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Abstract

This paper investigates the statistical properties of networks of chaotic elements modeled by coupled map lattices.
Transitions separating statistically stable and periodic phases are numerically observed in generic models of excitable
media. Similar transitions are studied analytically in lattices of piecewise expanding maps by considering the spectral
properties of the Perron-Frobenius operator using the theory of functions of bounded variation in R”.

1. Introduction

Models framed as coupled map lattices (CML) have been receiving increasing attention in the description
of spatiotemporal dynamics. Typically, in two spatial dimensions, these CML’s are of the form
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where § describes the local dynamics. Periodic boundary conditions are imposed. When p = 4, the coupling in
(1) is said to be diffusive, whereas when the p-neighbourhood encompasses all sites of the lattice, the coupling
is referred to as mean field. Applications of CML’s to the description of spatiotemporal dynamics range from
the evolution of various ecosystems [39], to image processing algorithms [37], to the evolution of genetic
sequences [10] and the interfacial dynamics in many reaction diffusion systems (cf. [26] and references
therein). Some CML’s tend to form large scale patterns, while others display spatiotemporal chaos, depending
on the properties of the local transformation and on those of the inter-element coupling architecture.
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This paper is concerned with the transitions which separate two distinct phases in these systems. It was shown
in a previous study [27] that lattices of diffusively coupled chaotic unimodal maps exhibit two “phases™ a
spatiotemporally chaotic phase in which the statistical quantifiers can be computed with respect to a unique
absolutely continuous invariant measure, and another phase characterized by the cyclical evolution of phase
space densities. This asymptotically periodic phase reflects a cyclical spectral representation of the Perron-
Frobenius operator induced by the lattice transformation, and is associated with the formation of large scale
patterns when the local map is a generalized tent map. The presence of statistical cycling in coupled map
lattices has been discussed in some detail by Chaté and Manneville (cf.. Section 3.2.2 of [7], and [8]) and
by Gallas et al. [14], and Chaté and Manneville [6] in various cellular automata. In these references, the
statistical cycling discussed here is sometimes referred to as “noisy periodicity”.

Here we show that there is a class of biologically relevant CML’s (referred to herein as excitable CML’s)
which generate large scale patterns when they are numerically observed to display statistical cycling. This
observation is used to motivate an analytical study of asymptotic periodicity in CML’s as a function of the
inter-element coupling. Although it has been conjectured [18] that the formation of large scale patterns in
CML’s was a consequence of this statistical cycling, we show that this relationship holds only in the case of a
linear coupling architecture and that even in this case asymptotic periodicity is a necessary, but not sufficient,
condition for pattern formation.

In Section 2 we introduce excitable CML’s and numerically investigate the relationship between their statistical
properties and the appearance of patterns. The statistical cycling is discussed analytically in Section 3: the
Perron-Frobenius operator induced by piecewise expanding CML's is investigated using the theory of functions
of bounded variation. In Section 4, analytically tractable CML’s with linear couplings which display the kind
of cycling demonstrated in Section 2 are presented, and phase diagrams for these systems are obtained using
the methods presented in Section 3. In Section 5, this analysis is extended to nonlinear coupling architectures.

2. Excitable CML’s

A biologically motivated map which has surprisingly received relatively little attention in the study of coupled
map lattices is the asymmetric bimodal map

b
fou = (a + ﬁ) ) 2)

where G(x) =1+ x" and a+ b > 1 > a > 0. These maps arise in the description of the growth of ecological
populations [3,9,31], neural networks [33], in the analysis of cardiac arrhythmias [38], and the study of
the Belousov-Zhabotinsky chemical reaction {35]. They describe systems in which the dynamics depend on
a threshold: rapid growth, or excitation, occurs when the variable crosses the threshold and is followed by a
relatively long period of decline or decay. In this sense, these maps can be regarded as simple analogues for
locally excitable dynamics. The bifurcation diagrams for these maps are quite complex and include stable limit
cycles as well as regions of “banded” chaos [31].

To construct the CML it is necessary to derive the appropriate form of the coupling architecture. The coupling
is most easily obtained in the setting of an ecosystem composed of k territories in which the local dynamics
of the kth territory is described by (2). Eq. (2) has been used to describe the growth of certain territorial
animal populations, such as the bobwhite quail, and describes a population which grows at rate ~ (a + b)
when x < 1 and declines at rate ~ @ when x > 1 [31]. The decrease in growth rate for large population
densities arises because of competition between individuals once the population exceeds the number which can
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be accommodated in preferred habitats. It follows that the influence of individuals in the i # jth territory on
the jth territory must be through the term G, and hence the coupled map lattice is of the form

x;+1 = (a + G(‘}—(x,)) x',, (3)

where i = 1,-- -,k is a space index which again need not be a scalar, and x, = (xﬁ, - -,xf) denotes the state
of the lattice at time 7. Franke and Yakubu [13] introduced a coupling scheme given by

k
¢y =1+ [d]’
j=1
to describe globally coupled species of bobwhite quail competing for shared resources and showed that for
sufficiently large n, the species in all territories except one became extinct.
More realistically the coupling should reflect the fact that the greater the distance between two territories,
the smaller the interaction between them. We therefore define

n
k

GO(x) =1+ x4+ > wyad| (4)
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where w;; denotes the weight of the connection between x] and x!. This weight should decrease as the distance
dist(x’, x/) between sites x' and x’ increases. The distance between sites is calculated using the Euclidean
metric:

dist(x, x/) =i — j| for dimensionality 1,

dist(x"2,x/'2) = \/(jy —i1)2 + (jo — i2)?  for dimensionality 2,
etc.

The simplest coupling architecture decreasing with distance is piecewise constant:

Wi =

{ 1N if dist(x',x/) <R, (5)

0 if dist(x', x') > R,

where N denotes the number of territories located within Euclidean distance R of xi. In other words, the
evolution of the local territory x* is influenced in an inhibitory fashion by the mean activity in a surrounding
sphere of radius R.

The inhibitory effect of the coupling in (5) is illustrated by the behavior of the map

b
Sf(Z)—(aﬁ-m)Z (6)
which is another way of writing (3) with coupling (4) [i.e. the sum in (4) is replaced by the constant factor
£1. Fig. 1 illustrates the fact that if £ is large, which represents a large mean activity in the neighbourhood of
any lattice site xj, the value x{, | tends to be smaller than xi. The growth of x! is therefore inhibited locally by
the activity of its neighbors.

The system (3) with (4) and (5) can now be investigated when the lattice is two dimensional for various
coupling ranges R and control parameters. When the parameters are such that the local maps possess stable
limit cycles, the whole lattice synchronizes and forms “coherent structures” whose stability properties have
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Fig. 1. Superimposition of several curves of the map (6) with a=0.5, =25, n=29and £=0,---,09.

been discussed previously in the context of diffusively coupled maps [1]. We do not consider these dynamics
further here, but instead focus on the nontrivial statistical properties of the CML which arise when the local
maps are chaotic.

When the local map is chaotic, numerical studies indicate that two distinct types of statistical evolutions are
possible. Varying one (or several) control parameters can result in a transition from one phase to another (e.g.
Fig. 3 displays one phase while Fig. 6 displays the other in the excitable CML presented above). For theoretical
reasons developed in [27], these transitions are appropriately described as phase transitions since they involve
qualitative changes in the thermodynamic state of the chaotic CML’s under consideration (cf. the discussion
related to the distribution of activity, below, and the introduction of Section 3).

Each phase is characterized by the behavior of various statistical quantifiers of the motion which evolve
in qualitatively differing ways depending on the phase of the CML. There are many such quantifiers which
have been developed to investigate spatiotemporal dynamics, and highlight nonlinear correlations between
the elements (e.g. the mutual information), various stretching rates (e.g. the Lyapunov spectrum) or other
information theoretic quantities of interest (e.g. the Rényi dimensions). In this section, we use simple quantifiers
to characterize unambiguously the equilibrium statistical properties of system (3) with (4) and (5).

2.1. The distribution of activity

This quantity is the histogram of the activity on a large lattice at time . It approximates the density F; which
is implicitly defined by the relation:

1
(x:) = ﬁz—folF,(xfl), (7)
kil

where (-) denotes the average activity of the quantity inside the brackets. If F, : R — R does not reach a
stable fixed point as the system evolves, then it can be shown that the phase space density f, : RY ‘' RV
which describes the statistical properties of an ensemble of CML’s (with N? sites) will also not reach a fixed
point [27]. As discussed below, the CML’s under consideration here can display a form of statistical behavior
at equilibrium which is thought to reflect a cyclical spectral decomposition of the operator which governs the
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evolution of f, (the Perron-Frobenius operator). Therefore, it is of interest to compute F; since it gives us
an efficient description of the temporal behavior of f,, the N?-dimensional phase space density. Studying the
evolution of f, (or the more efficient F,) provides a means to investigate the nonequilibrium thermodynamics
of CML’s, because the thermodynamic state of a CML with phase space X is the measure space (X, B, u)
where u, is associated here with a phase space density f,, and B is an appropriately defined time-independent
partition of X (i.e. a o-algebra). Another statistical tool we use to investigate the dynamics of our CML’s are
the so-called linear correlation functions.

2.2. Linear correlation functions

These functions are defined for a trajectory {y,-}iQ=1 which is either the temporal evolution of a single site, or
the activity along one spatial direction. Mathematically we have:

Q—i
i =) Giri — ) - (8)

. Ci
pli)==—, c¢=

co 0
2.3. The Boltzmann—Gibbs entropy

The Boltzmann-Gibbs entropy of a probability density f, provides a measure of the difference between f,
and the uniform density. If £, is the ensemble (or phase space) density of a dynamical system at time ¢, its
Boltzmann-Gibbs entropy at time ¢ takes the form:

H(f) =_/f,mf,dx,, (9)
X

where X denotes the phase space. When large CML’s are considered, obtaining f, is computationally very
costly. However, as mentioned above, some of the properties of f, can be studied by focusing on the one
dimensional function F,, and therefore, the Boltzmann-Gibbs entropy discussed in Figs. 2 and 5 will be the
entropy of F,. For a detailed discussion of the relevance of the Boltzmann-Gibbs entropy to a discussion of the
thermodynamics of chaotic dynamical systems, see [29].

Having briefly defined three statistical descriptors of CML dynamics, we are in a position to discuss the two
distinct statistical phases displayed by system (3) with (4) and (5). The first is a reflection of the fact that
the local map is probably ergodic (and perhaps even mixing). As shown in Fig. 2 the statistical quantifiers
of the motion relax to steady states which reflect the probable existence of an invariant measure describing
the equilibrium thermodynamic properties of the lattice. In this case, the activity of the lattice (cf. Fig. 3)
is spatially as well as temporally chaotic. The resulting behavior has been termed “spatiotemporal chaos”
[4,5,11,19] and was first proposed as an interesting paradigm to study fluid turbulence.

The second of the two phases mentioned above is characterized by the cyclical statistical behavior displayed
in Fig. 4 and the possible formation of large scale patterns, examples of which are given in Fig. 5. It is
conjectured here that this cyclical statistical behavior reflects the fact that the measures (and their densities)
evolving under the action of the CML are not converging to a steady state, but to a stable limit cycle (in the
space of probability densities). This in turn would be a consequence of the cyclical spectral decomposition
of the Perron-Frobenius operator which governs the evolution of these densities. A property of the transfer
operator known as asymptotic periodicity (defined rigorously in Section 4.1, and presented more intuitively in
[27]) would account for such behavior, and will be analytically described for simpler CML'’s in Section 5.
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Fig. 2. Behavior of various statistical quantifiers of the dynamics of the CML (3) in dimension 2, with N X N elements and periodic
boundary conditions (N = 200), and with R of Eq. (5) being 3. In all panels, the parameters are : a = 0.65, b =2.15 n = 45. (a) Evolution
of the Boltzmann-Gibbs entropy (9) of the density F; displayed in (c) and defined in (7). (b) Behavior of the temporal autocorrelation
function (8) at a “typical site” on the lattice. (¢) The distribution of activity F; across the lattice at equilibrium; this probability density is
time invariant and probably reflects the existence of an invariant measure. It’s invariance does not rigorously imply, but strongly indicates
invariance of the measure in RY 2. (d) Spatial correlation function for the left panel of Fig. 3.

Fig. 3. These two panels are snapshots of the activity of a 200 x 200-element lattice with periodic boundary conditions at times ¢ = 103
(left panel) and ¢ = 10% + 1 (right panel). They display spatiotemporal chaos in the CML (3) with 200 x 200 sites. The parameters are
as in Fig. 2. The initial distribution of sites was uniform over [0.5,1.5].

The formation of large scale patterns occurred only in the statistically cycling regime. However, there is still
no clear understanding of the possible link between statistical instability in this system and the formation of
patterns.

When patterns appear, two scenarios can be observed: (1) synchronized clusters can grow in a relatively
short time (less than 10° iteration for a lattice of ©(10*) elements) until they cover the entire lattice (as
in the top panels of Fig. 6): The statistical cycling is then temporal rather than spatial [the synchronization
within each cluster is not deterministic: all the sites within one cluster are contained within a small region of
the real line sometimes referred to as a band, as in Fig. 4]; and (2) the expansion of the clusters is very slow,
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Fig. 4. Ilustration of statistical cycling in the CML (3). The three panels display the distribution of activity (7) across a lattice at three
consecutive times, when the lattice is composed of 200 x 200 sites, and the parameters are: @ = 0.5, b = 2.5, n = 18. The initial distribution

was uniform over [0.5,1.5]. The exact asymptotic cycle (in density space) depends on the initial preparation (cf. Remark 1 in Section
3.1).
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Fig. 5. The temporal correlation function (8) and Boltzmann Gibbs entropy (9) of F; for the CML (3) when the parameters are the same
as in Fig. 4. The “cquilibrium” consists in two metastable states visited alternatively in time.

and during a very long transient, macroscopic clusters appear to be metastable. In this case, (bottom panels
of Fig. 6), the statistical cycling is both temporal and spatial (the spatial cycling reflecting the presence of
correlated and anticorrelated clusters of activity). In other words, the main difference between the situations
which give rise to the formation of large clusters of correlated activity, and the situations which give rise to
the synchronization of the entire lattice seems to be the length of transients: It appears that the patterns of Fig.
6 (bottom panels) eventually synchronize and look like those of Fig. 6 (top panels), but the transients are, as
expected [21], extremely long.

Figs. 3 and 6 display snapshots of the activities of 200 x 200 lattices of maps of the form (3) coupled
together according to (4) with (5), with periodic boundary conditions and for different values of the radius R
and control parameters. In Figs. 2, 4 and 5, some of the standard statistical quantifiers of chaotic motion are
displayed when the lattice is either in the statistically stable or the statistically periodic phase. It is important to
realize that the regions of parameter space in which both statistical stability and statistical cycling are observed
are “large” in the sense that they are easily located during preliminary numerical trials.

In summary, our numerical results indicate that:

(1) An initially featureless excitable CML can spontaneously organize itself into large clusters of correlated
and anti-correlated activity (cf. Fig. 6).

(2) The formation of large scale patterns occurs only when the statistical behavior of the lattice is nontrivial.
In this case the lattice does not relax to statistical equilibrium but it evolves to a statistically periodic state.
This implies that the CML under consideration possesses a thermodynamic equilibrium unlike those described
in classical statistical mechanics. This equilibrium consists in a sequence of states visited periodically in time.
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Fig. 6. Snapshots of the activity of a 200 x 200-sitt CML (3) when it is in the statistically cycling regime. Left panels: ¢ = 103; Right
panels: t = 10% + 1. The top panels illustrate the formation of correlated clusters of activity which cover the entire lattice. The parameters
in this case are as in Figs. 4 and 5 with 82 nearest neighbors (R = 5) included in the neighbourhood. The bottom panels display the
formation of patterns for the same parameter values but only 28 nearest neighbors (R = 3) influencing the activity of a given site. The

initial preparations of the lattices were featureless, and the initial condition for each site was a random number picked from a density
uniform on [0.5,1.5].

We will come back to the implications of this observation in the discussion.

Given the paucity of rigorous results concerning the dynamics of large chaotic CML’s, it is of great interest to
describe this behavior analytically. Unfortunately, the map (3) cannot at present be dealt with in such a manner
because it is not expanding everywhere. We propose in the next Section a nonlinear CML which accounts for
much of the complexity described here, while remaining amenable to analytic treatment,

3. Thermodynamics of CML’s

The statistical properties of coupled map lattices defined by the nonsingular mapping @ : X — X can be
studied by investigating the spectral properties of the associated Perron-Frobenius operator Py : BV(X) ——
BV(X). BV(X) is the space of functions of bounded variation supported on X endowed with the bounded
variation norm (for definitions, see [15]). The properties of BV(X) are relevant to our discussion of coupled
map lattices, because the phase space probability densities which describe the ensemble properties of CML's
are elements of BV(X). Note that BV(X) endowed with the bounded variation norm || - {|pv=|| - ||, +V (),
where \/ is the variation, is a Banach space (the proof makes use of the semi-continuity property of variation,
and is given for X C R¥ in Remark 1.12 of [15}).

The evolution of the phase space densities is governed by a linear Markov operator known as the Perron—
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Frobenius operator. The fixed points of this operator are the densities associated with invariant measures. In this
paper, the Perron-Frobenius operator is defined on spaces of probability densities associated with absolutely
continuous measures, though in general it can be defined to act directly on (noncontinuous) measures. This
would be helpful to consider the statistical mechanics of dynamical systems such as cellular automata for
example, but would bring unnecessary technical difficulties to the study of the coupled map lattices we are
concerned with. The convergence properties of sequences of densities evolving under the action of the Perron-
Frobenius operator describe the nonequilibrium statistical properties of the systems under consideration. In this
sense, the Perron-Frobenius operator offers a description of coupled map lattices analogous to the probabilistic
description of ordinary differential equations by Liouville’s equation, or the description of density evolution
under the action of Langevin’s equation by the Fokker-Planck equation.

3.1. Mathematical preliminaries

A general introduction to the Perron-Frobenius operator Py is given in [25], and the usefulness of this
operator to investigate the thermodynamics of chaotic systems is discussed in [2]. For piecewise monotone
transformations and for any f, in BV(X),

J(»)

= . 10
Ty ~fm® (10

P(Dfr(x) =

ye@~l(x)

Explicitly, let @, denote the strictly monotonic restriction of @ to the ith of m sets r;, such that | J; m; = X,
and let 7; = @, (7;). Then, (10) can be written as

" f (@D (x))
quf;(x) =z—j“_|1'(T

i=1

Xﬁi(x)’ (11)

where y#(x) =1 if x € 7;, 0 otherwise, and
T~ (x) = |det D&} ! (x)]| (12)

is the absolute value of the Jacobian of 43;;1 (x).

Let f, =P, fo, t=1,--- denote the iterates under Py of an initial density f, € BV(X). The convergence
properties [25] of the sequence of functions { f,}, reflects the thermodynamic properties of @. For example,
@ is ergodic if and only if there exists an invariant density f, such that Py f, = f, and that the sequence is
weak Cesaro convergent to f_(x), for all probability densities f:

tl_i}r&%Z/ﬁ(x)q(x)dx:/f*(x) q(x) dx, forall g € BV(X).
k=1 x X

A stronger (but familiar) property, mixing, is equivalent to the weak convergence of the sequence to the
invariant density:

IEr&/f,(x)q(x)dx:/f*(x) q(x)dx, forall g€ BV(X),
X X

for all probability densities f;. In this paper, we will consider situations in which the sequence of phase space
densities evolves to a periodic cycle, reflecting a property of Pp known as asymptotic periodicity. Asymptotic
periodicity is a property of certain linear Markov operators, and is described in detail in [23,24].
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Definition 1. Asymptotic periodicity. Py is asymptotically periodic if there exist finitely many distinct probability

density functions g, --, g, with disjoint supports, a unique permutation y of the set {1,---,r} and positive
linear continuous functionals I'y,---, I, on BV(X) such that
r
Jim Py | fo =D Tilfolg ||| =0 (13)
i=1 L
and

Pogi=8yiy, i=1,---,r

If Py satisfies these conditions with r = 1, it is usually said to be asymptotically stable, a special case of
asymptotic periodicity, which implies mixing and the decay of correlations. If the permutation y is circular,
asymptotic periodicity implies ergodicity. For an intuitive discussion of asymptotically periodic systems the
reader is referred to [25]. It is enough to note here that in such systems there exists an invariant density which
is almost never observed. Instead, the evolution of phase space densities is time periodic (in the asymptotic
regime), and so is the evolution of all statistical quantifiers of the motion which are computed with respect to
this invariant density (thermodynamic entropies, correlation functions etc.).

Remark 2. 1t is important to note the dependence of the functionals I'; on the initial density f,,. This implies
a dependence on initial conditions for asymptotically periodic systems which is different, and to some extent
much stronger, than that usually associated with chaotic dynamics: here the ensemble properties of a given
CML depend on the initial ensemble. There is no rigorous study of the sensitivity of these functionals on
variations of the initial density, but numerical investigations indicate that it is common to observe cycles with
very different weighting of the g; components for apparently similar initial densities.

In general it is necessary to resort to numerical simulations to demonstrate the presence of asymptotic
periodicity in a coupled map lattice. However, as we show in Section 3.2, it is possible to derive sufficient
conditions for asymptotic periodicity in the special case that @ is piecewise linear.

With these preliminary definitions, it is possible to investigate the evolution of phase space densities under
the action of certain CMLs.

3.2. Sufficient conditions for statistical cycling

Here we derive a sufficient condition for the asymptotic periodicity of the Perron-Frobenius operator Pgp
for coupled map lattices composed of piecewise expanding mappings. Our approach, inspired by the work of
Goéra and Boyarski [16], involves placing bounds on the variation of Py f, and then using these bounds to
invoke a basic result from the theory of linear operators due to Ionescu-Tulcea and Marinescu [40]. Their
result is formal, but in our case (i.e. by considering an operator acting on elements of BV (X)) it implies that
if \/(Pa f) is such that

V(Pof) <o \/(f) + 0, (14)

where 0 < w < 1 and £2 > 0, then Py is asymptotically periodic. It should be noted that the above provides a
sufficient condition for the spectral decomposition (13), and that when condition (14) is not satisfied, we are
not in a position to discuss the density evolution associated with chaotic CML’s.
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For typical CML’s, the requirement that (14) be satisfied places natural constraints on the control parameters
of @. To proceed, note that since & is a piecewise monotone mapping we have from (11)

" f( ] (x))

VP =\ | T')—Xin(x)

=1
(2, ()
= Z\/ <f l”( x) Xn(x))
<03V (£@7 6D xn)) (15)
i=1

where @ € R* satisfies

1
maxq;crnr ~.7[v1(x) minmen \Z_l(x)

and depends on the transformation under consideration. Eq. (15) can be further simplified using example 2.14
of [15]:

V (#@tanxno) < (£ o)) / F(@7 () Vaxamldu (N)
- \/(f(qb,,,l(x)) /If(¢,,, () | dpr (N — 1), (17

where ui(N) denotes the Lebesgue measure in RV, Intuitively, if # ¢ BV(X), the integral of |u| over the
boundaries of subsets of X must depend on the geometry of these boundaries. In fact, from Lemma 3 of [16]
we have

/u(x)dm(N— 1) <

37T,'

1
Sino(m) —_— (%)
where Kz, > 0 is bounded and sin #(7) depends on the geometry of 4r;: #(#) is an angle, defined in Appendix
A, which depends on the minimum angle of intersection of any two faces 347;.

Calculating sinf(7r) is tedious but straightforward when the #;’s are bounded by hyperplanes such that
the edges of d7; intersecting at a vertex do so at angle # [a detailed calculation of sin@(#) is presented in
Appendix A for various cases of interest]. Letting K = max; K,, and applying (18) with u(x)=f (¢|:Tf(x) ),
(17) becomes

V (F@ionxn) <V (r@ion)| | + g V (@), +Xa
1

=V (f(‘pl:rf(x))) xen, [1 T e

A straightforward change of variables yields (when J;(x) is independent of x, which is the case in the systems
considered here)

V{r@en)|  =aVuen| <oV e

]-i—lC. (19)
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Fig. 7. Schematic diagram of the evolution of one of the hyperplanes bounding the set #; under the action of the CML transformation &.
As in the text, #; = @5 (7).

Summing the terms like (19) in (15), we obtain the inequality

V (Pof) < Q? [1+ —yTE )]\/<f)+m921c, (20)

which yields a method for determining the constants in (14). Therefore, if
w=Q? 1+—1—~ <1, (21)
sin 8( )

the theorem of Tonescu-Tulcea and Marinescu guarantees that Py is asymptotically periodic since 2 = mQ*K >
0.

4. Linear coupling

The association of large scale patterns and asymptotic periodicity in CML’s was first observed for the case
of a diffusively coupled CML in which the local transformation, S, is the generalized tent map [27]

S(z) =zggr’\]]{az,a(1—z)}, ac(1,2]. (22)

Here we use the results of Section 3.2 to study asymptotic periodicity in lattice transformations of the form
(1), with S given by (22) for various linear coupling architectures. This study is facilitated by the fact that for
this choice of S, sinf(4), and Q of condition (21) can be readily calculated.

4.1. Calculating sin@(7r)

The phase space X of the transformation @ is the direct product X = [0, 1]V if there are N sites on the
lattice. Note that each of the elements of this product can be divided into two subintervals I; = [0,1/2),
I = [1/2,1] such that on each of these, § is monotone. Therefore the partition /7 on which @ is piecewise
monotone contains 2V sets, each one of which is of the form: m; = I 'I N—i where i = 1,---,2". In addition,
note that /7 is a rectangular partition since I; and I, are the same for aIl sites on the lattice.

As illustrated in Fig. 7, the “image sets” denoted 7; (i = 1,---,m) are rhomboids (cf. [28]) whose edges
subtend angles which are bounded away from 0. The smallest of these angles is denoted 6, and can be
calculated explicitly by noting that the two dimensional restriction of the CML transformation @ to the plane
(x',x/) (x' and ¥’/ belonging to the same p-neighbourhood) is
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X, =(1—e)S(x) + 28(x) + Ci,
oD (x,) =4 . - Ba
X =(1—8)S(x) + ;S(x;) + Gy,

where C, and C, depend only on the activity in the p-neighbourhood of the sites i and j (excluding x' and x/
themselves). Hence,

@-dy(. .. oy={... B 1-eY21c,...-) =
@ (---,0,1/2,--4) ( ,2p+C1,( 8)2+ 2, =u,

d2D(... 1/2,0,--)={---,(1 - a C,ff Cy,-o- | =0s,
( / ) (I-e)5+ 12p+ 2 V2

_ 1-p a aeg(l1—p
2D 12.1/2,y=(- 24+ B (Y 1,2+ = (—E) 10 ) =0
( /2,1/ ) 5+t 5 5 +Chs+ 5 p 2 vs

Denote by #; the edge linking v to v3 and ¢, the edge linking v to vs. The slope of £, is therefore g/p(1 —¢),
and the angle i, of intersection of £; and ¢, satisfies

p(1—&)[e? — p*(1 —&)?]
ele? + p2(1 —¢)?]

As shown in Appendix A this implies

sing(7) = \/ 1~ c0S Bl (24)

(23)

tan Gy =

N[1+ (N —2)cosin] ’

where N denotes the number of elements on the CML under consideration (this number is N2, and not N, for
the systems investigated in the phase diagrams, cf. Figs. 8, 9 and 11)

4.2. Calculating Q

If the tent maps (22) are coupled as in (1), the possible entries in the derivative matrix D®,,,, are,

I «Me I HMen
@i (X) (1-¢)a —(1-8)a
i u(x) (e/p)a —(g/p)a.

The absolute value of the determinant of this matrix remains unchanged when entire columns are multiplied by
—1, and so

| det DD\, | = det |DPy,,| = det | DD,
where |D®| is a real matrix, whose diagonal entries are (1 —&)a, and nonzero off-diagonal entries are (e/p)a.
Since periodic boundary conditions are assumed, |D@)| is also symmetric, and hence diagonalizable, and

N-1
det|Do| = [T At
k=0

where the A;’s are the eigenvalues of |D®|. Although these eigenvalues depend on the coupling architecture,
they are independent of both i and x when the map is piecewise linear with a slope whose absolute value is
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constant on the phase space. Therefore det |D®),,| is also independent of x and i, and if there are N elements
on the lattice
N-1
o=t vi=1, 2V, vreX, (25)
k=0

where the expressions for the A;’s for several coupling schemes are listed in Table 1 below. Recall that Q was
defined implicitly in (15) by the requirement

f(ab,, )

Z\/( T X x))<QZ\/(f(¢ L)X (0)).

It is clear from (25) that

m

“(x)) 1 )
Z\/( 7 X (")> =‘HFZV(f(¢,,,f(x))x,~r,(x)),

k=0 k=l

so it is natural to pick

N-1
Q= H"k' (26)
k=0

As a result, condition (21) for asymptotic periodicity, applied to a lattice of generalized tent maps (22) coupled
linearly as in (1) becomes, if there are N elements on the lattice [note here that the phase diagrams of Figs.
8, 9 and 11 are given for lattices which possess N? elements]

N—1 1
2 ————
g X2 [1 + sinﬂ('fr)] < 1. (27)

Exact expressions for the eigenvalues are necessary to obtain concrete conditions on the parameters a, p and &
such that (27) holds. The periodic boundary conditions we have chosen are helpful in this regard since they
ensure that the matrix |D@®| is circular: the second row is obtained by shifting all the elements of the first
TOW to the right by one position, so that if the entries of the matrix |D®| are denoted ¢}; (k,I=1,---,N)
B = Plrs1y+1)mea v (the modulo operator is a consequence of the periodic boundary conditions). For such
matrices, [which are, again, associated with CML’s with N elements] it is well known [32] that

N
M= S @™ N k=0, N1, (28)

The table below gives explicit formulae for (28) for an N x N lattice of tent maps (so that k of (28) now
runs from 0 to N? — 1) with several coupling architectures discussed in the literature:

The sum in the p nearest neighbors case is over half the sites which are included in the neighbourhood
because each term in the sum arises from the contribution of two sites: x™ and its mirror image relative to
the center of the neighbourhood. The exact expressions for the bounds of this sum are easily derivable, but
cumbersome, and therefore not shown here explicitly (the sum is evaluated below, in Eq. (33) for the p =28
case).



J. Losson et al. | Physica D 81 (1995) 177-203 191

Table 1
Table of the eigenvalues of the derivative matrix D@ associated with a square lattice of tent
maps for various coupling architectures

Coupling Ak

diffusive (1-g)a+ %sa cos (27rk/N2) + cos (2‘[]’/[\/)]
p nearest neighbors (l—g)a+ % Zm:pﬂsiles [ (%m)

mean field [1 — N2/ (N2 - 1)] a

Until now, no claim has been made concerning the period of the density cycle resulting from the cyclical
spectral decomposition (13): there are no general results available to determine the quantity r in (13) (indi-
cating the number of disjoint supports of the invariant density) and therefore providing a lower bound on the
period of the density cycle (the upper bound being naturally r!). However, it is well established [41] that the
tent map (22) displays a period doubling scenario in the evolution of densities, which can be summarized as
follows:

22 < 2V e asymptotic periodicity of period 2", n=0,1,2,---. (29)

A generalization of this result was derived for two diffusively coupled tent maps, and a phase diagram in the
(a,&) plane is given in [28] showing that the cascade behavior can be analytically investigated when two tent
maps are coupled together. It is of interest to understand how this picture survives in arbitrarily large lattices
of tent maps coupled together through various coupling schemes.

To carry out this analysis, we apply the formalism presented in Section 4 to compositions of the lattice
transformation @ with itself. Denote by ¢” the transformation @ composed 7 times with itself (i.e. ®* = @od).
If the spectral decomposition (13) applies to @ with r = r, # 1, then it necessarily applies to @ with r =r1,
where 7| = 2r,. The same reasoning holds for higher order iterates of @ and yields ry = nr, for @". We
therefore investigate the spectral characteristics of the Perron-Frobenius operator associated with @2, ot ete.

4.3. Diffusive coupling

Note that if A; is an eigenvalue of the transformation @, then A} is an eigenvalue of @", and so condition
(27) for a lattice with N sites takes the form

Iﬁ)&" [1+~—1—~ <1 (30)
Lk sin 6 (4r)

with sin @(7) given in (24). Fig. 8 examines the behavior of condition (30) for various iterates of @ : ¢, P
and @8, For clarity, Fig. 8 does not display the results of our analysis applied to @" for n > 8, because the
subsequent curves behave as expected. This phase diagram therefore generalizes previously published results
[28] on two diffusively coupled tent maps to N dimensions. It should be clear that the curves displayed
in Fig. 8 do not indicate precisely the location in the (a,&) plane at which the spectral decomposition of
the Perron-Frobenius operator changes. Instead, these curves indicate locations in parameter space at which
sufficient conditions for a given spectral decomposition of Pp change. This “onion” like structure is consistent
with numerical investigations of diffusively coupled tent map lattices reported in [27], and indicates that the
one-dimensional picture (29) essentially survives diffusive coupling, modulo some expected dependence on the
coupling strength between the elements.
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Phase Diagram: Diffusive Coupling
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Fig. 8. Phase diagram for the diffusively coupled tent map with periodic boundary conditions. This figure was obtained from the condition
(27) for a lattice of 200 x 200 elements, and eigenvalues corresponding to @, &2, etc..

4.4. Mean field coupling

In this case, the evolution of every local site is influenced by the mean activity of the entire lattice. This
coupling is of interest because it is a limiting case of long range couplings which are known to arise in optics
(cf. [22] and references therein), in the study of evolutionary dynamics [12], and in many physical models of
spatially extended systems [30]. The eigenvalues of the derivative matrix in this case are given in Table 1, and
the condition (21) can again be evaluated explicitly. In this case, the simplicity of the eigenvalues (cf. Table
1) allows to go one step further since if N is large, we have

Ay~ (1 —¢g)a.

In addition, if there are N? sites on a lattice of globally coupled tent maps, and N is large, the results of
Appendix A indicate that

sin@(#) ~ N72.
Hence, condition (21) becomes
2 2 9N
[M+NM][(1 -2 <1,
which can be written
(1 —&)a < NN,

But limy_.co NN = | (if N = 200 for example, N(=1/N) ~ 0.9998675505), so the condition (21) for a
large lattice becomes effectively

(1-g&)la< 1.

Note also that limy_, .o N1/ D=1forn> 1, so that we do not expect the “onion-like” structure displayed
in Fig. 8 to hold when the coupling is mean field.

Fig. 9 displays the phase diagrams for the globally coupled tent map lattice. This phase diagram is the analytic
version of some early numerical results published by Kaneko on a similar model [22]. The overall shape of
the transition curve published in that reference separating “spatiotemporal chaos” (or turbulence) and statistical
cycling is in agreement with our analytic result, although systematic shifts in parameter space are clearly present.
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Phase Diagram: Mean Field Coupling
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Fig. 9. Phase diagram for the globally coupled tent map lattice. The diagram is obtained by applying condition (27) with the eigenvalues
of Table 1 corresponding to mean field coupling. It should be noted that the diagrams for @, n = 2,4, - -, yield the same curve as the
one displayed here. As explained in the text, this curve is accurately described by the function e =1 — 1/a.

This shift is most important for low values of the coupling (g < 0.3) because in these cases, our estimates of
the quantity Q are too conservative. The smaller shifts observed for high coupling values are probably due to
a combination of transient effects (which render accurate numerical simulations computationally very costly)
and inaccuracies in the various bounds of condition (21). In any case, the presence of such discrepancies is
not surprising given the fact that the estimates given here for the phase transition curves correspond to changes
in sufficient conditions for asymptotic periodicity, rather than changes in necessary and sufficient conditions.

The most common linear coupling architectures discussed in the literature, diffusive and mean field coupling,
have now been treated analytically in a lattice of tent maps. We next investigate a coupling which is closer in
nature to the competing populations model presented in Section 3.

5. Nonlinear coupling

The methods of Section 4 can be extended to more general systems in which the the neighbourhood of
a given site acts on its evolution via a nonlinear coupling mechanism. Such mechanisms were illustrated in
Section 2 when considering a generic model of excitable media with local inhibition. We now construct similar
CML’s which remain analytically tractable.

5.1. Coupled bimodal maps

As an example, consider a lattice transformation of piecewise linear maps coupled in a nonlinear fashion to
mimic the inter-element inhibition of the excitable CML of Section 2:

PO (x) =(1-8)SV(x) += Y 9 (xy).

p nearest
neighbors

In this section, p is chosen so that the inter-element coupling is diffusive; i.e. p = 2 in dimension 1, p =4 in
dimension 2, etc.] The inhibitory effect of the neighbourhood is modeled by the local transformation:
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Fig. 10. Schematic diagram of the bimodal tent map of Section 5.1. The maximum activity of the map decreases if the mean activity of
the neighbourhood £ increases. This inter-element inhibition is meant to mimic the same feature in the more realistic model of Section 2.

ax? if x{” € [0,70),
: a2t — x9 if x7 e [#,27),
SOy =4 ST O ST (3D
a(—ZT,—}jx, )y if X € [27, 70+ 1/2),
a(l —x") if x9 e [#+1/2,1],

where 7% € [1/4,1/2] depends on the mean activity £ in a neighbourhood of xi:

-~ Ly (32)

d nearest
neighbors

This nonlinear coupling is chosen so an increase in the sum over the d neighbors has an inhibitory effect
on x! +1- When § of CML (1) is given by (31), the transformation possesses two statistical regimes like the
excitable CML discussed in Section 2. In one phase, the system seems to be ergodic, possessing a unique
invariant measure, a one dimensional projection of which is observed numerically. In the other, the statistical
quantifiers presented in Section 2 oscillate periodically in time, indicating that the Perron-Frobenius operator
might be asymptotically periodic.

The qualitative observations made concerning the two possible statistical evolutions (to a steady state, or to a
limit cycle) of the excitable CML (3) hold for the system (1) with (31). The details of the density cycles are
obviously not the same for the two systems, and the structure of the maps is also very different. However, they
have similar nonlinear inter-element coupling, and since we have only analytically investigated the behavior
of CML’s in which the coupling was linear, it is of interest to generalize this analysis to nonlinearly coupled
CMLU’s.

The analysis of the previous section can be completely carried out to yield conditions on the parameters of
(31) sufficient for the cyclical spectral representation of the Perron-Frobenius operator. The eigenvalues of its
derivative matrix cannot be evaluated explicitly as a function of the slope a and the number of neighbors p and
d included in the two relevant neighborhoods. However, it it possible to derive upper and lower bounds on the
quantity @ of condition (21) for (31).

5.2. Calculating Q

If the d-neighbourhood includes all the sites located within Euclidean distance 3 of the site x! (there are 28
such neighbors in dimension 2), Q satisfies:

min(Qy, Q2) < Q < max(Q1, Q2),

where Q) and Q, are given by
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N2 -1
Q= H {(1 —g)a+a (e— —2—1—8—> [cos (2—]\7;() + cos (2—;IE>]
a 4k 6k dark
—-2—8 {cos (T) + cos (—N—) + cos (—N—2>
6_#5 2mk(N + 1) 27k(N +2)
+ cos 72 + cos N + cos —
+ 2mk(N - 1) n 27k(N —2) n 27k(2N + 1)
cos — cos — cos — v

+ cos (__271{(2]\;\2/ * 2)> + cos (———271']((%2\, — 1)) + cos (2—————7716(%2\/ -2 >] } (33)

)

These two quantities allow us to delimit a region in the (g, &) plane in which the Perron-Frobenius operator
admits the cyclical spectral decomposition of Section 4.1. This region is obtained by applying the criterion
(27) to the system (31) with @ = @, and Q = Q,. Define

and

N 2k
Q= H {a(l — &) +ase {cos (—1\7) + cos

k=0

N -1
Q=[] A, u=1.2,
k=0

where the /\,((") are given implicitly in Eqs. (33) and (34).
5.3. Calculating sin 8(7r)

To determine the quantity sin8(7), note that the phase space X of the transformation @ defined in (31)
is again the direct product [0, 1]V if there are N elements on the lattice. On each of the intervals in X, the
transformation S is strictly monotone on four segments I; = [0,7}), I = [75,27)), Iy = [27},7) + 1/2),
Iy = [7i 4+ 1/2,1], and each of the 4" elements of I is of the form 74 (i) = IF (i) x I¥ (i) x I¥ (i) x 1 (4)
where > ; kj =N (again “i” is the index denoting spatial position on the lattice). Clearly, this partition is no
longer rectangular (cf. Fig. 13). Using the definition of the thresholds ¢ given by Eq. ( 32), when p =4 (i.e.
the coupling is diffusive in dimension two), and d = 28, the minimum angle of intersection of two edges of
the elements of the image partition is, from (B.2)

1 (12543[16(1 + 2¢) — 15¢7] (35)
2\ 1792 — 53764¢ + 50740¢ '

#=tan"! {

From Appendix A, sin@(7) can then be computed as in the linear coupling case (24). Hence, for the
nonlinearly coupled CML (31), the condition (21) yields two criteria which give an estimate for the parameter
space location of the transition from statistical stability to statistical periodicity:

Qu [1+ }<1, u=1,2. (36)

sin 8(7F)
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Phase Diagram: Nonlinear coupling
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Fig. 11. Phase diagram for the nonlinearly coupled CML (31). The two curves displayed here are each obtained from (36) and they
delimit a region which separates the (a, €) plane in two: Above this region (in the upper left comer) the Perron-Frobenius operator for
the CML admits a cyclical spectral decomposition as in (13). See text for details.

The two conditions in (36) delimit a transition region in the (a, &) plane which separates two “phases”. In one
of them, there are sufficient conditions to guarantee a cyclical spectral decomposition of the Perron-Frobenius
operator. Fig. 11 displays the “fuzzy” phase diagram resulting from the application of the two conditions in
(36) to the system (1) with (31).

6. Discussion

The probabilistic description of CML’s presented here is a first step towards a more complete understanding of
the thermodynamics and statistical mechanics of these models. For example, comparing Figs. 8 and 9 confirms
(for tent maps) the intuitive notion that systems with mean field coupling tend to order more easily than
systems with short range interactions.

Although in some CML’s there is a relationship between asymptotic periodicity and pattern formation, it
is clear that this relationship is not absolute. Our findings can be summarized in the following way: For the
systems discussed in this paper, asymptotic periodicity seems to be necessary for the formation of patterns in
coupled lattices of chaotic maps.

The importance of the possible presence of statistical cycling in CML’s and in more general spatially
extended systems lies in its implications for the proper interpretation of the behavior of statistical descriptors
of the motion: The notion of thermodynamic equilibrium for these objects must be extended to include a set of
states visited sequentially in time.

The cycling of f, observed for asymptotically periodic systems is an ensemble property and the classical
statistical mechanics paradigm which associates a single invariant measure with the state of thermodynamic
equilibrium does not apply here. Instead, the thermodynamic equilibrium of the asymptotically periodic CML
consists in a sequence of states visited periodically in time. As demonstrated here, the CML’s which possess
this type of equilibrium are not “pathological” in the sense that they arise in the modeling of many physical
and biological systems.

In addition, recognizing the presence of asymptotic periodicity is important for the proper interpretation of
the law of large numbers as it applies to CML’s. In fact, Pikovsky and Kurths [36] and Griniasty and Hakim
[17] have started to explain the so-called “violations of the law of large numbers” reported by Kaneko [20]
and Perez et al. in globally coupled CML’s by pointing out that certain systems can be ergodic without being
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mixing, and that in these cases, if the system is prepared out of equilibrium, it can converge (in the weak
Cesaro sense) to an invariant density, while converging (in the weak sense) to a limit cycle (in density space).
When this takes place, as is obviously the case for asymptotically periodic systems with » > 1 in (13), the
ensemble statistics are no longer equivalent to the trajectory statistics, and since the law of large numbers
refers to the convergence of ensemble statistics, it cannot be verified by investigating the properties of single
trajectory statistics. While this argument is valid, Pikovsky and Kurths base their exposé on the reduction of the
full Perron-Frobenius operator to a single “mean field” dimension, a reduction which is not possible in general
when the coupling is local. The work we present here demonstrates that the full Perron-Frobenius operator can
be shown analytically to be asymptotically periodic, and that future verifications of the law of large numbers
in CML’s should indeed focus on ensemble statistics, for local as well as long range coupling architectures.

The presence of statistical cycling also implies a type of dependence on the initial conditions which is much
stronger than that usually discussed in reference to chaotic dynamical systems. Here the ensemble statistics
depend on the initial ensemble. This is a consequence of the dependence of the functionals I'; on the initial
density fop in Eq. (13) (cf. Remark 1 of Section 3.1).

The regions of parameter space in which asymptotic periodicity occurs are large (in a measure-theoretic
sense) for all the systems discussed here. Therefore, the observation that the statistical quantifiers of the motion
cannot be effectively calculated with respect to an invariant measure which exists (since the system can be
ergodic) but which is almost never observed experimentally is ubiquitous for these CML'’s and not the result
of very special circumstances.

It is interesting to note that the biologically important excitable CML’s (Section 2) appear to belong to the
class of CML’s in which pattern formation and asymptotic periodicity are closely related. Since most realistic
models of biological or physical relevance must include stochastic perturbations, we conclude by pointing out
that analytic investigations of the transfer operator Py for stochastically perturbed CML’s using appropriate
techniques should generalize the approach presented here to a much broader class of spatially extended systems.
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Appendix A

In this Appendix, we rigorously define and calculate the quantity sin #(#) which appears in condition (21).

Since the partition /7 = {m;}L, (/1) of X C R" is defined such that the restriction of & to ;, denoted
D\, is differentiable and the 7;’s are closed bounded (i.e. compact) domains having piecewise hyperplanar
boundaries of finite (N — 1)-dimensional measure, the angle at which edges of the #;’s intersect is bounded
away from zero. In all the cases considered analytically, @ is also piecewise linear. Hence the edges of the sets
#r; of the image partition /7 which are of positive measure also intersect at angles bounded away from zero,
because the images of a hyperplane under the action of a piecewise linear @ are (piecewise) hyperplanar.

Before proceeding with the analysis, it is useful to remind the reader with the concept of a regular cone in
RV:
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A

Ce
2d 3d

Fig. A.1. lllustration when N =2 and N = 3 of the embedding of a (N — 1)-sphere in a regular (N — 1)-simplex (which is one face
of a regular N-simplex). Cs denotes the centroid of the (N — 1)-sphere, Ce denotes the centroid of one edge of the (N — 1)-simplex
containing the (N — 1)-sphere. V denotes the vertex of the N-simplex not contained in the (N — 1)-simplex.

Definition 3. Regular cone. A regular cone in RY is a cone whose base is an (N — 1) dimensional disk d
and such that the line joining the center of d to the apex V (not to be confused with the symbol \/ used in
Section 3 to denote the variation) of the cone is perpendicular to d. The angle between this central axis and
any segment linking the apex of the cone to d’s boundary is called the summit angle.

The apex of the cone V occurs at the singularities of derivative of @. Let SP; be the set of all singular points
of dar;; hence if x € SP;,
d(dmi(x))
oxk
Construct at any V; € SP; the largest possible regular cone having its apex at V; and lying completely in 7;.
Denote the summit angle of this cone by a(V;). Now let

is not defined for some k.

a(fr,) = min a(V)) =a(V)
V.EeSP;
and define
sin@(77;) =| sin(a(m;)) | .
Finally, let
sin #(47) = min sin@(7;).
mell

Calculating sin #(7) turns out to be straightforward when the 7;’s are bounded by hyperplanes such that the
edges of dm; intersecting at V; do so with angle 8y, To illustrate the procedure, consider Fig. 12 which illustrates
the situation in R? and R>. If dist(x, y) denotes the Euclidean distance between points x and y,

dist(Cs, Ce)
dist(V, Ce) ’
where Cs is the center of the shaded circle, Ce the middle of one (and any) of the edges of the base of the
“pyramid”, and V is the apex of the regular cone. Note that if 8;, = 7r/2, then it is straightforward from the
right of Fig. 12 that sin @(#) = 1/v/3 in R%.

In R¥, (A.1) holds when Cs is the centroid of the (N — 1)-sphere embedded in one face of the regular
N-simplex (which is a regular (N — 1)-simplex), and Ce is the center of one of the edges of that (N — 1)-
simplex. Although it is not possible to draw the higher dimensional simpleces and spheres, it is easy to embed

(A1)

sin@(7r) =
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them in an orthonormal reference frame and proceed with the analysis. For clarity, a simple case is considered
before the more general result is given.

Case 1. IT is a rectangular partition: 0y = 90° (warm up). In this case, any two adjacent edges of the
N-simplex intersect at V with angle 8, = 77/2. It is easy to show that in RV, if V is placed at the origin

1 1 1 1

and therefore

1 1
VNN=—1) JIN-1)

which implies that for a rectangular partition in RY,

dist(Cs,Ce) = , dist(V,Ce) =

sin0(7) = (A2)

1
VN
Case 2. IT is not a rectangular partition: 6y arbitrary. In this case we still assume that any two adjacent
edges of the N-simplex intersect at V with an arbitrary angle @i, < 77/2, where iy is the same for all

angles. The N vertices vy,---,vy of the (N — 1)-simplex forming the base of the N-simplex having apex V
at the origin have coordinates which are cyclical permutations of each other. Thus, if v; : (x1,--+,kn), then
v+ (Per'{xy,- -+, ky}) where Per{xy, --,kn} = {kn. k1, -+, ky_1}. Therefore,
N
N N N o Ki N—1
Com D st Ki o it Ki Ce= iz Ki L Zi*lj L L= K
N’ ° N ’ N—-1" > N-1" " N-1

which implies

2
) . 1 Zszl (NKj - Zf\—_ll Ki)
sin@(7) = — -
N N N
Zj:l (ZE', Ki)

i#j

(A3)

Note that if all but one of the «;’s are zero, and the nonzero «; is 1, the vertices v; all lie on the N dimensional
hypercube, and therefore the edges which bound d7; intersect at right angles: I7 is rectangular as in case 1,
and (A.3) yields sin8(#) = 1//N as expected.

From a practical point of view, given an N dimensional lattice transformation, it is easy to construct the
partition /7, but it can be time consuming to obtain the «;’s used in (A.3). On the other hand, it is usually
straightforward to compute, in terms of the parameters of the transformation, the smallest angle 8;, subtended
by the edges of the #;’s. It is therefore useful to express sin #(#) in terms of this 6. To do so, note that the
N apexes v; (with coordinates {x;}) of a N-simplex whose summit V is placed at the origin, and whose edges
intersect there at angles @iy, all lie on lines which link the centroid Cs to the apexes of the N-simplex whose
edges intersect at the origin at an angle /2 (think of the 2 and 3 dimensional situations). The equation of
one of these lines is, from our discussion of Case 1,

————— = Nky =...= Nky, (A4)
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and the equations for the (N — 1) other lines are obtained by permuting x; with the remaining (N — 1)
coordinates in (A.4). In addition, all of the v;’s have to be equidistant from Cs. Therefore, we obtain a second
set of constraints which must be satisfied by the «;’s:

1 2 N 1 2
(0-5) 2 (o) =
=2

1\? k-1 1\2
_ = _ — — ) =42 A5
(Kx N) + (N 1)(N—1+N) deg,s (A.5)
where d.y, is the distance between Cs and the v;’s. Solving these equation yields, for apexes v; and v for
example,

o= (Lpg o ¥t 1 dew 1 dew (A6)
1 N csv N ’N /———————N(N__l)a :N /———-—-—N(N_l) ’

or

des (A7)

ol de 1 N1 1 de
2"A\N UN(N-D'N NV N N UNNZD
Now consider vectors Vy; and Vo; where i # j. The angle subtended by these two vectors is ;e by definition.

Therefore,

Vu; - Vo;

cos(Bint) = W
i J

from which it is easy to obtain

dcsu=\/ [1—cosfml(N—1) (AS)
N[(N —1)cosb + 1]

Replacing (A.8) in (A.7) yields the coordinates of the v;’s as a function of the angle fiy:

K= N\/ 1 — 08 Oin ki - 1\/ 1 = c05 fim ifi=2,---,N. (A9)

TN NIV N DcosO+1° TN TNV (N =1) cos i + 1

Using these expressions in (A.3) yields, for a lattice of N elements

. 1 — cos bin
N | A.10
sin () \/N[l + (N —2) cos Oig] | |

Note that if N =3 (A.10) reduces to

§in6(7) = —= tan (36int)

\/§ 2

which can be easily derived directly from Fig. A.1 using simple geometrical arguments.
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Fig. B.1. Illustration of the evolution of one face of the hypercube X = [0,1]¥. On each of the rhomboids on the left panel, the
transformation @ is linear with slope +a. The panel on the right displays the images of these thomboids. 8;,, is the smallest angle formed
by the edges of the “image rhomboids”. In this figure, parameters are a = 1.4, £ = 0.45, p =28, d = 4,7 = 1J =0.15,% = x’ 0.225
(the symmetry was chosen for pedagogical purposes; it is in general not present for random initial conditions) . This figure was computed
with the symbolic manipulator MAPLE.

Appendix B

In this Appendix, the angle @i, and the quantity sin@(#) are computed explicitly for the coupled bimodal
maps of Section 5.1. Fig. B.1 schematically illustrates the evolution of the unit square under the action of the
transformation & defined in Section 5.1. Before proceeding, we introduce the following notation:

Z x(k), k,j € p - neighbourhood of i,
k#z]

X, = 7 Z x(k), k,j € d - neighbourhood of i,
k*i,j

Hence the two dimensional restriction ¢2~4) of the transformation @, which describes the evolution of one
face of the hypercube X is given by:

DD (x) = (1-2)8D (x,) + 28D (x)) + 7,
P

DE DD (x3 = (1 —e)SP(x,) + ES(i)(x,) +% (B.1)
p

where the local transformation is again given by (31).

Determining 6y, is straightforward but lengthy, and we have relied heavily on the use of a symbolic manip-
ulator to carry out the explicit calculations. The plan of the algorithm to compute &y is as follows:

(1) Using the definition of @2~%) obtain the coordinates of the 25 vertices of the 16 rhomboids on which
@2~ s linear (these are displayed on the left panel of Fig. B.1).

(2) Iterate each of these points, so as to obtain 16 “image rhomboids” (displayed on the right of Fig. B.1).
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(3) Using these coordinates, find the angles of intersection of the edges of these image rhomboids, and find
the smallest one, which is by definition 8. Though the problem seems intractable at first glance, the task is
greatly simplified by the many symmetries in the coordinates of the image rhombs, so that it is not necessary
to perform a time-consuming minimization problem.

The analytic expression for iy is, as expected, independent of the slope a. It is given implicitly by

_ N1 201 2
tanﬂim=—l (1 —-16d*)[p~(1 —2e) +&“(1—p~)] } (B2)
2 | 4dp? —ep[1 +8d(p +2d)] +&2[4d(1 + p(1 +4d)) + p]

This expression can then be used in (A.10) of the previous appendix, to obtain an expression for the quantity
sin@(7) in terms of the control parameters of the CML of Section 5.1.
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