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ABSTRACT

An age-structurcd model is developed for erythropoiesis and is reduced to a
system of threshold-type differential delay equations using the method of character-
istics. Under certain assumptions, this model can be reduced to a system of delay
differential equations with two delays. The parameters in the system are estimated
from experimental data, and the model is simulated for a normal human subject
following a loss of blood. The characteristic equation of the two-delay equation is
analyzed and shown to exhibit Hopf bifurcations when the destruction rate of
erythrocytes is increased. A numerical study for a rabbit with autoimmune hemolytic
anemia is performed and compared with experimental data.

1. INTRODUCTION

A number of pathophysiological conditions are marked by the transi-
tion of normally constant physiological quantities to an oscillatory state
or the transition of an oscillatory physiological variable to a different
pattern of dynamic variation. Such disease states have been called
periodic diseases [1].

It has been proposed [2] that many periodic diseases might be due to
the operation of an intact physiological control system in a region of
parameter space different than normal and characterized by a bifurca-
tion in the underlying system dynamics. Periodic diseases satisfying this
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criterion have been called dynamic diseases [3]. This concept has been
successfully employed to explain the dynamic pathology seen in respira-
tory abnormalities [2, 4], neurological disorders [5-10], various patholo-
gies of cardiac rhythmicity {11-22], and several hematological disorders
[23-30] and has been invoked as a qualitative explanation of some
periodic psychiatric disorders [31, 32]. All of these studies have ex-
ploited the existence of multiple bifurcations in system dynamics in
offering an understanding of the underlying pathology. A review of this
material and the potential applicability of the concept of dynamical
diseases to other pathological states may be found in [33-36].

In this paper we propose a simple model for the regulation of
mammalian erythropoiesis and examine its dynamics. We outline in this
section the normal architecture of the erythroid production system and
the nature of the control mechanisms operating therein. This back-
ground is used to motivate the formulation of an age-structured model
for erythropoiesis in Section 2 that can exhibit behavior reminiscent of
some oscillatory derangements of hemostatis. In Section 3 the method
of characteristics is employed to reduce the system of partial differential
equations to a system of threshold-type delay equations. We show in
Section 4 how, under certain biologically realistic simplifying assump-
tions, the age-structured erythropoiesis model reduces to a pair of
coupled differential delay equations with two distinct time delays.
Section 5 contains estimates of the relevant model parameters for
erythropoiesis and employs these considerations to numerically examine
the dynamical behavior of the model for a normal subject. In Section 6,
a local stability analysis of the two-delay system of differential equations
is performed. The analysis shows that Hopf bifurcations can occur for
certain physiological parameters in the hematopoietic system. A simula-
tion compares this analysis to an experimental case of hemolytic ane-
mia, which showed oscillations in erythrocyte populations. We conclude
the paper with a brief discussion in the final section.

REGULATION OF ERYTHROPOIESIS (RED CELL PRODUCTION)

Hematopoiesis is the process by which stem cells, primarily in the
bone marrow, differentiate and proliferate to supply the body with
erythrocytes (red blood cells), platelets, neutrophils, macrophages, and
many other specialized cells. These cells perform a variety of vital
functions, such as transporting oxygen, repairing lesions, maintaining
clotting capability, and fighting infections; hence, the body must care-
fully regulate their production. For example, on average each day the
body must produce 3x10° new erythrocytes for each kilogram of body
weight. This need changes if physiological conditions change such as the
loss of blood due to a blood donation, a substantial hemorrhage, or
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different environmental conditions like high elevation. The body uses a
complex system of hormonal controls to regulate these hematopoietic
systems.

Figure 1 diagrams the principal elements in erythropoiesis. Details of
this regulatory system can be found in Williams [37]. It begins with the
pluripotential stem cells that differentiate in one of three ways to
produce erythrocytes, platelets, or granulocytes (representing the core
line for many different elements of the immune system). The next stage
in erythroid development are the burst-forming units (BFU-Es), which
is a self-sustaining population of cells that show minimal signs of
differentiation but respond to the appropriate hormones to accelerate
proliferation in response to physiological needs.

Erythropoietin (Epo) is the hormone that stimulates reproduction of
the BFU-Es and causes further differentiation into the colony-forming
units (CFU-Es). The CFU-E cell line is apparently not self-sustaining
and, after a series of divisions, results in mature erythrocytes or red
blood cells. Following the formation of the CFU-Es, there are a series
of cell divisions at approximately 8-h intervals for several days with early
stages under the control of Epo. In the beginning the cells are rapidly
proliferating and produce proerythroblasts, basophilic erythroblasts, etc.
These stages are differentiated by increasing levels of hemoglobin, the
component of red blood cells that gives them their red color and
provides them with their ability to transport oxygen. When the cells
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reach the stage of becoming reticulocytes, they stop dividing and simply
mature by increasing their hemoglobin content.

All of the above stages take place primarily in the bone marrow and
require about 6 days from the appearance of the CFU-Es to produce
peripheral blood reticulocytes. After a certain level of maturity is
attained, the reticulocytes migrate to the bloodstream and become part
of the circulatory system. Apparently, higher levels of Epo can acceler-
ate the maturing process along with increased proliferation. In the
bloodstream the reticulocytes lose their nuclei and become mature
erythrocytes, which carry oxygen through the body for about 120 days.
The toll on their membrane of passing through hundreds of miles of
capillaries without a nucleus to effect repair causes them to become less
efficient at carrying oxygen. When the cell membrane loses pliability,
the erythrocytes are actively degraded by macrophages (from the granu-
locyte cell line).

There is a population of cells near the kidneys that respond to levels
of oxygen in the blood. When the partial pressure of oxygen drops,
these cells release Epo into the bloodstream. Epo circulates through the
bone marrow and affects both the recruitment and maturation of the
erythrocyte cell line as described above. For fixed environmental condi-
tions, the oxygen content of the blood is directly proportional to the
number of erythrocytes circulating in the bloodstream, which links the
feedback between Epo and erythrocytes. The hormone erythropoietin
has a half-life of only 6 h, so this short-lived hormone creates a rapid
response to changing conditions.

2. THE AGE-STRUCTURED MODEL FOR ERYTHROPOIESIS

The discussion above for erythropoiesis describes a situation that,
from a modeling perspective, is appropriate for age-structured popula-
tions [38-43). The population of precursor cells matures at differing
rates depending on the Epo concentration, which in turn varies accord-
ing to the oxygen-carrying capacity of the blood. This depends on the
mature cells, which also have an age structure. In this section we
present a general age-structured model for erythropoiesis.

Let p(t, u) be the population of precursor cells that are multiplying
and maturing after differentiation from the stem cells. The stem cells
(or possibly the self-maintaining BFU-Es) become committed to matur-
ing into erythrocytes based on the level of Epo in the bloodstream. The
precursor cell population consists of the proliferating BFU-Es, the
CFU-Es, proerythroblasts, erythroblasts, and reticulocytes. The variable
t represents time, while u represents the maturity level of this pool of
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cells. For erythrocytes, the variable w might represent the hemoglobin
content within the cell. E(¢) is the hormone level, which for erythro-
poiesis is primarily erythropoietin. In general, the rate of maturation of
the precursor cells seems to be affected by the level of E, with higher
concentrations accelerating the maturing process somewhat. Thus, the
velocity of maturing, V(F), increases with E.

Let m(s,v) be the population of mature nonproliferating cells at
time ¢ and age v. Assume that the mature cells age at a rate W, which is
considered to be a constant for erythropoiesis as the aging process
appears to depend only on the number of times that an erythrocyte
passes through the capillaries. The total population of mature cells,
M(t), determines the level of the hormone, E. The concentration E
decreases with increasing numbers of mature erythrocytes, representing
a negative feedback. Figure 2 presents a schematic representation for
the age-structured model of erythropoiesis.

Let S,(E) be the number of cells recruited into the proliferating
precursor population. The function S, depends on the hormone level £
and is probably some type of saturation function. The new precursor
cells enter the age-structured model by the boundary condition

V(E)p(1.0) = S(E). (2.1)

When the cells achieve a certain level of maturity, they are released
into the bloodstream as mature cells. Let A( i — ) be the distribution
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FIG. 2. Schematic representation for an age-structured model of erythropoiesis.
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of maturity levels of the cells when released into the circulating blood,
where 1 represents the mean age of mature precursor cells and

Mg _
fn h(p-n)du=1.

With this assumption the boundary condition for cells entering the
mature population is given by the expression

Wm(f,O)=f0Mh(u—ﬁ)P(t,#)du, (22)

where the maturity level w, represents the maximum age for a cell at
maturity.

For proliferating precursor cells, the net birth rate is assumed to be
B( u, E), which depends on both the maturity of the cell and the level of
hormone E. The precursor cells rapidly divide early in the maturation
process, then stop replicating totally when they reach the reticulocyte
stage. Past this point they synthesize hemoglobin in preparation for
release into the bloodstream as mature erythrocytes. To include the
maturing of precursor cells in the age-structured model, we follow the
techniques of Metz and Diekmann [43] and Webb [44]. From the
boundary condition (2.2), we introduce the disappearance rate function

__h(u—n)
HOW) = o —Ryds

Experimental observations indicate that there is little cell death in the
precursor population [45], so no term is included for this. With these

assumptions the age-structured model for the precursor cells can be
written

1% aJ
GAV(E) 5 = B E)p—V(E)H(w)p,  1>0;0<p<py.
(2.3)

If y(v) is the death rate of mature cells depending only on age, then
the partial differential equation describing m(z, v) is given by

am Jm
7+WW:'7(V)WI, t>0;0<v<vg. (24)
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Note that we are assuming that there is a maximum age for the mature
cells, vz. An equivalent assumption is that y becomes infinite for
v > Vg.

The hormone level E is governed by a differential equation with a
negative feedback. Let M(¢), the total population of mature cells, be
given by

M(1) =f0VFm(r,y)du; (2.5)

then the differential equation for E is

dE
G = I(M) ~ kE, (26)

where k is the decay constant for the hormone and f(M) is a monotone
decreasing function of M (negative feedback). Erythropoietin is re-
moved by the liver through enzymatic degradation, while its release is
governed by cells near the kidneys that release Epo when oxygen levels
decline. Typically, we shall consider the following form of f:

f(M) = 1577 (2.7)

which is a Hill function that often occurs in enzyme kinetic problems.

3. REDUCING THE AGE-STRUCTURED MODEL TO A
SYSTEM OF THRESHOLD-TYPE DELAY EQUATIONS

The model presented above consists of partial differential equations
that describe the age-structured populations of erythrocytes at various
stages in their life cycle. These partial differential equations are coupled
in a complicated manner to equations governing the dynamics of the
controlling hormone erythropoietin. This type of modeling system has
been studied by several authors [43, 46-48]. To simplify this system of
equations we assume that a solution to (2.6) is known for E(¢), then
integrate along the characteristics for the partial differential equations
(2.3) and (2.4) to find solutions p(¢, 1) and m(¢s,v). Our technique
follows the population study of Smith [48], which reduces a system of
partial differential equations to a system of threshold delay equations.
Details of the calculations are presented in the Appendix.

The method of characteristics is used to simplify the partial differen-
tial equations (2.3) and (2.4). First, define the characteristic curve C,
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emanating from the origin in the ru plane with ¢ >0 and 0 < p < .. If
we assume that E(t) is known, then the curve C, satisfies

1(s)=s and ;L(S)=f(:V(E(U))d(r, se[0,se],

where s,. is the threshold value found by solving

jTes =/(:FV(E(0'))d0'.

This curve C, separates the fu space into two regions as shown in
Figure 3. The region S, allows solutions that depend on the initial
conditions of the problem, while S, is where longer time solutions exist
and depends on the boundary conditions imposed. Figure 3 shows
typical characteristic curves in each of the regions.

For a given pair of variables (¢, u) € S,, a state-dependent delay 7 is
implicitly defined by the integral

t
p=[" V(E(7))dr. (3.1)
t—T
This delay represents the time required for the maturation to go from 0
to p and is found with knowledge of the history of the hormone
concentration F.

t
SE
(t(s).u4s))
Sl
(£(0),0)4 Co (t(s),1{s))
0 (0.440)) py K

F1G. 3. Characteristic curves parametrized by s in the region ¢ > 0and 0 < p < p
showing regions S, and S,.
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Assume that the initial age structure of the population satisfies

p(0,n) =o(u),  m(0,v)=y(v). (3.2)

The method of characteristics, as developed in the Appendix, gives the
following solution to the partial differential equation (2.3):

o[ VB ar)o [ | [ V(E®) dr. E)
- V(E(w))H(#—fwwa(r))dr)}dw], (t,1) €5,

B ol [ {8 viEC o)

- V(E(w))H([:TV(E(r)) dr)}dw], (t,n) €5,
(3.2)

p(t,p) =

where 7 is determined by the threshold equation (3.1). Since the aging
rate of mature cells W is a constant, classical methods may be used to
solve (2.4), producing the result

z,l/(v—Wt)exp[—fUry(v-kW(a—t))do-}, t<p—’;,,

m(t,v)= j;Mh( p,—ﬁ)p(t - WV/,M)dpexp[—foy/Wy(Wa)do],

t>V
W

(3.3)

Equations (3.2) and (3.3) include transient solutions for small times ¢
and the general solution for large times. We are particularly interested
in the long-term behavior of these equations. With the assumption that
t is large, M(¢) is found to satisfy

M(1) =j;VFm(t,V)dv

el o] o
(3.4)

By (3.2) with (¢,u) € S,, it is seen that the precursor population p
depends only on the hormone level E. Since M depends only on p, as
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seen in (3.4), it follows that M is a function of E. Thus, (2.6) and (3.4)
form a system of integrodifferential equations or threshold-type delay
equations, with the state-dependent delay = defined implicitly by (3.1).

4. THE MODEL WITH TWO DISCRETE DELAYS AND ITS
CHARACTERISTIC EQUATION

The previous section provides a general model for erythropoiesis.
However, it includes some unknown functions and an implicitly deter-
mined state-dependent time delay, which makes analysis of the system
complicated. Using known properties of the erythropoietic system, we
introduce several simplifying assumptions that reduce the mathematical
complexity of the problem to a mathematical model for erythropoiesis
with two discrete time delays. This system of equations has a unique
equilibrium about which a linear stability analysis can be performed.

Hematopoietic systems change the velocity of maturation of precur-
sor cells in response to varying physiological conditions. For example,
after a severe hemorrhage the oxygen-carrying capacity of the blood
decreases significantly, or following a large increase in elevation the
inspired oxygen levels are low, leading to a decrease in arterial oxygen.
In response, the concentration of Epo increases. This results in elevated
stem cell and BFU-E proliferation to produce additional erythrocytes.
Furthermore, the maturation transit time from BFU-Es to mature
erythrocytes seems to drop from about 7 days to 5 or 6 days. However,
the data are arguable, and the variation in the duration of maturation
may not be very significant. Thus, as a first approximation we take the
maturing velocities as constant and normalize them with time to yield

V(E)=1 and W-=1.

With this assumption, (3.1) reduces to 7 = p.

The general model for erythropoiesis contains a birth rate B( u, E)
dependent on the maturity of the precursor cell and the Epo level. It is
known that the precursor cells undergo a series of cell divisions with a
generation time of approximately 8 h until they become reticulocytes, at
which point the cells stop dividing and simply increase their level of
hemoglobin (a measure of maturity). The dependence of B on E is
more complicated as Epo appears to affect each of the early stages in
different ways. To simplify our model we assume that any increased
proliferation of precursor cells is reflected in the number of cells
recruited at the boundary. This amounts to letting S, depend on E but
not B. There is evidence that S,(E) is a linear function over a range of
Epo levels [49]. Another assumption is that the cell generation times for
the rapidly proliferating erythroblasts are constant up to a specific
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maturity level u,, at which point all cell divisions stop. Thus, we take

Ba I“l’<“’1’

B(uE) = {0, o (4.)

The maturation of the precursor cells in (2.3), which also enter into
the boundary conditions (2.1), has a general distribution A( x — 1) that
reflects a range of the age-structured precursor cells that enter the
mature population. This corresponds to the variation in hemoglobin
content of different red blood cells released into the bloodstream. We
simplify the model by assuming that A(u — 1) is a Dirac 6 function
with 7 = ug, that is, all cells are assumed to mature at a specific level
of the maturity variable p. With this assumption and B defined by (4.1),
we can solve (3.2) for large time to obtain

Bu

€ ’ /‘L<I‘L19
p(t,m) =S (Bt =) 4,

M=y

If we write T| for ug, then it follows that
ME _ 8
[ hC=R)p(t = v.w)dp = Sy(E(t—v = T)))e1. (42)

In (2.4), the death rate vy is assumed to depend on the age of the cell.
There are a certain number of erythrocytes lost from all age classes due
to leakage of the capillaries and other circulatory damage. Most red
blood cells live about 120 days and then are actively degraded due to
loss of pliability of the cell membrane. To simplify the model we assume
that y is a small constant for 0 < v < v, then becomes infinite at
vy =120 days, corresponding to all remaining cells dying at that age.
With (4.2) substituted into (3.4), differentiating M(¢) gives the following
system of equations in the variables M and E:

‘”‘2—5’) = ePn[SE(t—T)))— e "T:Sy(E(t — T, = T,))] - yM(1),
(4.3a)

W) - M)y - kE(o), (4.3b)

where vg, the maximum age of the mature cell, is written as T5,.
Equations (4.3) constitute a nonlinear system of differential equations
with two discrete time delays that account for the time required for a
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cell to mature in each of the subpopulations. Since the half-life for the
hormone Epo is only a few hours, which is short compared to the
remaining dynamic time scales in the system, a quasi-steady-state ap-
proximation can be applied to Equation (4.3b). This modeling approxi-
mation implies that E = f(M)/k. The result is a delay differential
equation for the mature cells, given by

L) — o5, (M(1 = T1)) = 7S (MG~ T, = T2))] = v (),
(4.4)

where the function S,(M) = S,(f(M)/ k) incorporates the juxtaposition
of the two feedbacks of system (4.3). This system has been examined as
a model for platelet control [28, 50, 51]. Despite the many similarities
between erythropoiesis and thrombopoiesis, more data are available for
the former control system. Our analysis in this paper concentrates on
system (4.3) using erythropoiesis, although analogous techniques could
be employed in the bifurcation analyses of (4.3) and (4.4).

From the experiments of Clarke and Housman [49], the function
S,(E) is approximately linear in E for a range of Epo levels. When E is
sufficiently high, S, saturates and even declines slightly. We assume
that in the physiological range for normal humans, this control does not
saturate because increasing Epo levels result in increased production of
erythrocytes. For our analysis, we assume that S,(E£) is an increasing
function in E with S,(0) = 0. For a given level of oxygen respiration, the
renal cells that sense oxygen concentration release less Epo when
oxygen levels increase. When the environmental oxygen is held con-
stant, an increase in oxygen sensed by the renal cells corresponds to
increased numbers of erythrocytes or M. Thus, f(M) is a decreasing
function with f(0) > 0 and lim,, ., f(M)=0.

_With these assumptions, Equations (4.3) have a unique equilibrium
(M, E). If we define S, =eP*S(E), then the characteristic equation
for the linearization of system (4.3) about (M, E) is given by

sl MY So(e M =7l My | 0.
- (M) A+k
which can be written
(A+y)(A+k)=—A(e M —e Ye My (4.5)
where 4= — f'(M)S, > 0. In Section 6 we use this characteristic equa-

tion to study the local stability of the equilibrium.
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5. PARAMETER ESTIMATION AND SIMULATION OF THE
MODEL FOR A NORMAL SUBJECT

Before performing a local stability analysis of the model given in
(4.3), we examine the physiological parameters of the system and show a
simulation for a normal human subject. With a nonlinearity as given by
(2.7), the simplified model given by the system of equations (4.3)
contains eight parameters. Few studies show data on the number of
erythrocytes and erythropoietin for extended periods of time [52], so we
compiled a collection of data from the clinical literature to estimate
appropriate values for these parameters. The primary sources for our
data are selected chapters (and references therein) from the treatise
edited by Williams [37], but even here we noted changes between the
third and fourth editions with changes in experimental technology.
From these biologically relevant parameter values, we numerically ana-
lyze the stability of the equilibrium and determine physiological condi-
tions when instabilities can arise via a Hopf bifurcation.

As a first step, we gather values of the total number of erythrocytes
and level of erythropoietin for a normal human subject. This provides
the values for the equilibrium point (M, E). The mean number of red
blood cells in a normal individual is M = 3.5Xx10'! erythrocytes per
kilogram of body weight [53]. The normal level of Epo has been
reported to be about 10-25 mU/mL [54], although a wide range of
values (from 3 to 18,000) have been observed, depending upon the
conditions of individuals. Previous estimates obtained with different
technology ranged from 6 to 16 (as cited in [55]). With this wide range
of Epo concentration we took E =10 mU/mL.

Next we consider the values of the delays, 7, and T,, representing
the length of time for the progenitor cells to mature and the lifespan of
the erythrocytes, respectively. The time required for progenitor cells to
mature in the bone marrow lies between 5 and 9 days [56]. For our
model we have chosen 7,=6 days. The lifespan of erythrocytes
in humans is 120 days [57], which we take for the value of our second
delay 7.

The decay rate y in (4.3) represents the random destruction of
erythrocytes. For normal humans, there is a small loss of 0.06—-0.4% per
day [57]. Thus, we chose y = 0.001 day ', which corresponds to a loss of
approximately 0.1% per day. However, in certain hemolytic anemias
there can be a large autoimmune response to the erythrocytes. In
Section 6 we will examine what happens to the behavior of the system
when this parameter vy is varied.

The half-life for recombinant erythropoietin is reported to be 5-6 h
[53]. In the third edition of Williams [37], Erslev claims that the half-life
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of Epo is 1-2 days. Using the 6-h estimate, we chose k =2.8 day ! for
the destruction rate of erythropoietin. Flaharty et al. [56] showed that as
the dose of human recombinant Epo changed in normal subjects, there
was a significant variation in the measured value for the half-life of
erythropoietin. Thus, the underlying assumption of a linear destruction
rate in our model is probably too simplistic.

The dependence of the number of cells recruited into the proliferat-
ing precursor population is represented by the function Sy(E). As noted
earlier, the experiments of Clarke and Housman [49] on the number of
BFU-E-derived colonies as a function of Epo give a linear relationship
over the normal physiological range, although few data points are
presented in this range. Here, we assume that S,(E) is linear, with slope
S;. From (4.3), we need to estimate S, = ¢S, where the factor e®*
represents the number of reticulocytes formed from one cell recruited
into the proliferating precursor population. Under steady-state condi-
tions, M = 0 implies

5 M

From the parameters listed above, this corresponds to S, =0.0031
(X 10! erythrocytes /kg body wt)XmL plasma,/mU EpoXday~').

The most difficult problem we encountered was to find appropriate
data to determine the parameters in the nonlinear function f(M). We
assumed that f(M) is a Hill function of the form of (2.7) with three
defining parameters, a, K, and 7. The data presented in Figure 4 of
Erslev [54] shows the logarithm of the concentration of Epo as a
function of the percentage of hematocrit for both normal and anemic
patients. He provides a straight line as best fit to his semilogarithmic
plot of data, and we obtained our values from that line. We assume that
the number of erythrocytes is proportional to the percentage of hemat-
ocrit. Thus, the normal level of erythropoietin, 10 mU /mL, associated
with a level of erythrocytes of 3.5 X 10'! corresponds to a percentage of
hematocrit of 43%. We use Erslev’s graph to obtain steady-state values
of M =35, 2.5, and 1.667 (x 10! erythrocytes /kg body wt) when the
concentration of Epo is at 10, 100, and 1000 (mU/mL of plasma),
respectively. This yields the three equations f(3.5)=2.8X10, f(2.5) =
2.8x100, and f(1.667) = 2.8 X 1000, which can be solved simultaneously
by eliminating first a, then K to obtain the set of equations

(3.5)" —11(2.5)" +10(1.667) =0,
K[(3:5)7~10(2.5)7] =9,
281+ K(3.5)7] = a.
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The first equation has a unique positive solution r, with a numerical
value of approximately 6.96. Solving the second and third equations for
K and a yields successively K = 0.0382 and a = 6570.

With the above parameters, we simulate the model given by (4.3).
Initial data for ¢ <0 were taken to be the equilibrium (A_/I, E), and
M(0)=0.95M with E(0)=E. These initial data represent a normal
human who at time ¢t =0 loses 5% of his blood, as would happen in a
blood donation. Figure 4 shows the result of the numerical integration.
The level of both erythrocytes and erythropoietin show a damped
oscillatory return to normal levels. The figure shows that Epo achieves a
maximum 3 days after the blood donation with an increase of 42.4%
above normal levels. It takes 18 days for the erythrocyte population to
return to 99% of the normal level. After 38 days the erythrocyte
population exceeds its equilibrium value, but the strong damping makes
this barely visible. The results of Maeda et al. [52] of normal subjects
after a phlebotomy show a similar response for the 56 days of the
experiment. However, the Epo concentration peaks several days later
with a more gradual return to normal levels, suggesting more complex
physiological controls than our simplified model. They measured hemo-
globin concentrations rather than erythrocyte populations, so with hy-
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FiG. 4. Numerical integration of Equations (4.3) using normal values of the
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dration after the phlebotomy the hematocrit continued to drop for the
first few days.

In the simulation the increased production of erythrocytes after the
hypothetical blood donation, however, results in a large population of
erythrocytes that die 120 days later due to our assumption on the
maximum age of erythrocytes. Thus, there is another response occurring
after 126 days due to the delays in the system. In fact, the next
maximum Epo concentration and minimum number of erythrocytes
occur 139 days into the simulation, with an increase of 24.6% and
decrease of 3.14%, respectively. The graph shows further damped
responses due to the initial perturbation with the maximum Epo con-
centrations occurring again at 274 days and 410 days. Clearly, normal
individuals would better regulate their erythrocyte production such that
these oscillatory responses would be much more damped. An improved
model would reflect this if, for example, more general distributions
(than a Dirac § function) were used for the maturing of reticulocytes
and the death of erythrocytes.

6. BIFURCATION ANALYSIS AND SIMULATION OF AN
AUTOIMMUNE INDUCED HEMOLYTIC ANEMIA

In this section, we examine how the model given by (4.3) can
reproduce certain erythropoietic abnormalities. The experiments of Orr
et al. [55] produced autoimmune induced hemolytic anemia in rabbits by
administration of an incompatible red cell isoantibody. Their experi-
mental results exhibited periodic oscillations in the erythrocyte popula-
tions with a mean period of 18 days. Mackey [24, 26] studied the
bifurcation problem for the simpler model given by (4.4) for some
ranges of the parameters. We now show that our model undergoes a
Hopf bifurcation as the destruction rate vy is increased (as the experi-
ment does with the isoantibody) and use this information to demon-
strate how well our model agrees with the experimental results. We
begin with the bifurcation analysis, then later estimate parameters and
simulate the system of delay differential equations for a case of autoim-
mune induced hemolytic anemia.

From the theory of delay differential equations, the equilibrium
solution of (4.3) is asymptotically stable if and only if all solutions A of
(4.5) have negative real parts [58]. Loss of stability of the equilibrium
solution of (4.3) occurs via a Hopf bifurcation when a pair of eigenval-
ues cross the imaginary axis as some parameter in the system is varied.
There have been numerous studies for finding purely imaginary eigen-
values for the characteristic equation of a delay differential equation
(see, e.g., [59-61]). However, in most studies the delay is one of the
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parameters that is varied, while in this problem the delays for the
system are known. There have been few bifurcation analyses of delay
differential equations with two delays [59, 62], so that provides addi-
tional interest to this problem.

The Hopf bifurcation analysis presented here is related to the
geometric approach shown in [60, 63, 64]. With A=iw, we write the
characteristic equation as

P( w)em' — _ A_(g*"“’TI —e T ,fw(T1+T3)) = — A_Q( w), (6.1)

where
912 2 2 1/2
P(w) = [(vk - o)+ w(y + k)]
and
0,( w) =arctan(i(—y-jLL2)
vk — w

are the magnitude and argument, respectively, of the left-hand side of
(6.1). Note that P and 6, increase monotonically with . Our method
for solving (6.1) is to increase w until the arguments on both sides of
the equation agree, then adjust A so their magnitudes are equal.

The bifurcation analysis uses the parameter A4, which combines
information on the unknown production functions, and vy, which is the
destruction rate of mature cells. To find where a Hopf bifurcation
occurs, we fix y and determine the smallest value of A that satisfies
(6.1) with A=iw. Figure 5 presents a geometric interpretation of the
procedure for determining the Hopf bifurcation. As noted above, P and
f, increase monotonically as w increases with lim, _, . 8,(w) = 7. This
creates the parabolic arc seen in the first and second quadrants. The
first term in Q(w) generates a unit circle in the clockwise direction with
increasing . The second term in Q is multiplied by e™*2, so it is
thought of as a perturbation. Thus, a first alignment of the arguments of
the left and right sides of (6.1) occurs for 0 < w <7 /T, where 6(w) =
7 +arg Q(w). By taking A= P(w)/|Q( )|, we find where the Hopf
bifurcation occurs.

It 1s the second term in Q, which includes the second delay, that
complicates the analysis. If y is sufficiently large, then this term is only
a very small perturbation, and the Hopf bifurcation analysis is similar to
a problem with only one delay. However, as y decreases, the effects
from this term become more pronounced, and multiple alignments of
the argument can occur for 0 < @ < / T,. The smallest value of A is
where the Hopf bifurcation occurs.
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FIG. 5. A geometric interpretation for determining the Hopf bifurcation.

As seen in Figure 5, the second term in Q generates a clockwise
circle of radius e *7: whose center moves along the unit circle of the
first term in Q. The circling of this term is more rapid because of its
frequency, T, + T,, which allows the multiple alignments. An applica-
tion of the law of cosines provides the magnitude and argument of Q.
Applying this law and referring to Figure 5, we find that if o=
mod(wT,,27), then

b*=1+e 22 —2cos a,

1—e "2cos a
cos § = e S
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With this information, the argument of the right-hand side for the
characteristic equation (6.1) satisfies

—mod( wT,,2m) + 6, a <1,

g Q@) =\ od(wT,,2m) =6,  a>m.

Thus, for a given set of parameters k, y, T, and T,, we increase w
and numerically find all solutions to 6(w)=m +targQw), 0<w<
7/ T,. For each of these values of w, we take A= P(w)/b, which
yields a pair of imaginary ecigenvalues that solve (4.5) [or (6.1)]. The
smallest value of A, as computed above, is where the equilibrium of
(4.3) loses stability from a Hopf bifurcation.

A CASE STUDY OF AUTOIMMUNE INDUCED HEMOLYTIC ANEMIA

In the experiments of Orr et al. [55], rabbits were injected every 2-3
days with an incompatible red cell isoantibody, which produced an
autoimmune induced hemolytic anemia. The erythrocyte population in
one experimental rabbit (Figure 4 in [55]) fluctuated about 10% above
and below the anemic mean of 75% of normal erythrocyte levels. The
observed oscillations for this rabbit had a periodicity of 17 days. For our
analysis we used their parameter values to test the model given by (4.3).

Orr et al. [55] state that their data indicate the time for precursor
cells in the rabbit erythron is about 3 days, so we let T, =3 days.
Experiments of Burwell et al. [65] give the normal erythrocyte lifespan
to be 45-50 days, so we took T, = 50 days. The half-life of circulating
erythropoietin in rats is about 2.5 h (as cited in [55]), so using this
estimate for rabbits we took k = 6.65 day '

The parameters in the nonlinear function were determined from the
data in Erslev [54], so we used the human data quoted before for the
equilibrium (M, E). Thus, 75% of normal gives M =2.63 (x 10" ery-
throcytes /kg body wt). From these data we obtain E=71.1 (mU/mL
plasma). With the information above, the parameter values in the
nonlinear function can be computed. The values for r and K do not
change from the values for a normal human subject, so again we let
r=6.96 and K =0.0382. The smaller half-life of Epo (k) affects the
value of a, giving a=15,600. For the bifurcation analysis we need
(M), which satisfies

_ Agr—1
frify=— M 1o,

(1+ KM")
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The quantities that we consider unknown are the destruction rate of
erythrocytes, y, and the production of erythrocytes, S,(E). In the
previous section we assumed S,(E) linear and showed that under
steady-state conditions S, given by (5.1) represented the rate of produc-
tion of erythrocytes per day per milliunit of erythropoietin. Thus, for a
given (M, E) and T,, S, is a function depending on y. The bifurcation
analysis presented above uses the parameter A, which in Section 4 is
given by 4 = — f'(M)S,,.

From the data above we develop the stability diagram presented in
Figure 6. As y varies, our calculations of A for the model at equilib-
rium with 75% of the normal hemoglobin produces the curve labeled
Model (Equilibrium). The remaining lines in the diagram show the
solutions of (6.1) as y varies. From our discussion above, we fix a value
of y, then compute all values 0 < w <7 /T, where the arguments of
the right- and left-hand sides of (6.1) agree and adjust the value of A4 so
that the magnitudes agree. This gives the purely imaginary eigenvalues
to the linearized model (4.3) where a possible Hopf bifurcation can
occur.

When A is larger than the smallest value of A that solves (6.1) for a
given vy, the equilibrium of the linearization of (4.3) becomes unstable

Unstable :

)
Stable

0.00 0.02 0.04 0.06 0.08 0.10
7

FIG. 6. Stability diagram for determining where a Hopf bifurcation occurs in
Equation (4.4), using Equation (4.5).
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as labeled in Figure 6. This result is easily shown using the argument
principle [60]. Note that this may not be the smallest value of  that
solves (6.1). The bifurcation diagram shows that this two-delay problem
becomes very complicated as y decreases. As noted above, multiple
alignments occur for small values of y when 0 < w < /T,, which
means that several values of 4 must be computed to determine where
stability is lost.

From Figure 6 we see that near y = (.08 the erythropoiesis model
(4.3) with the calculated parameters undergoes a Hopf bifurcation.
Thus, as the destruction rate 7y rises above this critical value, the
nonlinear model loses stability and develops oscillatory solutions. At
this bifurcation point, w = 0.549, which corresponds to a period of 11.4
days. This is shorter than the actual observed period, but the sensitivity
to the many parameters has not yet been determined to see if this error
is acceptable. We note that the lowest bifurcation curve in Figure 6 for
0.003 <y < 0.011 yields @ =0.345, which corresponds to a period of
about 18 days. Furthermore, the other root crossings nearby could lead
to more complicated dynamics [59] as displayed in the experimental
data. However, this value of y is too low to relate to the case of
autoimmune induced hemolytic anemia that is being studied here.

Figure 7 presents a numerical simulation of the model given by (4.3)
for the case of autoimmune hemolytic anemia in rabbits. For simulation
purposes we choose y = 0.1. The simulation begins with the rabbits
having normal levels of erythrocytes and erythropoietin. We assume
that the incompatible red cell isoantibody is injected at =0 and
maintains a constant effect throughout the simulation. (This assumption
is more like an intravenous supply of the isoantibody rather than the
regular injections given in the experiment.) Orr et al. [55] claim that the
isoantibody may selectively kill the oldest cells, resulting in cells living
to only 14 days. With our assumption on y we have a nonselective
destruction of erythrocytes causing an exponential loss. The choice of
vy = 0.1 would correspond to half the cells dying by age 7, which is the
mean of their choice. By age 14, 75% of the erythrocytes would be
destroyed, so our parameter choice is similar to the one they used for
their model where there is no cell death until age 14 days, at which
point all erythrocytes are destroyed.

As noted before, the simulation in Figure 7 displays oscillations with
a period shorter than the experiments. Also, the mean is shifted higher
by 5% despite our choice of parameters. The amplitude of the simula-
tion is very similar to the experiments: the lower values of the erythro-
cytes agree quite well, and the higher values are slightly less than 10%
higher than those observed in the experiments. The variation in the
concentration of erythropoietin is very dramatic. From the initial nor-
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F1G. 7. Simulation of the two-delay model for autoimmune hemolytic anemia in
rabbits [Eq. (4.4)].

mal concentration of 10 mU /mL, the autoimmune induced hemolytic
anemia causes the erythropoietin level in the model to increase more
than 18-fold to concentrations exceeding 180 mU /mL. Thus, we con-
clude that our model does seem to give the qualitative behavior found
in the experiments, but further studies are needed to determine how
accurately our choices of parameters reflect the actual process of
erythropoiesis.

7. DISCUSSION

As erythrocytes are one of the best understood hematopoietic cell
lines, the regulation and control of erythrocyte numbers lends itself
naturally to the development of an age-structured model describing the
known physiological processes leading to the production of mature red
blood cells. We have traced this development here and, using the
method of characteristics, have shown how the age-structured model for
erythropoiesis leads to a system of threshold-type differential delay
equations as a natural consequence of the physiology. Further simplify-
ing assumptions reduced this system to a model with two discrete
delays. We carried out the local stability and bifurcation analysis for this
system about the steady state and demonstrated once again how compli-
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cated two-delay problems can be. Our simulation studies have shown
that a perturbation of the erythropoietic system, as would occur in a
normal human following a blood donation event, leads to a damped
oscillatory return of the system to normal. We feel that the model gives
an idealized system in which to explore the dynamics of blood donation
regimens, an event that occurs many thousands of times daily world-
wide. Another simulation meant to reproduce the consequences of an
elevated random peripheral destruction of red blood cells, as would
occur in autoimmune hemolytic anemia, clearly demonstrates the exis-
tence of sustained oscillations in the number of erythrocytes, as has
been noted both experimentally and clinically.

In spite of the physiological realism of our age-structured model, it is
also clear that the experimental and clinical data are inadequate to fully
define all of the important facets of the model. Thus, for example, more
studies are needed on how the model behavior is affected by the poorly
understood state-dependent velocity of maturing of precursors. Other
factors, such as the role of chalone and iron, need to be examined more
closely under stress conditions to determine what the rate-limiting
reactions are. Since there are insufficient data to define all of the
parameters in our age-structured model, the model must evolve with
experimental advances in the future.

Previous studies have considered delay differential equations as
models of blood cell populations [26, 28]. In those instances, however,
the governing equation contained a single time lag. From a mathemati-
cal point of view, there are significant differences in the stability
properties of delay differential equations, as the number of time lags is
increased from one to two [62]: stability switches can occur, and multi-
ple modes can be destabilized simultaneously. In erythropoiesis, these
differences are probably not crucial to the dynamics, since the ratio of
the two time delays is quite large (about 20). For other, similar systems,
in which this ratio is smaller, for example, in thrombopoiesis, these
complications may become biologically relevant.

Indeed, normal mammalian thrombopoiesis is organized and regu-
lated in a similar manner to the erythropoietic process studied here (see
[66-68] for more details and references to the literature). In throm-
bopoiesis, the pluripotential stem cells become committed stem cells,
which then form megakaryocytes through a series of biochemical signals
that are not fully understood. The maturation of the megakaryocyte
differs from that of precursors of erythrocytes in that there is replica-
tion and division of the nuclear material with a concomitant increase in
cytoplasmic volume. Megakaryocytes produce platelets by first forming
intracellular cytoplasmic platelet subunits, which are subsequently re-
leased into the circulation as platelets. The total elapsed time between
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the appearance of a recognizable megakaryocyte and when it starts to
produce platelets is about 9 days in the normal human [69]. Once
released into the circulation, platelets normally disappear primarily
through senescence, living for approximately 10 days in humans [70].
Platelet production is regulated via the humoral stimulator thrombopoi-
etin, analogous to the regulation of erythropoiesis by erythropoietin.

This indicates that our model for erythropoiesis is also applicable to
the regulation of thrombopoiesis with significantly different parameter
values. In preliminary studies, we have found that although there are
sufficient data to determine many of the parameters for a correspond-
ing thrombopoietic model, the data are inadequate to obtain the nature
of the important nonlinear proliferative feedback function correspond-
ing to the function f of Equation (2.7). Some preliminary bifurcation
analyses show that the smaller second delay in thrombopoiesis de-
creases the stability of the model, which suggests that this hematopoi-
etic system is inherently less stable and may be more susceptible to
dynamic disorders. The lack of adequate data is unfortunate as there
are a number of fascinating and sometimes fatal dynamic oscillatory
platelet disorders whose mechanistic origin is obscure [71, 72]. Better
understanding of the potential origin of these disorders from a model-
ing perspective might lead to alternative clinical strategies in dealing
with them.

APPENDIX. DETAILS FOR THE METHOD OF
CHARACTERISTICS

The method of characteristics is used to simplify the partial differen-
tial equations (2.3) and (2.4). Our techniques follow Metz and Diek-
mann [43] and Smith [48]. For (2.3), we assume a parametrization s in
the 7 space with >0 and 0 < u < pg. If P(s)= p(t(s), u(s)), then
differentiating with respect to s produces the total derivative of p and
yields

dP(s) d _dp dt  dp du
o rE G Rk Tl il il

The parameter s follows a characteristic curve for (2.3) provided
dt dp
%‘Zl and %=V(E([))

Thus, the characteristic curves are given by

t(s)—t(0)=s  and /.L(S)—,U,(O)=/(:V(E(t(a')))d0'. (A1)
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Figure 3 shows typical characteristic curves in the fu plane. This figure
shows how the characteristic curve C, that emanates from the point
((0), n(0)) = (0,0) separates the ¢u space into the two regions S, and S,
as discussed in Section 3.

Along these characteristics, if (2.3) is written as

% =F(1(s), u(5)) P,

where F(t, )= B(u, Et))— V(EG)H(w), then the solution is given
by

P(s)= P(O)exp[f(:F(t(w),p,(w))dw . (A2)

The solution to (A.2) has a different form in each of the regions S, and
Sz-

For §,, t(s) = s and u(s) = w(0)+ [ V(E(o)do with 0 < w(0) < pp.
Thus,

1(0) = ;L—f(:V(E((r))da and  p(w)= M—[;V(E(a))da.

If we assume that the initial age structure of the precursor population
satisfies

p(0, 1) = (1),

then P(0)= p(0, u(0)) = ¢( w(0)). From this information and (A.2), we
find that for (r, u) € §,,

P(s)=p(t,p)

_ 4,( ,L—-/C:V(E("r))dﬂ')exp[j(.:F(w,,u—j:V(E(T))dT)dW].

For solutions in §,, the characteristic curve intersects the ¢ axis with
u(0) = 0. From (A.1) it follows that

w(s) = [ V(E(t(@)))da = [ V(E(e +1(0)))do

:fr((l)+.x V(E(w))dw.
1(0)
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Let (¢, u) be an arbitrary point in S, with 0 < u < pg. If 7 is the time
required for the maturation level to increase from 0 to p, it follows that
7 is an implicitly defined variable that depends on the state of the
system and is given by

,L=j{i V(E(w))dw. (A3)

Once 1 is determined from (A.3), then #(0) =¢ — 7 and P(0) = p(¢(0),0)
= p(t — 7,0). The boundary condition (2.1) gives p(¢,0) = S,(E)/ V(E).
Substituting this information into (A.2) gives

P = pts ) = pla =7 0)exp| [ F (o +1(0). () v |

MSn(E(’_T)) [_/i F

U el [ Fo [ vEEas)do |,

T
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