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Abstract

Sufficient conditions for the asymptotic stability (strong convergence) of density evolution in finite dimensional piecewise
monotone map lattices with both constant and state dependent coupling are given. These conditions are quite useful in
numerical work since they allow one to precisely define where one expects to see numerical signatures of asymptotic
stability. Asymptotic stability is illustrated with several examples. It is also shown that in constantly coupled lattices the
density formed by collapsing the higher dimensional density into one dimension can be approximated by the evolution of
densities under the action of an appropriately perturbed one-dimensional map.

1. Introduction

Coupled map lattices have elicited substantial interest among applied scientists since they serve as paradigms
for a variety of spatially extended dynamical systems such as interacting biological populations [27], neural
networks [3,71, convection and fully developed turbulence in fluid flow [3,5,9,10] and pattern formation in
chemical oscillators [9,14]. Typically, for one space dimension, diffusively coupled map lattices are written in
the form

x,, = (1-e)F(x) +§[F(x{_l)+F(xf+')}, ec(0,1] j=1,---,L, (1)

where the map F : [0,1] — [0, 1] determines the local dynamics and € is the coupling coefficient. The index
j=1,---, L specifies the lattice position. If the lattice is finite, it is often the case that j = L + 1 is identified
with j = 1, so the boundary conditions are periodic. These lattice equations can be derived from certain partial
differential equations by discretizing physical space and time [23].
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Numerical studies have documented that coupled map lattices described by (1) can produce interesting
and complex dynamics including spatio-temporal intermittency [3,5,6,10]. As the dynamics of the lattice are
extended beyond the simplest bifurcations of F, it becomes more natural to use statistical approaches to extract
physically meaningful information about the lattice dynamics. Bunimovich and Sinai [2], and subsequently
Volevich [28], applied a variety of techniques from statistical mechanics to study the dynamics of a coupled
map lattice with state dependent coupling

el = [1 et ] st + SEER s) + sfh]

=W Ty =1L (2)

on an infinite dimensional lattice under the following assumptions:
(i) § is piecewise monotone;

(ii) Each branch of S maps [0, 1] onto itself;

(iii) inf, |S'(x)| > a > 1;

(iv) € € C?([0,1]),0< e <1 for x € [0,1], and €(0) = (1) =0.

For this special case they were able to prove that W is both ergodic and mixing for sufficiently small
max, €(y) > 0 and max, |€¢’(y)| > 0. Recently, Keller and Kiinzle [11] have extended the work of Bunimovich
and Sinai [2] by:

(i) eliminating assumption (2);

(ii) replacing (3) by the assumption that each branch of § is C? and inf |S'(x)| > 2;
(iii) replacing (4) by € € C2([0,1]).

They were able to prove the ergodicity and mixing of W on finite dimensional lattices for sufficiently small
max, €(y) > 0.

Numerical studies, on finite lattices by necessity, suggest that the properties of ergodicity and mixing hold
for moderately large ranges of the map and coupling parameters [5, 21]. Despite the power of the results
of Bunimovich and Sinai {2] and Keller and Kiinzle [11], a number of practical issues presently limit
their usefulness for the interpretation of these numerical studies. Typically, the investigator must decide for a
given choice of parameters whether his numerical studies reflect ergodicity-mixing, long transients, or possibly
numerical artifacts. The fact that ergodicity is guaranteed provided certain parameters are sufficiently small
provides little reassurance since in practice one does not know what “sufficiently small” means.

A second issue concerns the nature of the invariant measure of (2) whose existence is ensured by the property
of ergodicity as well as that of mixing. The estimation of the density of this invariant measure is of paramount
importance to experimentalists since it can be used to calculate measurable quantities using ensemble averages.
How is this density to be calculated ?

A final issue concerns how measurable quantities determined from the density of the invariant measure
evolve with time. Consider, for example, the Boltzmann-Gibbs entropy, H. It has been shown that mixing is
not sufficient to ensure that H converges to a maximum [19]. The convergence of H to a maximum requires
demonstration of a stronger type of convergence than that guaranteed by the above theorems [2,11], namely
asymptotic stability. Asymptotic stability is equivalent to the strong convergence of densities to a unique density.
Although asymptotic stability implies ergodicity and mixing, the converse is not true.

Here we give an alternate approach to the determination of the statistical properties of (1) with both variable
(i.e. (2)) and constant coupling. This approach is based on older results of Krzyzewski and Szlenk [13] and
Krzyzewski [11] which are summarized in [15]. The main advantages of this approach are that estimates of
the parameter ranges for which invariant measures exist can be obtained, as well as conditions which ensure
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asymptotic stability. Moreover an estimate of the density of the invariant measure can be obtained for coupled
map lattices with constant coupling.

The concepts of ergodicity, mixing, and asymptotic stability are reviewed in Section 2 from the point of
view of the evolution of densities under the action of a discrete-time dynamical system. In Section 3 we derive
sufficient conditions for the asymptotic stability of lattices with both state dependent and constant coupling.
Our results are illustrated by coupled map lattices composed of the Rényi map [24,25], of a map introduced
by Manneville [20] for the study of intermittency, the tent map, and the Mori [22] map in Section 4. A
consideration of other coupling schemes, including mean field coupling, is given briefly in Section 5. Finally,
in Section 6 we develop an approach for analytically calculating approximations to the one-dimensional density
formed by collapsing the L-dimensional density in lattices with constant coupling.

2. Mathematical background

We briefly review the evolution of densities [15] under the action of a map W : X — X. By a density we
mean a positive normalized L' function f : X — R, i.e. f is a density if f > 0 and fx fdx =1, Given a
density f, then the corresponding measure us(A) of a set A C X is defined by us(A) = fA f(x)dx, and f
is called the density of the measure u;. Having a density f, the associated measure uy, and a non-singular
map W : X — X then W is said to be measure preserving with respect to wys if uf(W‘l(A)) = us(A),
where W™1(A) is the counterimage of the set A. Alternately, this is expressed by saying that u; is an invariant
measure with respect to W. Any set A C X such that W~!(A) = A is called an invariant set. Given a density
f, any invariant set A such that u;(A) =0 or us(X\ A) =0 is called trivial.

The dynamics W are said to be ergodic if every invariant subset A is trivial. If W is measure preserving with
respect to gy, , then W is mixing if lim, o [.Lf'(AﬂW,—](B)) =us (Ayuys, (B) forall ALBC X. If Wis
measure preserving with respect to us, then we say it is asymptotically stable if lim,_, o pr, (W;(A)) =1 for
all A C X such that uy, (A) > 0. Asymptotic stability implies mixing which implies ergodicity, but not vice
versa.

Since x,+1 = W(x,), the evolution of a density f under the action of W is formally given by

/ow(u)du= / f(u) du ACX,

A W-1l(4)

where the operator Py is known as the Frobenius-Perron operator corresponding to W. If there is a density f.
such that Py f. = f., then we call f, a stationary density of Py,. If f, exists, then it can be shown that this is
equivalent to the invariance of the measure py, with respect to the dynamics W. If W is ergodic, mixing, or
asymptotically stable, then we say that the corresponding Frobenius Perron operator Py has the same property.

The dynamics W generate a sequence of densities {P),, f}5,. From a technical point of view three types of
convergence of this sequence of densities can be distinguished. First, if W is measure preserving with respect
to wy,, then there may be weak Cesaro convergence of P[,, f to f,, i.e.

t—1

1
Ilim " (PE,f.8) = (fer8) for all initial densities fand g € L™.
—o0
k=0

Weak Cesaro convergence of Py, f to f, is equivalent to the ergodicity of W.
The second type of convergence is weak convergence, i.e.
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tlim (Pywf 8) =(f8) for all initial densities fand g € L,
—00

and is equivalent to mixing. The work of Bunimovich and Sinai [2] and Keller and Kiinzle [11] demonstrate
that this type of convergence can occur in coupled map lattices described by (2).
Finally, there can be strong convergence of Py, f to fu, i.e.

rlim |1Pwf — f«ll =0  for all initial densities f.
—00

Strong convergence is equivalent to asymptotic stability.

Though the concepts of ergodicity and mixing are relatively familiar, a few examples may be helpful to recall
these for the reader as well as illustrate the less well known asymptotic stability {15].

The map corresponding to rotation on the circle, W : [0,27) — [0,27), defined by

Wx)=x+¢ mod 277,

is ergodic (but neither mixing nor asymptotically stable) when ¢ /27 is irrational, and is not ergodic in all
other cases. The same is true of the transformation

W(x,y) = (\/§+x,\/§+y) mod 1,

where W : X — X, where X = [0, 1] x [0, 1]. For both of these ergodic transformations, the unique stationary
density is f. = 1x where

1y = 1 xeX
¥~10 otherwise.

The baker transformation W : X — X, where X =[0,1] x [0, 1] and

W (2x,1y) I<x<i, 0<y<l1
Tl@x-1,3y+ 5 3<x<1, 0<y<l

is mixing (and hence ergodic) but not asymptotically stable. The same is true of
W= (x+yx+2y) mod 1,

with X defined as for the baker transformation. (This latter map has gained some considerable fame as the
‘Arnold cat map’ [1].) Both of these have the uniform density 1x as a unique stationary density.
Finally, the map W : X — X given by

W= (@3x+y,x+3y) mod 1,

with X again the unit square, is asymptotically stable with the uniform density as the stationary density. Both
the hat map (when a = 2) and quadratic map (with » = 4), considered in the following section, are also
asymptotically stable. The hat map has a unique uniform stationary density on the unit interval (a ='2), while
the unique stationary density of the quadratic map with r = 4 is given by

1
m/x(1 —x)
As we will demonstrate, the following theorem concerning asymptotic stability in discrete-time dynamical
systems is quite useful for studying the statistical properties of coupled map lattices.

felx) =



M. Mackey, J. Milton | Physica D 80 (1995) 1-17 5

Let M be a finite dimensional smooth connected compact C° manifold with a Riemannian metric and
tangent space I"a¢. A mapping W : M — M is said to be expanding if there exists a constant A > 1 such that
the differential dW(m) satisfies ||dW(m)¢£|| > A||€|| at each m € M for every tangent vector £ € I'pq, where
||£]| denotes the norm of the vector £ so ||£]| = (-,-)% and {-,-) denotes the scalar product. Then we have

Theorem 1. ([15], Theorem 6.8.1). Let W : M — M be a C? mapping and Pyy the corresponding Frobenius
Perron operator. If W is expanding then Py is asymptotically stable.

3. Asymptotic stability in coupled map lattices
3.1. Variable coupling

Here we first use Theorem 1 to show that a coupled map lattice with variable coupling, i.e. (2), can exhibit
asymptotic stability. This result extends the findings of Bunimovich and Sinai [2] to finite lattices with variable
coupling.

To apply Theorem 1 to (finite) L-dimensional lattices like (2), we assume periodic boundary conditions and
identify M as the L-dimensional torus formed by taking the Cartesian product of L circles of unit circumference:

L
M={(m1,...,m1‘) m! = e?mix! ,ooamb =¥ Xl xt € R}

Thus in the local coordinates x/ the map W is given by

W( 2 = ( G(S(;J))S(x’ Y+ [ - etseen] s + E(S("}))S(xj“) )
and W maps each point (m',...,ml) into the point (7!, ..., ML) where

mf=exp{27rt [E(S(xj))S(x" )+[1—e(S(xJ))] () + (S(x)))S(x’“)}}

Using these conventions, it is a straightforward consequence (see Appendix A) of Theorem 1 that for the
coupled map lattice (2), when the map S: [0,1) — [0, 1) and coupling € satisfy:
(i) There is a finite partition of [0, 1), denoted by 0 = ag < a; < --- < ar = 1, such that for each integer
i=1,...,r the restriction of S to the interval [a;_1,a;) is a C? function;
(ii) For every i, S([a;-1,a;)) ={0,1) so S is onto;
(iii) There are constants a and M such that 1 < @ < |§'(x)| <M <oofor0 < x < 1; and
(iv) The coupling satisfies €(0) = €(1) =0, 0 < €(y) < €max < 1 and |€'(y)| < €/, for y € (0, 1),
then Py is asymptotically stable for

(1 — €max)?a® — 265 (1 + €ma) M2 — 2yM2A > 1, (3)

where ¥ =1 — minge(o.1) g+ (§(x)) and

A_:{flmax(l_fmax) (l)<€max<% (4)
3 7 < €max < 1.
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3.2. Constant coupling

Many investigators have performed numerical studies on coupled map lattices with constant coupling (see,
for example, [3,5-10,21,28]). Consider lattices

©y=(1-e)S(d) + g[su{“) + 804,
=W, Yy =1, L (5)

of nonsingular maps S : [0,1] — [0,1] with constant coupling € € (0,1). We assume that the full lattice
dynamics W defined by (5) operate in a phase space X; consisting of the L-dimensional unit cube X; =
[0,1] x --- x [0,1] and are nonsmgular W . X; — X is onto, and we specifically do not associate the
point 1 with 0. W maps the triple (x/~", x/, x/*') to a point x],, so as before x/ = =W 2, 1Y), or
Xrp1 = W(x,) where x, = (x!,-- - xb).

It is straightforward to show that if the lattice dynamics are given by (5) and the dynamics of the map
§:[0,1) — [0,1) at each lattice site have the properties:

(i) There is a finite partition of [0, 1], denoted by 0 = ay < a; < --- < a, = 1, such that for each integer

i=1,...,r the restriction of S to the interval [a;_;,a;) is a C? function;

(ii) For at least one i, S([a;—1,a;)) =[0,1); and
(iii) There are constants @ and M such that 1 <a < |§'(x)| <M <ocfor0<x < 1,
then Pyy is asymptotically stable whenever

-1 .
1 — 2esin® (%)l > 1. (6)

The demonstration follows directly by calculating the Jacobian of the transformation W, and using the property
of circulant determinants to show that |\W’| > A > 1 when (6) is satisfied, and then applying an easily proved
extension of Theorem 6.8.1 of Ref. [15].

The above results for constant and variable coupling do not apply to lattices composed of maps such as the
quadratic map

S(x) =rx(1—1x)

for 0 < r < 4 since the slope does not have absolute value greater than one. Moreover, these results do not
apply to maps which are not onto, e.g. the quadratic map with r < 4.

4. Specific illustrations of the results
In this section we illustrate the content of the results of the previous section with four examples. The first
two are for situations in which the map has strictly positive slope.
Example 1. Consider the Rényi map [24]
S(x) =ax mod 1, (7

which is known to be asymptotically stable for @ > 1 ([15], Theorem 6.2.1). Let & > 2 be an integer. From
(3) and (4) we know that when Rényi maps are in a lattice with variable coupling of the type (2), the map
W is expanding and Py is also asymptotically stable whenever
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(1 — €max) 2a? — 1
!
0 < €max < 21 + en) a2

is satisfied. However, when the Rényi map is in a constantly coupled lattice of the type (5), then Py is
asymptotically stable whenever (6) holds (note that « is not restricted to integer values).e

Example 2. Intermittency is often observed in models of fluid flow and Manneville [20] has argued that
continuous time models for turbulence have a Poincaré section approximated by

S(x) =(14+8)x+ (1 —8)x? mod 1, (8)

where & > 0 is proportional to the degree of turbulence and x is a normalized fluid velocity. If we consider a
coupled lattice of Manneville maps, then the entire lattice is a spatially discrete approximation to a continuous
system in which the velocity within fluid macrocells interacts with nearest neighbors. Since §'(x) = (1 +8) +
2(1—9d)x, itis clear that « =min(1+6,3—6) and M =max(1+86,3—-6).If a=1+86 and M =3 — §, then
(3) implies Py for the lattice will be asymptotically stable whenever

s (1+5)2(1_6max)2_1
max 23— 8)2(1 + €max)

O<e 0<é6<1.
Alternately, if « =3 — 6 and M =1 + 6, then (3) implies that Py for the lattice will be asymptotically stable
whenever

’ (3_6)2(1_5max)2_ 1

1 )
o < T4 8)2(1 + eman) <o<2

O<e

(Note that in both of these inequalities, it is necessary that 0 < €mpax < %.) If the Manneville map is in the
constantly coupled lattice (5), then (6) gives the condition for Pyy to be asymptotically stable. Asymptotic
stability in the dynamics may correspond to what is usually called fully developed turbulence {3,5,20].e

To illustrate the results for situations in which the map has both positive and negative slopes, we have the
next example.

Example 3. The tent map

ax for0<x<1l
— ’ =41=3
S(x) {a(l—x), for%<x§1 )

when a =2 and @ = M = 2 satisfies all of the conditions for variable coupling lattices for

4(1 - fmax)z — 8€max(1 — €max) — 1
0 !
< Emax < 81+ €mar)

Thus we know that a variable coupling lattice of tent maps will display asymptotic stability for this range of

coupling slopes and

4-v1
6

0< €max < ~ (0.226.

For the constant coupling case, the sufficient condition (6) for asymptotic stability is consistent with the
numerical results of [8].e

Finally, we give an example for which asymptotic stability can be demonstrated for constant, but not variable,
coupling.
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Example 4. The Mori [22] map

1—c¢c

: x+c 0<x<c
S.(x) = ) . (10)
x ¢c<x<1,

l-¢c 1-¢
where ¢ € (0,1), has a corresponding Frobenius Perron operator given by

c

Ps. f(x) = l—i;f< (x —C)) Lien(x) + (1 —¢) f(1—-(1-c)x),

1—c¢

with a unique parametrized stationary density

1
fe(x;c) = 1+c1[0‘cl(x)+1_—?1(c’”(x)’ c€(0,1).
Ito et al. [4] have shown that the Mori map is asymptotically stable. If we identify
1 1-
a = and M=—£, c € (0,c.)
1—-c¢ c
or
1-— 1
a=—C and M=—— ce (cxs %)
c l1-c¢
where
Cr = 3 _2‘/5 ~ 0.382

is the value of ¢ at which a = M, then it is straightforward to show that the Mori map satisfies all of the
conditions on S for constantly coupled lattices when ¢ € (0, %). Hence, for a lattice of constantly coupled
Mori maps we know that Py, will be asymptotically stable whenever inequality (6) is satisfied with « and
M appropriately identified depending on the value of ¢ as given above. Note in particular that the results for
variable coupling lattices cannot be applied to the Mori map since S, is not onto for x € [0,c]. e

5. Other coupling schemes

We next briefly comment on situations in which the coupling extends beyond nearest neighbors [7,8,11]. A
variety of schemes may be considered, for example a variable coupling one in which each lattice site is coupled
to an even number £ < L — 1 nearest neighbors. In this case, the lattice equations (2) are replaced by

. . . e(S(x J+L[2
dyy = [1-esen] sed + SN s
k=j—L/2,k+j
=W(xl,...,xb j=1,---,L.
For this “boxcar” coupling, dW(m) maps the jth component of the vector £ = (£!,...,£%) into

. J+L/2
Ij=(Aj+B)é + = > siE,
kej— L2,k
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where Aj = (1 - e,»)S} as before and now

€ J+L/2

/
B; =S Yo Ss-Ls
k=j—L/2.k# )

Identical results, like (3) and (4), for variable coupling lattices follow much as before when one notes that

L Jj+L)2
SNt > <l
J=1 k=j—L/2k#j

Similar procedures for the constantly coupled lattice (5) yields a generalization of (6). Mean field coupling
occurs when each lattice site is coupled to all other elements so £ =L — 1.

If one utilizes a coupled map lattice as a paradigm for the behavior of a collection of interconnected neurons,
then based on anatomical evidence it would be more sensible to examine a symmetric coupling that decayed
exponentially [26] as one moved away from a given site. This could be captured by

i J+L/2
= 1= e(sein] seh + B ISR gy etk
k=j— L2,k # ]

=W(x),---,xk) j=1,--,L

Inequality (3), with (4), is immediately applicable to this exponentially weighted coupling, and results analo-
gous to (6) may also be derived in a straightforward manner.

6. Numerical determination of densities from coupled map lattices
6.1. Collapsed densities

The asymptotic stability guaranteed by the results of the previous sections means that the sequence of
densities {f,(x',---,x*)}% will converge strongly to a unique limiting density Fulxl, oo, xL) that is a
stationary density of Py, or P.. However, it is inherently difficult to deal with this L-dimensional density
in numerical studies. Here we present an approximation technique to determine the evolution of a collapsed
one-dimensional density in lattices (5) with constant coupling.

Following the suggestion of Kaneko [6], at any given time we consider the collapsed density

1 1 L
s = [ [ AGan T[o60 -0 o, (1)
0

0 J=1

and then form the trajectory average

1 N
(fu(@)) = Jim = fi(x) (12)
t=1

from the sequence of collapsed densities { f;}55.
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In studying (5) numerically, we approximate (f.(x)) in the following way. First, we partition the interval
[0,1] into n >> 1 subintervals

k-1 k
) kel
n n

Then from (5) and an initial vector xo = (x('),~ . ,x(’;) we calculate a sequence of vectors {x,}ﬁTT, where
xy = (x!,---,xt) and N >> n. We discard a transient of length 7 and from the remaining N system states
calculate the collapsed fraction of these states in the kth interval of the partition from

2T L
k_ L / _
f _NZ L-Zl['__',’%)(x{) k=1,---,n. (13)
=T Jj=l
The vector (f!,---, fL) is a good approximation to {f.(x)) when N >> n. When (5) is ergodic, the value
of (f«(x)) defined in (12) will coincide with
1 1 L
f(x)=/-é-/f*(xl,-v-,xL)HS(xj—x)dxj. (14)
0 0 =1

Examples of the collapsed density obtained from numerical studies when S is given by the tent map (9)
with a = 2 for constant and variable coupling are given in Fig. 1. For the case of variable coupling we took
€(S(x;)) =rS(x)(1 — S(x;)). In these numerical experiments, initial densities were taken to be uniform on
[0,1] or on a subset of [0,1]. In all cases shown the collapsed density was independent of the choice of
initial density. For € < 0.226 (or r < 0.904), a unique collapsed density exists which does not depend on L
(compare Fig. 1a to 1b and Fig. le to 1f), but the shape of the collapsed density is clearly a function of e.
Examples of unique collapsed densities which were independent of the choice of initial density also occurred
for € larger than those calculated in Example 3 (see Figs. 1d and 1h).

6.2. Analytic approximation of collapsed densities

Kaneko [5] conjectured that under certain conditions it might be possible to approximate the coupling
term of (5) by a random variable. In developing this conjecture to provide an analytic approximation to the
numerically computed collapsed densities of coupled map lattices, we first consider the system

xpp1 =T(x) + 7, (15)

where T : R — R is a measurable transformation, and the 7, are random variables distributed with density g
independent of time.

To derive an evolution operator for densities under the action of (15),let A : R — R be a bounded measurable
arbitrary function. When T and n are independent of each other, then the expected value of h(x,y) is given
by [15,16]

E(h(x:1+1)) =/h(Xx+1)fx+1(x) dx =E(h(T(x;) +n:))

R

=//h(T(y> +2) fi)e(z) dz dy=//h(x>f,<y>g(x—r(y>>dxdy. (16)
R R R R
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CONSTANT COUPLING VARIABLE COUPLING

1.21
08}

04|

a
e . . \ +
08| 1
04 |
ol | .

f*
3
b
-
F
-
b

(=] ey
o w - 13
v v v v
>0
v T + v
> m
L

- }

0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8
I T

Fig. 1. The numerically computed collapsed density (13) when S is given by the tent map with constant coupling (a,b,c.d) and variable

coupling (e.f.g,h). In both cases @ = 2. For constant coupling the value of € was (a) & (b) 0.01; (c) 0.20; (d) 0.30. For variable

coupling, €(S(x¢)) = r§(x;)(1 — S(x;)) $0O €max = r/4, and r was equal to (a) & (b) 0.04; (c) 0.80; (d) 1.20. The lattice for a), e)

contained 10 elements and in the remaining examples 100 elements. The collapsed density was constructed from a total of 10° iterations

(L x number of iterations) after discarding a total of 10 iterations.

o

Since h was arbitrary, we obtain
Sfre1(x) = /fr(y)g(X—T(y))d}’- 17)
R

Defining a new density Q,(y) = g(x — y) we have

glx —=T(y)) =0x(T(y)) =UrQ:«(y), (18)

so (17) is equivalent to (remember that the Koopman operator Uy, defined by Uy f(x) = f(W(x)), is
adjoint to the Frobenius Perron operator P since {Pw f, g) = (f, Uwg))

frr1(x) = (f1(9), UrQ«(y)) = (Prfi(¥), 0x(»)) = /[Prft(y)]g(x— y) dy. (19)

R

Eq. (19) defines an operator P,
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nfu>=/ﬁﬁfunﬂx—wdx 0<e<l. (20)
R

It is easy to show that P. is a Markov operator since, for every density f, we have Pf > 0 and ||Pf|iy =
l|fllzr = 1, where || - ||,1 denotes the L' norm. Eq. (20) defines the evolution of densities of the iterates x
determined by (15).

For the coupled map lattice (5), we set

T(x}) = (1 —€)S(x)), (21a)
=§ﬁw”nww“ﬂ, (21b)

where we assume that S : [0,1] — [0,1] is an ergodic transformation with unique stationary density f..
Clearly T : [0,1] — [0,1 — €] C [0,1] and 7, € [0,€]. Since the domain and range of T are not R, the
integration in Eq. (20) must be restricted [16] to the set A(x) ={y € [0,1] : x > y}.

To use (20) to study the evolution of collapsed densities under the action of (5), we must deal with two
issues. The first is that at any fixed time ¢ both T and 7, as defined in (21), are not mdependent even though
the only quantity required to calculate T(xj ) is xJ, and the quantities required to calculate %/ are x’

x’ 1. However, we assume that for small € the independence assumption is approximately true.

Secondly, we must know under what circumstances it is permissible to assume that the 7, are eventually
distributed with density g independent of time, and what that density is. Since § is ergodic by assumption,
the first point is immediate and we need only address the issue of the eventual density with which the 7, are
distributed. Here we make our second assumption. Namely that for small € we assume that the density g will
be approximated by the convolution of the stationary density of each of the terms making up 7:

8(z) 2 G(z2) =/f*(z —v) fe(¥) dy.
0

If the support of the stationary density is supp f« = [0, 1] then supp§G = [0, €].

Example 5. We can test this approximation procedure for the collapsed density by returning to the tent map
of Example 3. It is well known that the tent map (5) has a unique invariant density for all 1 < a < 2. Further,
when a =2, then f,(x) = 1;p,1;(x) where 14(x) is the indicator function for the set A. If T and n were truly
independent, this would imply that the covariance pr, = (T) — (T)(n) was identically zero. However, it is
stranghtforward to calculate from Egs. (21) that pr, =~ e(1 — €) [ {x?) — (x)?]. Since, for the tent map, (x) = }
and (x?) = g it is clear that the independence criterion is not precisely met except in the limit € — 0 or € — 1.
For small € and a = 2 the density g of the % for a constantly coupled tent map lattice (which we have shown

is asymptotically stable when (6) holds) will be approximated by
4 €
8(2) ':G(z)=§/1[o.51(y)1[o,§1(z—y)dy (22)

0
_4 [z 0<z
e le-z 55z
Fig. 2 shows that the actual density g of 7 is close to the approximation (22) for € < 1072,

Using Eq. (20) in conjunction with (22) gives a method to calculate the approximation to the collapsed
density for the tent map with a = 2 and small €. In this case the Markov operator (20) is given explicitly by

INIA
m NIm
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c) €= 0.07

ERSIEN

<
2
z

Fig. 2. The numerically computed density g of the perturbation term (21b) as a function of € when $ is given by the tent map with
a = 2. In the four panels, € has the values: (a) 0.01; (b) 0.03; (¢) 0.07; and (d) 0.50. The lattice contained 100 elements, an initial 104
iterations were discarded and the next 103 iterations were used to compute the density. The dotted line is the approximating density G

given by (22).

R y y
P =309 [f(z(l—e))+f<l'2(1~e)>}‘ (23)

Fig. 3 compares the analytic expressions for f; and f, (see Appendix B), calculated using (23), to the
collapsed density determined numerically from (13) for L = 2 x 10°. As can be seen there is excellent
agreement between the analytically calculated and numerically estimated results. The analytically calculated

collapsed densities rapidly become very cumbersome and we have not continued the computation for higher
iterates.®

7. Summary

Here we have shown that it is possible to obtain sufficient conditions to ensure that many coupled map lattices
with variable or constant coupling are expanding and thus exhibit the property of asymptotic stability. These
conditions provide usable estimates of the parameter ranges for which a unique invariant measure exists for
the coupled map lattice and imply that certain measurable quantities calculated using these invariant measures
evolve to a maximum with time. Numerical studies support the validity of our sufficient conditions and also
indicate that unique stationary densities probably exist when the sufficient conditions are violated. The parameter
ranges for which asymptotic stability occurs in the coupled map lattice include the ranges for which the weaker
properties of ergodicity and mixing occur [1,11].

Our results further show that it is possible to estimate the collapsed limiting density generated in a L-
dimensional coupled map lattice by examining the evolution of densities of a one-dimensional dynamical
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fi

75 1

—tF
0 0.05 0.98 1

z

Fig. 3. Comparison of the one-dimensional collapsed densities at the first ( ;) and second (f>) iteration computed from (23) (solid
lines) to those computed numerically (dots) using (13) when S is the tent map with a = 2. In both cases the initial density was uniform
on [0,1]. The values of the computed collapsed density represent the average of 100 trials for a lattice containing 10° elements. The total
number of bins was 100. The numerically computed limiting density is denoted by i = 0.

system (21). The approximation of the density g of 7 by G is quite accurate when € is small. Consequently it
is possible, in principle, to obtain the entire sequence {P!f}5. Although we illustrated this procedure for the
tent map, an identical approximation can be made for any coupled map lattice when the conditions of ergodicity
and small € are satisfied.

Other interesting statistical properties may occur in coupled map lattices—namely the situation in which the
sequence of densities displays a periodicity rather than smoothly approaching a unique stationary density as in
asymptotic stability. This property of asymptotic periodicity of the densities in coupled map lattices has been
treated in Refs. [17,18].
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Appendix A

To derive condition (3) for the asymptotic stability of lattices like (2) with variable coupling, set S; = S(x/),
S;=dS(x/) /dx/, €; = €(5(x/)), and €] = de(S(x/)) /aS(x’). It is clear that dWW(m) maps the jth component
of the vector £ = (£',...,&5) into

i €; . .
Fy= A B8+ US54 S.06)

!

e’
wherein A; = (1 —¢;)S’, and B, = Sjgj [Sj—1 — 28; + Sjs1] . Consequently
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€

2 ) [S;_léfj—l +S}+1§’“]2 +€j(A;j+ Bj) [5}_151—151 +S;+l§;§J+1]
2 (AJZ' +2Aij)(fj)2 +¢€;(Aj+ Bj) [ ;_Iff—lé‘:f + S;Hfjfj*l] )

2= (Aj+B,-)2(§f')2+(

Now A2 = (1 —€;)%(8})? > (1 — €max)?a® and 24;B; = €/(1 - €)(S)?[Sj—1 — 28 + Sj+1] > —2€l . M.
Furthermore, for k= j—1 or j+1 we have €;A;S} = €;(1—€;)SS; > —yM?A and €;B;S; = 3€/€;S;S,[Sj—1 —
28; + Sip1] > —€h €maxM?. As a result,

max
I3 > [(1 - ema)’a’ = 2e0M?] (67 — [€hamemanh” — 2yM*A] [£716 + £1¢7*1]

and since Z}il gk < 11€]1? we have

L
W mEP =" 17> {(1 - €mam)?a® — €0y (1 + €ma) M — 2yM* 4} [|£].
j=1

Thus, if A= {(1 — €max)?a” — 26/, (1 + €max) M* - 2)/M24\}l/2 > 1, then W is expanding. An application of
Theorem 6.8.1 of [15] completes the proof.

Appendix B

Here we give the expressions for f1 and f, calculated for (21) using (23) when § is the tent map with
a = 2. The initial density, fp, for these calculations was the uniform density on [0, 1].

2x2 €2 —dex +2x2
= —— 1 € _—_—
fi(x) 200 (0,5)(x) + TP

2 —4de+ €* — 4x + dex + 217 2(x — 1)?
5 l—en-5)(X) + 57—
€2(e —1) 2 €*(1 —€)

1
lise(x) + :1[5,1—@(36)

I, (x),

x* —e* 4+ 863x2 — 24€2x? + 32ex® — 8x*
0 = e Talon( + 484 (et — 1)
4 { —17€* + 646> — 96€® + 64€” — 1668 + 72€3x — 192€*x?
48€%(e — 1)4
19267 x — 64€®x — 120€%x? + 192€3x? — 96€*x?
+ 48€t(e — 1)*
96ex> — 64€2x3 — 24x* |

N { —9€* + 64€° — 96€° + 64€” — 16€8 + 40€3x — 192€*x

Ligeci—en(X)

48e4(e — 1)4
N 19265x — 64€®x — 72€x? + 19263 x> — 96€*x? + 64ex3
48€4(e — 1)4
—64€2x3 — 16x

4
m} l[e,e([_€)+§)(x)
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N { 153e* — 368¢€> + 336€® — 128€” + 1668 — 392€3x + 672¢%x

48€%(e — 1)
N —384€x + 64€%x + 360€2x? — 384€3x2 + 96e*x? — 128€x>
48e(e — 1)4

64e2x3 + 16x* . )
4864(6 1) le(1—€)+£.2e(1—e)) (X
N {28164 — 880€’ + 1104€® — 640€” + 144€® — 648€3x + 1440e*x

48€%(e — 1)
N —1152€°x + 320€%x + 552€2x? — 768€3x2 + 288€*x? — 192¢ex>
48e4(e — 1)4

128€2x3 + 24x*
+ A8ei(e — 1) L2e(1—e),e(1—€)+€) (X)
+ 25€> — 368€ + 720€® — 512¢7 + 128€® — 136€3x — 672€*x
48€*(1 — €)4
N —768€%x + 256€%x + 168€%x? — 3843 x> + 192€*x? — 64ex?
48e4(1 — €)*

64€>x> + 8x*
(1 —e)? Le(1-e)+e2e01-e)+5) (X)

N { —75€* + 204€> — 210€® + 96€” — 18€8 + 108€3x — 216€*x

6e4(1 — e)*
N 14463 x — 32€%x — 54€2x? + 7263 x% — 24€*x? + 12ex?
6e(1 —e)?

—8e2x2 — x*
(1o Li2e(1—e)+5.2¢(1—€) +) (X)

1
+ m1[25(1—5)+s,1—e)(x)

—2+4€ — €* +4x —dex — 2x2
e2(e —1)2

li—e1-5)(x)

2(x —1)?
67_(()2—_1))21[“5‘1](«‘)-

The expression for f3 divides [0, 1] into 29 subintervals!
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