x [ F  . . . .  ( t 2 ~ )  - ( . . . .  (t2,,=)>] dt'~ ... lm, Clt2, . . .  dt'2m 

x D [F(t' )], (83) 

and 

D[F(t ' )]  = lim (2rQ -L/2 [det(((~o~*)))]-  ~/2 d,~-. (84) 
m ~  

(At~O) 

Thus, in this case D[F(t ')] is the usual gaussian measure [16]. 
The expression (83) for ~[F( t ' ) ]D[F(Y)]  can be written in a simpler form by 

introducing a fluctuating entropy S [F(t')]. S [F(t')] is defined by the same expressions 
as Scxtr (Eqs. (29)-(30) and (50)) with the difference that the average values ( F , m ( t ' ~ ) )  

are replaced by the corresponding fluctuating quantities Fum(t'~). Thus, 

SEF(t') = (F(¢'))] = Sex,rE(F(t'))]. (85) 

Evaluating the second variation of S[F(t')] around F(() = ( F ( t ' ) )  yields 

i f  82 Sextr [(F(t'))] 
82S[F( t ' ) ]=  ~ ~" "'" ~<F . . . .  ( t ' ) > ~ < F  . . . .  (tin2)> 

u l m l  ~ 2 m 2  
to to 

x [ F  . . . .  (tin,) - ( F  . . . .  ( t in , ) )  ] [ V  . . . .  ( t ' ~ )  - -  ( r  . . . .  (t~,~))] 

x dt'~l ... dt'lm, dt~l ... d@,2. (86) 

Using the expressions (59) for the compliance functions Z . . . . . . . .  (tin1, tm3,  note that the 
exponent in Eq. (83) for the probability density functional ~ [F(t')] D [F(t')] is equal to 
half of the second variation of the fluctuation entropy: 

:~ [F(I')] D [F(t')] = exp [½ 82S [F(t')]] D [F(t')]. (87) 

Eq. (87) is a functional analogue of the well known Einstein fluctuation formula from 
equilibrium statistical thermodynamics [17]. 

Beyond the gaussian approximation one normally expects that the higher order 
variations of the fluctuating entropy [83S, 84S ....  ] should also enter Eq. (87). We 
conjecture that 

;~[F(t')] DEF(t')] = expe~,f2S[F(t ')] + ~,83SeF(Y)] + .--] DEF(/')] 

= exp[S[F(t ' )]  - Se~tr[(F(t'))] - 6S[F(t ' )]]  D[F(t ')].  (88) 
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Using Eqs. (50)-(52), the conjecture (88) can be written in two different, but equivalent, 
forms; 

t t 

~[F(t ')] D[F(t)] = exp(S[F(t')] - Sextr[F(t')] -- ,,.~ f " "  f 2,m(t~,) 
to  to  

x [F,,(t~,) -- (F,m(tm)>] dt'~ ... dt~,) D [F(t')] (89) 

= Z lexp(S[F(t')] - 

t t 

u , m  
to  to  

× D [F(f)]. (89a) 

A direct proof of the conjecture contained in Eqs. (88)-(89) is not possible since, in the 
non-gaussian case, the integration measure D[F(t')] is unknown. To circumvent this 
difficulty, we compute the characteristic functional G[a(t')] by using Eq. (89a) and 
compare the result with the relation (43) derived in Section 4. Using the normalization 
condition (37) from Eq. (89a), we obtain the following expression for the partition 
functional in terms of the fluctuating entropy: 

- -  t z 

to  to  

Inserting Eq. (89a) in the definition (39) of the characteristic functional G [tT(t')], and 
noticing that the resulting functional integral has exactly the same form as Eq. (90) 
where k(t') is replaced by ~.(t') - ia(t'), we get 

G [t~(t')] = Z[)~(f) -- itr(t')]/Z[~.(t')]. (91) 

Eq. (91) is identical with Eq. (43), which proves the validity of Eqs. (88)-(89a). 
To close this section we point out some formal analogies between the non-gaussian 

fluctuation equations (88)-(89a) and the theory of thermodynamic fluctuations de- 
veloped by Greene and Callen [18-19]. 

Eq. (89) is a functional analogue of the Greene and Callen generalization [ 18] of the 
Einstein fluctuation formula for non-gaussian fluctuations. Similarly, Eqs. (48)-(49) 
for the moments of mesoscopic state variables developed in Section 5 can be viewed as 
functional generalizations of the Callen equations [19] for the one-time moments of 
thermodynamic variables at equilibrium, or of the corresponding one-time approach 
developed by Vlad and Ross [20] for non-equilibrium steady states. These analogies 
are however rather limited, since the Einstein and Greene-Callen formulas describe 
the fluctuations at one point in time. In contrast, Eqs. (87)-(89a) contain all informa- 
tion concerning the time development of the fluctuation and relaxation of the 
mesoscopic state variables F,m(t'~). 
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7. Application to surprisal analysis in molecular dynamics 

Now we use the general theory developed before to return to the problem of 
molecular dynamics considered in Section 2. In this case, to each microscopic state 
vector N corresponds a label v which describes the state of a molecule. If we assume 
that the energy of a molecule is the only relevant dynamic variable, then all con- 
straints (27) should be expressed in terms of it. A stochastic behavior similar to the one 
given by the master equation (1) can be recovered within the framework of surprisal 
analysis by assuming that both the first and the second moments of the energy, 

<E(t')) and <E(t '~)E(t '2)) ,  to <~ t',t 'l,t '2 <~ t ,  (92) 

are known at all times in the past. The constraints (27) become 

<F, , ( t ' ) )  = <E(t')) (93) 

and 

<F,2( t '~ , (2 ) )  = <E(t '~)E( t '2) )  = <<E(t'~)E(t~)>> + <E(t ' l))<E(t~)) 

and the solution of the variational problem is given by 

(93a) 

l 

B [ v ( t ' ) ]  = Z - '  exp( - f 2,(t')E~,,,, 
to 

t t 

;; 2) dt '  - 22(ta, tz)E~t,~)Ev~,,~)dt'1dt . (94) 

to to 

In Eqs. (94) 

t 

(t ) , / . z ( t l ,  t'2)] = exp - 2~(t ' )Ev~, , )dt '  

to 

! t 

f; - 22(t'a,t2)E~v;)Ev~t,~)dt'l d t  . (95) 

Io to 

and the Lagrange multipliers 21(t') and 22((1, t'2) are the solutions of the functional 
equations 

81nZ 
< E(t )  ) - 821(0 '  (96) 

6 1 n Z  81nZ 6 1 n Z  
( (E( t x )E( t2 ) ) )  -- (96a) 

t~.2 (t~, t2) 821 (tl) ~,~1(t2) 

Unlike the master-equation approach the surprisal analysis is not based on the 
assumption of a jump mechanism in the stochastic process. However, at least in 
principle, the two theories can be made consistent with each other by a suitable choice 
of the first two moments of the energy of a molecule. We have failed to derive a closed 
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analytical relationship between the cumulants of energy and the transition rates 
Wv~, entering the master equation (1). Nevertheless, if we compare Eqs. (11) and 
(94) we see that they display the same type of statistical behavior. If in Eq. (94) 
we come back to the discrete time description used in Section 2, Eq. (21), and per- 
form a sum over the initial state Vo of the molecule we see that both for the markovian 
systems described by the master equation (1) and for the systems described by 
using the surprisal analysis (Eqs. (94)-(96')) the joint probability Pm has the same 
structure. Namely, it can be factored into a sum of products of positive factors 
depending on two successive states (Vo, Vl), (v~,v2) . . . . .  In spite of this similar 
structure the systems described by Eqs. (94)-(96a) may have a more complicated 
behavior than the markovian jump systems described by Eq. (1). Joint probabilities 
factorizable into sums of products of positive factors depending on (Vo, vl), (v~, rE), ... 
may also occur for semi-markovian processes described by a continuous-time 
random walk (CTRW) [21] or by a system of age-dependent master equations 
(ADME) [22]. Although we cannot give a formal proof, it is plausible to assume 
that a suitable choice of the first two moments of the energy would lead to a 'pure' 
markovian dynamics. In particular, if we drop the constraint (93a) we recover the 
independent stochastic process of the Zubarev-Kalashnikov type mentioned in 
Section 2. 

Since the constraints (93)-(93a) assign certain values to the first two cumulants of 
the energy and say nothing about the superior cumulants, it would seem plausible that 
the fluctuations of energy should be gaussian. However, this is not necessarily the case. 
The only thing prescribed by the constraints (93)-(93a) is the degree of statistical 
dependence of the process, i.e. the possible correlations between the successive states 
of a molecule. To study the fluctuations of energy we use Eq. (43) for the probability 
density functional ~ [F(t')] D [F(t')] of mesoscopic state variables and the expression 
(44) for the corresponding characteristic functional G [t~(t')]. As in this case in Eq. (43) 
we have a product of two delta functionats, depending on F1 ~ = E and F12 and we can 
decompose the integration measure D[F(t ')] into the product of two integration 
measures 

D[F(t ')] = D[F11(~K)] D[F,2(t ' )]  = D[E(t ')] DEF,2(t ')]. (97) 

As the function F12(t'2) does not have a direct physical significance, in Eq. (43) we 
integrate over it, resulting in 

3~[E(t')] D[E(te)] = D[E(t ')]  J j  ~[F( t ' ) ]  D[F~2( t 'b t '2 )]  

to to to 

× 6 [E(t¢) - Ev(~)] D[E(t ' ) ] .  (98) 
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The characteristic functional G(~(t')) corresponding to the probability density func- 
tional ~ [ E ( t ) ] D [ E ( Y ) ]  is equal to 

G [ o ( t ' ) ] = f f e x p ( i f o ( t ' ) E ( t ' ) d t ' ) ~ [ E ( t ' , ] D [ E ( t ' ) ]  

Z[2~ (t') - io(t'), 212(t], t~)] 
= (99) 

Z [,~ l(t'), )~12((1, t~)] 

By combining Eqs. (44)-(45) and (99) we can express all central moments  and 

cumulants of the energy in terms of the partition functional Z. The higher order 

cumulants are generally different from zero, which confirms the non-gaussian charac- 

ter of energy fluctuations. 

8. Random processes with complete connections 

The problem of molecular dynamics considered in Sections 2 and 7 shows that the 

constraints determine the type of statistical dependence of the resulting stochastic 
process. If in addition to the first two moments  (93)-(93') of the energy we require that 

the moments  of order 2, 3 . . . . .  M have assigned values 

(Et(t ' l)  ... E(tl)) ,  I = 1 . . . . .  M,  t ~ t'l . . . . .  t~  ~ to, (100) 

then the m-gate joint probabili ty density Pm can be factored into a sum of products of 

positive factors depending at most  on M labels v~ . . . . . .  v~,. That  is, the memory acts 
over at most (M - 1) steps. In particular, for M ~ oc, we have an infinite memory,  
a situation which can be described by a random process with complete connections 
[23]. This is also true in the general case. For  the constraints (27) with m = 1 . . . . .  M, 

and where the functionsfu, ,(N(tl) ,  t l ,  . . . ,  N(t,,), t,,) cannot be decomposed in additive 

factors depending on N(ti); [N(ti), N(t~)]; [N(ti), N(ti),N(tk)]; . . . .  i.e. 

Y.mtNttl),tl; ... ;Nltm);tm)  ZI oINit,),t,I +  otNtt,),t ;Nlt ),t ) + ' ], (101) 

then the memory acts at most over (M - 1) steps. For M --, ~c we have a process with 

complete connections. 
A possible way of describing random processes with complete connections is to 

generalize the formalism of age-dependent master equations (ADME) [22]. For 
a discrete random jump system in continuous time described by a state vector N we 
introduce [22] the age a of the state N. By the age a we mean the time interval that has 
elapsed from the occurrence of the last jump up to the current time. We assume that 
the transition from the qth state Nq to the (q + 1)th state Nq+ ~ depends on the entire 
history of the process characterized by the succession of states No, NI  . . . .  ,Nq as well 
as by the corresponding ages ao, a~ . . . . .  aq of the states at the moments  at which the 
transitions No ~ N1; N1 ~ N z ;  ... ; Nq_ 1 ~ Nq have taken place. The rate Wq + ~ of the 
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(q + 1)th transit ion depends on the whole history of the process as well as on the final 

state vector Nq + 1 

Wq+, = Wq+l(No, ao; ...;Nq, aq--,Nq+l), q = 0 , 1 , 2 ,  . . . .  (102) 

N o w  we introduce the m-gate joint  probabil i ty density 

~q(Nq, aq; Nq_ 1, aq_ 1; ... ;No, ao; t)daq daq_ 1 ... dao, (103) 

with 

- q d ° q  d°°- -  1. No ,,04, 
0 0 

~q daq ... dao is the probabil i ty that, at time t, the state of the system is Nq, the age of 

the state N o is between aq and aq + daq and that  at a previous step q' (q' = 0 . . . .  , q - 1) 

a transit ion from the state Nq, to the state Nq, + 1 took  place and that  at the momen t  of 

transit ion the age of  the state Nq, was between a¢ and aq, + da¢. 
By generalizing the A D M E  formalism [22] we can construct  a chain of evolution 

equat ions 

(~t + 8~,) ~q(Nq, aq;Nq_ 1, aq_ 1; .-- ;No, ao; t) 

= - Mq(Nq, aq;Nq_ 1, aq_ 1; ... ;No, ao; t) Wq+ ,(No, ao; ... ;Nq, aq ~Nq+ ,), 

q = 0, 1, 2 . . . .  (105) 

Mq(Nq, 0; Nq_ 1, aq_~ ; ... ;No, ao; t) = Wq(No, ao; ... ;Nq_ ~, aq_ 1 ~ Nq) 

×~q-l(Nq-l, aq-1; . . .;No, ao;t), q = 1,2 . . . .  (106) 

with the initial condi t ion 

~q(t = O) = 6qoMo(No, ao), (107) 

where :Jo(No, ao)dao is the initial age-state vector probabil i ty density. The A D M E  
semi-markovian  dynamics  [22] corresponds  to 

Wq+l = W(Nq~aq---+Nq+l), independent  of  q; No, ao; ... ;Nq- l ,aq-1 ,  (108) 

and the full markov ian  dynamics  to 

Wq+l = W(Nq--+Nq+I), independent  of q;No, ao; .. .;Nq a, aq-1;aq. (109) 

If  Wq+ 1 depends on the entire history of  the process (Eq. (102)), then the stochastic 

process has infinite memory.  This is a situation which can also be described by the 
max imum ent ropy formalism with the constraints (27) and (101) for M --+ ~ .  In spite 
of  the physical similarity the mathematical  formalism is different for the two models. 

As in the case of markov ian  dynamics,  we assume that  there must  be a consistency 
relationship between the constraints (27) and the rates Wq+ 1 (Eqs. (102)); unfortunate-  
ly we have been unable to prove whether this relationship actually exists or not. 
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9. Conclusions 

We have shown that statistical-temporal correlations can be incorporated into the 
maximum entropy formalism by a suitable choice of the constraints. In order to 
describe the memory effects the constraints should fulfill two different conditions: 
(a) they should be known at any time in the past and (b) they should depend on the 
values of the microscopic state variables at at least two different times. If the 
constraints depend only on the state variables at a single moment we obtain an 
independent random process of the Zubarev-Kalashnikov type. However, for a de- 
pendence on the state variables at two different moments a semi-markovian or 
markovian process results for which the memory acts over a single step. In general, if 
the constraints are defined in terms of the state variables at M different times, the 
memory acts over (M - 1) different steps and in the limit M ~ ~ we get a random 
process with complete connections. 

Our approach leads to a new way of describing a stochastic process with memory. It 
is not based on the use of stochastic master equations or on the stochastic calculus, 
but rather on a time-dependent functional generalization of the formalism of equilib- 
rium statistical thermodynamics. Although both this type of MIP and the stochastic 
equations describe the same type of physical systems, the quantitative relationships 
between these two descriptions are still unclear. 

The MIP itself is not a physical theory but rather a method of inference of the most 
unbiased stochastic process compatible with a set of constraints. This is both an 
advantage and a disadvantage of the method. The advantage is that the correspond- 
ing mathematical formalism is simpler than in the case of stochastic equations used in 
the literature, while the disadvantage is that all physical information is contained in 
the constraints. Thus, a given type of stochastic behavior is an assumption rather than 

a result of the model. 
It is rather surprising that for almost the entire forty years for which the MIP has 

been used in statistical mechanics, almost no attempts have been made to generate 
certain types of stochastic processes with memory starting from it. A possible explana- 
tion for this omission is that the most general constraints used in the literature are of 
the Zubarev-Kalashnikov type, and although more general than the constraints of the 
Mori type they do not describe any type of statistical dependence. 

There are at least two possible applications of our approach. A promising field is 
the study of fractal random processes for which memory effects are important [24]; 
this is planned to be the subject of future research. Another direction would be the 
generalization of McLennan-Zubarev formal theory of non-equilibrium processes. I n 
this context the MIP should be combined with the classical or quantum statistical- 
mechanical description of the system. The constraints should be chosen in such a way 
that the resulting non-equilibrium statistical operator be a solution of the classical or 
quantum-mechanical Liouville equation of the system. This is a very difficult project, 
and at this stage of research the possibilities of carrying it out are uncertain. 



360 M.O. Vlad, M.C. Mackey/Physica A 215 (1995) 339-360 

Acknowledgements 

The authors wish to thank J. Losson for helpful discussions. This research has been 
supported by NATO and the Natural Sciences and Engineering Research Council of 
Canada. 

References 

[1] E.T. Jaynes, Phys. Rev. 106 (1957) 620; 108 (1957) 171; in: Brandeis University Summer Institute 
Lectures in Theoretical Physics, Statistical Physics 3, ed. K.W. Ford (Benjamin, New York, 1963). 

[2] H. Mori, Phys. Rev. 112 (1958) 1829; 115 (1959) 298; 
H. Mori, I. Oppenheim and J. Ross, in: Studies in Statistical Mechanics, eds. J. de Boer and G.E. 
Uhlenbeck (North-Holland, Amsterdam, 1962) p. 271; 
J.W. Dufty, Phys. Rev. 176 (1968) 398. 

[3] D.N. Zubarev and V.P. Kalashnikov, Physica 46 (1970) 550. 
[4] J.A. McLennan, Phys. Rev. 115 (1959) 1405; Phys. Fluids 3 (1960) 495; Adv. Chem. Phys., 5 (1963) 261; 

Introduction to Nonequilibrium Statistical Mechanics (Prentice Hall, Englewood Cliffs, 1989) Ch. 9. 
[5] D.N. Zubarev, Sov. Phys. Doklady. 6 (1962) 776; 10 (1965) 452; 10 (1966) 850; Fortschr. Phys. 18 (1970) 

125; Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974). 
[6] F. Schl6gl, Phys. Rep. 62(4) (1980) 268. 
[7] W.T. Grandy, Jr., Phys. Rep. 62(3) (1980) 175; Foundations of Statistical Mechanics, vol. II: 

Nonequilibrium Phenomena (Reidel, Dordrecht, 1988) Chs. 2 5. 
[8] S. Kullback, Ann. Math. Stat. 22 (1951) 79. 
[9] Y. Tikochinsky and R.D. Levine, J. Math. Phys. 25(7) (1984) 2160. 

[10] R.D. Levine, J. Phys. A.: Math. Gen. 13 (1980) 91. 
[11] R.D. Levine and M. Tribus, eds., The Maximum Entropy Formalism (MIT press, Cambridge, MH, 

1978) and references therein. 
[12] J.L. Kinsey, J. Chem. Phys. 54 (1971) 1206; 

A. Ben-Shaul, R.D. Levine and R.B. Bernstein, J. Chem. Phys. 57 (1972)5427; 
R.D. Levine, Ann. Rev. Phys. Chem. 29 (1978) 59; Adv. Chem. Phys. 70 (1988) 53; 
R.D. Levine and R.B. Bernstein, Molecular Reaction Dynamics and Chemical Reactivity (Oxford 
University Press, New York, 1987) 
J.I. Steinfeld, J.S. Francisco and W.L. Hase, Chemical Kinetics and Dynamics (Prentice Hall, 
Englewood Cliffs, 1989) Chs. 13 14. 

[13] E.W. Montroll and M.F. Shelsinger, in: Nonequilibrium Phenomena II, eds. J.L. Lebowitz and E.W. 
Montroll (North-Holland, Amsterdam, 1984) Ch. 1, pp. 108 112; J. Stat. Phys. 32(2) (1983) 209 230. 

[14] M.O. Vlad, Phys. Lett. A189 (1994) 299; J. Math. Phys. 35(2) (1994) 796; Phys. Rev. E48 (1993) 3406. 
[15] H.C. Andersen, I. Oppenheim, K.E. Shuler and G.H. Weiss, J. Math. Phys. 5 (1964) 522. 
[16] H. Kleinert, Path Integrals in Quantum Mechanics Statistics and Polymer Science (World Scientific, 

Singapore, 1990). 
[17] A. Einstein, Ann. der Phys. l l  (1903) 170. 
[18] R.F. Greene and H.B. Callen, Phys. Rev. 83 (1951) 1231. 
[19] H. Callen, in: Nonequilibrium Thermodynamics, Variational Techniques and Stability, eds. 

R.J. Donnelly, R. Hermann and I. Prigogine (University of Chicago, Chicago, 1966) p. 227. 
[20] M.O. Vlad and J. Ross, J. Chem. Phys. 100 (1994) 7295. 
[21] G.H. Weiss and R.J. Rubin, Adv. Chem. Phys. 52 (1983) 363 and references therein; 

J.W. Haus and K.W. Kehr, Phys. Rep. 150 (1987) 263 and references therein. 
[22] M.O. Vlad and A. Pop, Physica A155 (1989) 276; J. Phys. A.: Math. Gen. A 22 (1989) 3845; 

M.O. Vlad, J. Phys. A.: Math. Gen. 20 (1987) 3367; Phys. Rev A 45 (1992) 3600. 
[23] M. losifescu and S. Grigorescu, Dependence with Complete Connections and Applications (Cam- 

bridge Tracts, Cambridge, 1989). 
[24] M.O. Vlad, J. Phys. A.: Math. Gen. 25 (1992) 749; 26 (1993) 4183; Physica A 197 (1993) 167; 207 (1994) 

483; 208 (1994) 167. 


