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Abstract 

The dynamics of many physical systems are often governed by a randomly changing 

environment and can thus be described by a random map R whose evolution is repre

sented by choosing a transformation from a given set of transformations and applying 

it with a given probability. We can describe the asymptotic behavior of densities f 
of such systems using a Markov operator PR. We give results regarding existence and 

uniqueness of a stationary density JR for PR. For random maps generated by a large 

class of piecewise monotonic maps on [O, 1 ]N = IN, we prove that the sequence of 

densities { PJU} is asymptotically periodic. An upper bound for the period is given. 

A relation between the spectral representation of PR and the ergodic decomposition 

of R is derived. For random maps composed of a large class of piecewise expanding 

transformations on IN, { P)U} is shown to converge strongly to a unique fixed point 

JR, and hence is asymptotically stable. We present sufficient conditions for JR to be 

the density of a Sinai-Ruelle-Bowen or SRB-measure. The properties of asymptotic 

periodicity and asymptotic stability are examined under perturbations of the initial 

density and under perturbation of R. Stability of PR and JR under perturbation of 

R is studied. Two methods for approximation of JR are presented. The asymptotic 

behavior of the conditional entropy, a generalization of Boltzmann-Gibbs entropy, and 
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that of correlation functions are studied for both asymptotically periodic and asymp

totically stable systems. The inverse Frobenius-Perron problem in the random map 

context is discussed briefly. 
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1 Introduction 

The dynamical behavior of various natural processes can often be described by a random map 

which is a discrete time Markov process in which one of a given number of transformations 

is selected with a given probability and applied. For example, such maps arise naturally in 

a variety of contexts: in the study of stochastically forced oscillators [33]; in the problem 

of the distribution of particles floating on the surface of a fluid [57]; generation of fractals 

[4]; modelling interference effects such as those that occur in the two-slit experiment of 

quantum physics [ll]; stochastic learning automata and neural networks [19]; construction 

of orthonormal wavelets [24] and the development of plant models [77]. 

The study of asymptotic statistical behavior of random dynamical systems initiated in 

the spirit of ergodic theory [83], has recently been the focus of intense research. Various issues 

such as calculation of Lyapunov exponents [l]; dimension spectra [32]; and large deviation 

theory [51], have been investigated. 

Our interest lies in the statistical study of attractor( s) which result from the asymptotic 

motion of a chaotic system. A useful tool in this study is ergodic theory where often the 

unpredictable behavior of trajectory evolution in systems can be better comprehended if one 

examines their behavior in terms of density evolution [58]. In this case, instead of studying 

the evolution of a single point in the phase space by the transformation, we study the 

evolution of a density f of a collection (or ensemble) of points in the phase space by a linear 

integral operator P known as the Markov operator. One of the main advantages of studying 

P rather than the transformation is that while the transformation may be nonlinear ( and 

often discontinuous) on the phase space, P is a bounded linear operator on L1. Thus, in 

examining the behavior of {Pn f} we can apply the powerful tools of linear operator theory. 

Given the density fo of the initial preparation of a system, the nature of the dynamic ap

proach to equilibrium states displayed by the density evolution of {Pn Jo} may be ergodicity, 

mixing or exactness. In all these three cases the system possesses a stationary density f* 

and their respective occurrence depends on whether the convergence of the sequence { pn }0} 
to f* is Cesaro, weak or strong. The types of density evolution we are particularly interested 

here are that of asymptotic periodicity (Definition 4.1) and asymptotic stability (Definition 

5.1 ), which are also related [58, §5.5] to the equilibrium states mentioned above. 

The alternative viewpoint (density evolution vs. trajectory evolution) has a particular 

appeal when applying the ergodic theory results on the evolution of thermodynamic states 

characterized by densities to give a unified treatment of the origin of classical thermodynamic 
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behavior [65]. As a result, all of these dynamic evolution behaviors have thermodynamic 

analogs. For example, the existence of a stationary density may be associated with a state of 

thermodynamic equilibrium of a dynamical system. The property of asymptotic periodicity 

is particularly significant from a thermodynamic point of view: it ensures the existence of 

at least one state of thermodynamic equilibrium with stationary derisity and allows us to 

prove a weak form of the Second Law of thermodynamics in which the conditional eritropy, 

a generalization of Boltzmann-Gibbs entropy, (of the sequence of densities) increases to (at 

least) a local maximum [65, Theorem 6.,5]. Also, for an asymptotically periodic system, ana

lytical expressions for statistical quantifiers characterizing the dynamics such as conditional 

entropy and correlation functions simplify, and can be readily calculated [76]. The prop

erty of asymptotic stability implies not only the existence of unique state of thermodynamic 

equilibrium, but also of an approach to equilibrium from all initial preparations of a system. 

In this paper, we examine the existence and consequences of these equilibrium states 

in the density evolution of random maps R (Definition 2.2) composed of a large class of 

piecewise monotonic transformations T on JN which are defined on rectangular partitions 

of JN and on each element of such a partition, each component of T depends only on one 

variable known as Jablonski transformations (Definition 2.1 ). Our ultimate goal is to provide 

a statistical mechanical formalism for random maps under consideration. In Section 2, we 

present the background required to establish our main results, which includes an introduction 

to Jablonski transformations, functions of bounded variation on IN, and random maps. In 

Section 3, issue of the existence and uniqueness of a fixed point JR for PR, the Markov 

operator corresponding to R (Remark 3.1), is dealt with. In Section 4, using a spectral 

decomposition theorem, we prove the asymptotic periodicity of a sequence of densities {PJ!J} 
and give an upper bound on its period. We derive a connection between the number of 

densities in the spectral representation of PR and that of the ergodic decomposition of R for 

special classes of Jablonski transformations. In Section 5, asymptotic stability of { PJU} is 

shown by proving that {PJU} converges strongly in L 1 to a unique invariant density JR of 

R. For some specific cases of random maps composed of exact Jablonski transformations, 

asymptotic stability is exhibited. We emphasize the physical relevance of the density JR and 

show that it is the density of an SRB measure. In Section 6, we consider the issue of stability 

of {PJU} under perturbations of the initial density with which the system is prepared and 

perturbation of Rand in this context the properties of asymptotic periodicity and asymptotic 

stability are examined. We also examine stability of JR and PR under the perturbations of R. 
In Section 7, we present two methods of approximation of JR by constructing a sequence of 

finite-rank operators in each case ( one on the space of piecewise constant functions and the 

other on that of continuous piecewise linear functions) which converge strongly to PR and 

whose fixed points converge to /R- In Section 8, thermodynamic connections are drawn using 

the results of asymptotic periodicity and asymptotic stability obtained in Sections 4 and 5, 

to give estimates of conditional entropy, auto-correlation and time-correlation functions of 

{PR}- In Section 9, the inverse problem of finding a dynamical system, which represents 

the dynamics of a random map whose invariant density is given, is considered. Finally, in 

Section 10, we briefly discuss some problems for future research. 
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2 Preliminaries 

Let m 2 denote the Lebesgue measure on JJ; for j = N, let m = mN, We let L1 denote the 

space of all Lebesgue integrable functions on JN_ The transformation r: JN---> JN is written 

as 

r(x) = (cp1(x), ... ,'PN(x)), 

where x = (x1 , ... , XN) and for any i = 1, ... , N, <p;(x) is a functional from JN into [0,1]. 

We say that a measureµ is r-invariant ifµ( r- 1 A) = µ(A), for each measurable subset A 

of JN, i.e, for one application of the transformation, the amount of mass that leaves a set is 

equal to the mass that enters, so the transformation is in a state of equilibrium with respect to 

the measure. µ is said to be r-ergodic if r-1 A = A implies µ(A) = 0 or µ(IN/ A) = 0 for each 

measurable subset A of JN_ µ is said to be T-mixing if limHoo µ(r-n(A) n B) = µ(A)µ(B) 

for all measurable sets A, B of JN. We say that µ is T- exact if limn_oo µ( rn( A)) = l for each 

measurable set A of JN with µ(A) > 0. In these cases, we also say that the corresponding 

transformation r is invariant, ergodic, mixing and exact, respectively. 

A function f E L1 is called a density if f 2'. 0 and llfl[i = 1, where II-Iii denotes the L1 

norm. Let D denote the space of all densities on IN. The support of a density is the set 

{xEJN:f(x)>0}. 

We say that a measurable transformation T is nonsingular, if µ(A) = 0 implies that 

µ(r- 1 (A)) = 0. For a nonsingular transformation T: JN---> JN and for any f E L1 we define 

Pr. the Frobenius-Perron operator corresponding tor, by 

j Prfdm = f fdm. 
A Jr-l(A) 

where AC JN is a measurable set. 

Then from [58], 

It is well known that the operator Pr is linear, positive, preserves integrals, and Pr" = P;'. 

An important property of a Frobenius-Perron operator Pr is that its stationary density f 
is the density function of an r-invariant measure µ which is an absolutely continuous with 

respect to Lebesgue measure (ACIM), i.e., Prf = J if and only if dµ = Jdm. 

Let M(JN) denote the space of measures on JN and let r : JN ---> JN be a measur

able transformation. T induces a transformation r, on M(JN) defined by (r.(m))(A) = 
m(r-1 A), for each measurable subset A of JN. The operators r, : M(JN) ---> M(JN) and 

Pr : D(JN, m) ---> D(JN, r,m) arP equivalent, though Pr is often easier to work with. 

2.1 Piecewise Monotonic Transformations and Functions of 

Bounded Variation on JN 

Let P = { D1 , ••. , DM} be a finite ( 111 < oo) partition of JN, i.e., U_7; 1 = JN and Dj n Dk = ¢, 
for j # k. A partition P ol' JN is called rectangular if for any 1, ... , M, Dj is an N
dimensional rectangle. 
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Vie now define the class of transformations which form the component transformations 

of the random maps we consider here. 

Definition 2.1 (Jablonski Transformation) A transformation r : JN -> JN is called a 

Jablonski transformation, if it is defined on a rectangular partition P = { D 1 , • •. , D M} and 

is given by the expression 

where 1: = (x 1 , .•. ,xN) E D1 , l, ... ,M, Dj = II~ 1 [a;1 ,b;1 ), and '-Pij: [a;j,bij]-> [0,1]. We 

write [a,1 , b,;) as [a,,, bij) if bij < 1 and as [a,j, b,j] if b,j = 1. 

A Jablonski transformation is said to be piecewise C 2 (respectively linear) if '-Pij : [a;,, b,j] -> 

[0, l] are C 2 (respectively linear) functions and expanding if inf;,1 I '-P;j I> 1. 

Jablonski transformations are nontrivial higher dimensional generalizations of Lasota

Yorke transformations on the unit interval [59]. They form a large class of transformations 

from JN -> JN, and are in fact dense (in L1) in the class of all piecewise expanding trans

formations on JN [64]. The existence of an ACIM for piecewise C 2 and expanding Jablonski 

transformations was established in [46]. They have been used in variety of applications, for 

example, in modelling the pattern formation of cellular automata on the space of configura

tions [40] and approximating fractal measures [8], [16]. 

To define the variation of N variables, we use the Tonelli definition [23]. Denote by 

f1~ 1 Ai the Cartesian product of the sets A, and by proji the projection of RN onto RN-I 

given by 

proji = (x1,,,.,Xi-1,Xi+l,···1XN), 

Let g : A -+ R be a function of the N-dimensional interval A = II~1 [a,, b,]. Fixing i, define 

a function LJ~ g of the N - 1 variables ( x1 , . .. , Xi- 1 , x,+ 1 , . .. , x:v) by the expression 

A n 

LJg=LJg sup{I: I (g(x 1 , ..• ,x7, ... ,x:v)-(g(x1 , •.. ,x7-1
, .•. ,xN) I: 

k=I 

ai = x~ < x~ < · · · < x~ = bi, n EN}. 

For f: A -t R, where A= f1~ 1 [a,, b,], let 

v: f = inf{ / . LJgdm:v- 1 : g = f almost everywhere, LJg measurable} 
}proJ 1 (A) i i 

and let 

If VA f < oo, we say that f is a function of bounded variation on A and its total variation is 

VA f. Let BV denote the space of functions of bounded variation in the above sense. 

Denote by C, the set of functions of the form 

M 

g = I:9jXA,, 
j=I 
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where XA, is the characteristic function of the set 

(we do not assume that Ctij < (3,1; the interval [aij, (3,1] can be degenerate), and g1 : JN-+ R 
is a C 1 function on Aj, Then from [46], we have the following: 

Lemma 2.1 If f EC, then 
JN 

V f < oo. 

Lemma 2.2 The set C is a dense subspace of the space L1 • 

The next result is a higher dimensional generalization of Helley's Theorem and follows from 

Lemma 3 of [46]. 

Lemma 2.3 Let S be a set of functions f : JN -+ R such that f :C: 0, V1
N f < M and 

II f Iii :S 1. Then S is weakly relatively compact on L1. 

We now introduce some preliminary concepts related to random maps. 

2.2 Random Maps on IN 

We begin with stating 

Definition 2.2 (Random Map) Let Tk: JN-+ JN, k = 1, ... , 1 be given transformations. 

We define a random map R by choosing Tk with probability Pk, Pk > 0, :[;~=I Pk = 1. 

We shall henceforth assume that 1 :C: 2 ( so that R can not be reduced to a single deterministic 

map), unless stated otherwise. 

A measureµ is called invariant under R if µ(A)= I:\=1 p;µ(ri- 1 A), for each measurable 

set A of JN. 

R can be viewed as a stochastic process. Let Tk: JN-+ JN, k = 1, ... , 1, be nonsingular 

transformations and let a 1 , ... , a1 be random variables such that prob(ak) = Pk· Consider 

the stationary stochastic process defined by, 

/ 

Xn+I = L akrk(Xn), 
k=I 

Then, 

/ 

prob{Xn+l :Sx} prob{L akrk(Xn)} 
k=I 

/ / 

prob{L akrk(Xn)} L prob(ak) 
k=I k=I 

i.e., 
/ 

prob{Xn+I :S x} = LPkprob{rk(Xn) '.'ox}. (1) 
k=I 



164 KAMTHAN AND MACKEY 

The dynamics of R can be described in terms of a skew-product transformation [75]. Let 

l1 = {w = (wi)f;: 0 : Wi E { 1, ... , /}} be the set of all infinite one-sided sequences of symbols 

in S = {l, ... , /}. The left shift a: l1-> l1 is defined by 

(a(wi))i=wj+ 1 , j=O,l, .... 

The topology on l1 is the product of the discrete topology on S. The Borel measure 11 0 on 

l1 is defined as the product of the distribution on S given by prob(j) = Pi· Then there is a 

one-one correspondence between the ways in which the maps Tk,, j = 1, 2, ... can be chosen 

and points in !1. Therefore, R can be treated from a dynamical systems point of view by a 

skew-product transformation Tsp : JN x l1 -> JN x l1 defined by 

Tsp(x,w) = (Rwox,a(w)), (x,w) E 1N x n. 

3 Stationary Points of PR 

Let Tk : JN -, JN, k = 1, ... , /, be a C 2 Jablonski transformation on the partition Pk = 
{Dk 1 , ••• ,DkM}. Then 

and for any i = 1, ... , N and k = 1, ... , /, 

Tk,i(x) = 'Pk,ij(Xi), x E Dk,· 

The following result implying the existence of a fixed point JR for PR, i.e., an ACIM for 

random maps composed of Jablonski transformations, was established in [15]. 

Theorem 3.1 Let R(x) = {Tk(x),Pk,k = 1, ... ,1} be a random map, where each Tk : 

JN -, JN is a (not necessarily expanding) Jablonski transformation on the partition Pk = 
{Dk

1
, ••• ,DkM}. Assume Tk,i(x) = 'Pk,ij(xi) is C 2 and monotonic for x E lh,. If for 

i = l, ... ,N 

1 
Pk 

I;sup , 5 1 < 1, 
k=1 i I 'Pk,i/x,) I 

(2) 

for some constant 1 , then for all f E £ 1 we have: 

(a) 
1 n-1 

lim - L Pkf = JR, f E £ 1 

n-+oo n t=D 
(3) 

where 
I 

PR = I: Pk PT,. (4) 
k=1 

(b) PRJR = JR. 
(c) V1N JR S Cllflh, for some constant C, independent off. 
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The following inquality was established in the proof of Theorem 3.1. 

Proposition 3.1 Let R be the random map satisfying the conditions of Theorem 3.1. Then 

for f EC 
[N [N 

V PR! :S O V f +!{II f 111, (5) 

for- some constants O < a < l and !{ > 0, both independent off. 

Remark 3.1 Condition (2) is an expanding-on-average condition. For a random map R(x) = 
{rk(x),Pk,k = 1, ... ,1}, where each map Tk: JN--> JN is nonsingular, we say that PR, given by 

(4), is the Frobenius-Perron operator corresponding to R. PR has the following properties [75]: PR 

is linear; IIPRlh :S l; PR is nonnegative; PRJ = f if and only if dµ = Jdm is invariant under R 

and; PJ'i.f = PRnf. Existence of AC!Ms for random maps in one dimension has been shown in [75], 

[69], [68]. 

By Theorem 3.l(b) and Remark 3.1, we have the existence of an ACIM for a large class 

of random maps R on JN, which is closely related to the observability of chaos [53]. The 

support off R, which is a set of positive Lebesgue measure, indicates that part of the phase 

space on which the chaos resides. 

Now, let the random variable Xn in (1) have a density f E L1 . Then by the Radon

Nikodym Theorem, the random variable Tk(Xn), k = 1, ... , /, has a density given by PT.f. 

Differentiating both sides of (1), we obtain equation (4), where PRf denotes the density of 

Xn+l. A stationary point of PR can therefore be interpreted as the density of the stationary 

measure for the stochastic process ( 1). 

3.1 Uniqueness of JR 
In this section, we present results which give sufficient conditions for the uniqueness of JR

This is significant from the point of view that it gives us the exact location of the region 

of chaos. Also, during calculation of Lyapunov exponents of random maps, such as in [l], 

uniqueness of an invariant density is assumed. For random maps in one-dimension, results 

implying uniqueness have been given in [75] using symbolic dynamical methods, in [8] using 

matrix methods and in [9] using graph-theoretic methods. We generalize some of these 

results to higher dimensions. We first consider the problem in a general context and then 

treat some special cases. 

Let R(x) = {rk(x),Pk,k = 1, ... ,/} be a random map, where each Tk: JN--+ JN is a 

piecewise C 2 (not necessarily expanding) Jablonski transformation satisfying condition (2). 

We shall need the following theorem from [82]. 

Theorem 3.2 (Ionescu-Tulcea and Marinescu Theorem) Let P : L 1 --+ L1 and let it 

satisfy the following properties: 

(a) P 2 0, JP f = J fdm, for f E L1, which implies that II Pih = l. 

(b) there exist constants O < a < 1, !{ > 0 such that 

IIPfllv :S 0 llfllv + Kllflh, 
forfEBV. 
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( c) the image of any bounded subset of B V under P is relatively compact in L1. 

Then, Pis quasi-compact operator on ( EV, 11-11 v). Thus, P has only finitely many eigenvalues 

{ .\1, ... , .\h} of modulus 1. The corresponding eigenspaces Ei are finite-dimensional subspaces 

of BV. Furthermore, P has the following representation: 

h 

P = I: .\,<I>,+ Q, 

where <I>; are projections onto the E;, ll<I>ill1 :S 1, <I>i o <I>1 = 0, for i c/ j and Q: L1 -> L 1 is a 

linear subspace with supn IIQnlli :Sh+ 1, Q(EV) C EV, IIQnllv :S Hqn for some O < q < 1 

and H > 0, and Q o <I>; = <I>i o Q = 0 for all i = 1, ... , h. 

For each .\ E R with I .\ I= 1 and f E L 1
, the limit 

<I>(.\,P)(f) :=Jim.!:_ I:(.\P)1(j} 
n-oo n j=:O 

(6) 

exists in L1 , and 

<I>(.\,P) = { <I>i if .\ = .\; 
0 otherwise 

Lemma 3.1 PR has finitely many eigenvalues f{, ... , Ji. of modulus 1. 

Proof. The proof is an immediate consequence of definition of PR, Proposition 3.1 and 

Theorem 3.2. D 

By the lonescu-Tulcea and Marinescu Theorem 3.2 and Lemma 3.1, it follows that the 

number of ergodic AC!Ms of R is finite. Furthermore, S;'s, the support of f;'s, respectively 

are disjoint, i.e., each S; is a support of an ergodic ACIM µ 1, for R, whereµ!' denotes the 

measure such that ~ = J; and every other ACIM for R ,is a linear combination of the 

measures µJ;• This existence of ergodic components of R can be made more precise if we 

have information regarding the AC!Ms of the individual maps Tk, k = 1, ... , 1. To draw that 

connection, we first establish the following: 

Lemma 3.2 The measureµ is R-invariant if and only ifµ x µ0 is Tsp-invariant. 

Proof. For any measurable set A of JN, we have 

Therefore, 

µ x µn(A x (wo, .. . )) = µ(A)p(wo). 

p x pn(rs}(A x (w0 , •. . ))) p x pn(U~=1 [7i;- 1 A x (k,w0 , •.• )]) 

I 

Lµ x Pn(rk- 1 A x (k,w0 , .•• )) 

k=1 
I 

L µ( rk-i A)pkp(wo) 
k=1 

I 

Pwo LPkJL(rtA) 
k=I 

Pw,µ(A) 
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µ x µri(A x (w0 , ... )), 

and the result follows. D 

By Lemma 3.2, we say that the measureµ is R-ergodic if and only ifµ x µ 0 is Tsp-ergodic. 

Then, R is ergodic with respect to µJ; if Tsp is ergodic with respect to the measure µ 1; x µ 0 . 

Therefore, it is sufficient to show that Tsp is ergodic with respect to the measure µ f.' x /in, 

for each i = 1, ... , h and to discuss its ergodic components. This can be done using the 

method of [75]. 

Let R(x) = {Tk(x),Pk,k = 1, ... ,1} be a random map, where each Tk: JN ---t JN and let 

A be a measurable set in JN_ We say that A is R-invariant, if 

where 6. denotes the symmetric difference. 

Lemma 3.3 S; 's are R-invariant for earh i = 1, ... , h. 

As in [75], we have following characterization of sets invariant under Tsp. 

Lemma 3.4 Let v = µ x µ0 be R-invariant and let A C JN x !1, v(A) > 0, be a set 

Tsp-invariant. Then 

v(A 6. (Bx !1)) = 0 

for some R-invariant set B C JN. 

From (6) it follows that the projection 

is nonzero onto each basis vector f;. Hence the number of ergodic componenets of Tsp with 

respect to /11" x /lr! is the maximum possible for any product measure whose first factor is 

an ACIM. Therefore, Lemmas 3.3 and 3.4 establish a one-one correspondence between the 

sets S; and the ergodic components of R with respect to µp x µ 0 . 

Now as in [75], we have the following connection between the number of ergodic compo

nents of R and that of Tsp. 

Lemma 3.5 Let any one of the maps T1 , ... , T/ have an A CIM with ergodic components 

Qi, ... , Qh, Define a relation: 

for some 11 , ... , ln- Then~ is an equivalence relation and the number of ergodic components 

of R with respect to µI' x µn is the number of equivalence classes. 

Remark 3.2 Lemma 3.5 gives an upper bound on the number of AC!Ms for R. Let T1 satisfy the 

hypothesis of the lemma. Then the number of ergodic AC!Ms of R is atmost equal to the number 

of ergodic AC!Ms of T1 . 
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Theorem 3.3 Let R( x) = { Tk( x ), Pk, k = l, ... , 1} be a random map, where each Tk : JN ---> 

IN is a piecewise C2 
( not necessarily expanding) Jablonski transformation, satisfying condi

tion (2). Then, if any one of the maps Tk, k = l, ... , 1, has a unique A CIM, R has a unique 

ACIM. 

Proof. The proof of the theorem follows immediately from Lemmas 3.1-3.5. • 

Remark 3.3 Condition (2) can be satisfied even if only one of the component maps Tk, k = 
1, ... ,1, is piecewise expanding and others are contracting (and hence do not have an ACIM). 

Therefore, Corollary 2 of [36), (where uniqueness is obtained under the assumption that each map 

Tk has an ACIM) does not yield uniqueness. 

The following corollary is an obvious consequence of Theorem 3.3. 

Corollary 3.1 Let R(x) = { Tk(x ), Pk, k = l, ... , 1} be a random map, where each Tk : JN ---> 

JN is a piecewise C2 and expanding Jablonski transformation. Then, if any one of the maps 

Tk, k = l, ... , 1, has a unique ACIM, R has a unique ACIM. 

Remark 3.4 The converse of Corollary 3.1 is not true in general, i.e., if R has a unique ACIM, 

it does not necessarily imply that any of the maps Tk, k = I, ... , I, have a unique ACIM. We shall 

see this in Example 3.2. 

3.1.1 Uniqueness under Special Cases 

We now proceed to establish two special results of uniqueness: random maps composed 

of Jablonski transformations with strong expansive property and that with communication 

property. 

Let Tk : JN ---> JN be a Jablonski transformation on a partition Pk = {Dk,, ... , DkM }. 

Let J( Tk, x) be the absolute value of the Jacobian of Tk at x. Let Vk be the set of vertices 

of elements of Pk which lie in the interior of JN_ We now define a number M}J) related to 

the geometry of the partition Pk- For any fixed z E R, let Ht~ 1 (z) denote the (N - 1)

dimensional hyperplane given by the equation x1 = z, j = 1, ... , N. Let 

The following result is contained in Theorem 4 of [73]: 

Lemma 3.6 Let Tk : JN ---> [N be a piecewise C2 and expanding Jablonski transformation 

and let 

If 

(7) 
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then the number of ergodic AC!Ms for Tk is at most equal to #h. 

We call condition (7) the strong expansive property. 

We conclude our first result from Lemma 3.6 and Corollary 3.1: 

169 

Proposition 3.2 Let R(x) = {rk(x),Pk,k = 1, ... ,1} be a random map, where each Tk: 

JN --> JN is a piecewise C2 {not necessarily expanding} Jablonski transformation, satisfying 

condition (2). Let r1 be expanding on partition Pi = {D1,, ... , D1M} related to which the 

number Mi) is defined. Let V1 be the set of vertices of elements of Pi which lie in the 

interior of IN such that # V1 = 1. If T1 has the strong expansive property, then R has a 

unique ACIM. 

Let T : IN --> IN be a Jablonski transformation. Without loss of generality assume that 

there exist O = a;,o < a;,1 < · · · < a;,r, = 1, i = 1, ... , N, for some positive integers r 1 , ... , rN 

such that the partition Pis composed of sets D,1 , ... ,,N = ni1 D,,, where D,, = [a;,,,-i, a;,,,), 

s; = 1, ... , r; - 1, Dr, = [ai,r,-I, a;,r,], and T is given by the formula 

where <p;,,1 , ... ,,N(x1): 15,,--+ [O, l] are C 2 functions. 

We say that the partition P has the communication property under the transformation 

T : IN --> JN if for any elements n:, , ... ,sN and D~
1 

, ... ,,N of P there exist integers u and v such 

that n:l,···,sN C Tu(n:1,···,SN) and D~l,···,SN C T
11

(D:1, ... ,SN). 

Proposition 3.3 Let R(x) = {rk(x),Pk,k = 1, ... ,1} be a random map, where each Tk: 

JN --> IN is a piecewise C2 (not necessarily expanding) Jablonski transformation, satisfying 

condition (2). If r1 be a Jablonski transformation on a partition P satisfying the following 

conditions: 

(a) inf j cp; I> 0 and inf I (cp)")' I> l for some integer w, 

(b) T is piecewise C2
, and 

(c) the partition P has the communication property. 

Then R has a unique A CIM. 

Proof. By Theorem 5 of [14], r 1 has a unique ACIM and so the result follows from Corollary 

3.1. D 

3.1.2 Uniqueness for Random Maps composed of Markov transformations 

Let R(x) = { rk(x ), Pk, k = 1, ... , /} be a random map, where each Tk : IN --> IN 1s a 

piecewise C 2 and expanding Jablonski transformation. If any one of the Tk's has a unique 

ACIM, Theorem 3.2 implies that R has a unique invariant density, say JR, but does not 

reflect any of its properties. The result of this section shows that for a class of random maps 

composed of Markov transformations, JR is a piecewise constant function on the common 

partition where each of the component transformations is defined. 
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Let P = { D 1 , •.• , DM }, M < oo be a partition of IN. A transformation r : IN -> JN is 

called a nonsingular piecewise C 2 transformation with respect to P if for any j = 1, ... , M 

on D1 , r1 is a C 2 function on Dj and the Jacobian matrix Aj = ~ satisfies detA1 =/ 0. 

Definition 3.1 (Markov Transformation) A transformation r : IN -> JN is called a 

Markov transformation with respect to P if, for any j = I, ... , m, the image D1 is a union 

of Dk's, i.e., 

(8) 

for some Dj1 , ••• , DJL. 

We say that a function f is piecewise constant on P if f = 'i:;~1 C1 xn,, for some constants 

C1 , ... , CM. Let S denote the class of all functions which are piecewise constant on P. 

We need the following result contained in Theorem 3.1 of [64]. 

Lemma 3. 7 Let r : IN -> IN be a nonsingular piecewise C2 Markov transformation with 

respect to the partition P. If for any j = 1, ... , M, r1 is a homeomorphism from D1 onto 

lJ11 U ... U lJJL and has r,-1 ( x 1 , . .. , x N) as its inverse, and detA1 is a constant on D1, where 

A1 = ~, then there exists an M X M matrix MT such that PTJ = MTJ ES for every 

f ES. 

;\-tT is known as the matrix induced by r. It is nonnegative and for each j = l, ... , M 
the nonzero entries in the j'h column are equal to I <let(A;-1) I- If the partition P is equal, 

MT is stochastic. 

We now present the main result of this section. 

Theorem 3.4 Let R(x) = { rk(x ),Pk, k = 1, ... , I} be a random map, where each rk : IN -> 

IN is a piecewise C2 and expanding Jablonski transformation with respect to a common 

partition P = {D1 , ... , DM} satisfying condition (8). Assume for each k = 1, ... , 1, 
(A) Tkj is a homeomorphism from 15, onto lJ11 U ... U DJL and has rk:;1 (x 1 , •.. , XN) as its 

in verse, and 

(8) det(AkiJ is a constant on D1 , where Akj = ~
Then, 

(a) if PRJR = JR, then JR ES, i.e., every invariant density of R is piecewise constant, 

(b) there exists an M x M matrix MR= L~=l PkMk, where Mk is the matrix induced 

by rk, such that MRJ = PRJ ES for every f ES, and JR= (/RJ, ... , !RM), fRi = JR In, 
is a right-eigenvector of MR, 

(c) MR has 1 as the eigenvalue of maximum modulus, 

( d) if MR is irreducible, JR is unique (up to constant multiples). 

Proof. By Theorem 3.1, R has an invariant density fR-

(a) The proof is along the lines of Lemma 2 of [8]. For notational convenience we shall 

restrict ourselves to two-dimensions and to random maps composed of two transformations. 
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The proof is the same for N-dimensions and for random maps composed of arbitrary number 

I of component transformations. 

By a simple computation, the Frobenius-Perron operator for Tk, k = 1, 2 is given by the 

expression 
M 

PT.f(x) = Z:f(rk/(x)) I det(A;;}) I h,(D,)(x), 
J=I 

where x = (x1,x2 ). For a fixed point fn of Pn, we then have 

M 

Pnfn(x) = P1 Lfn(rj:;1(x)) I det(A1/) I XT1,(D,)(x) 
j=I 

M 

+P2 Lfn(ri;1(x)) I det(A2}) I XT2,(D,)(x) 
j=I 

By (8) and since each Tk, k = 1, 2 is expanding, sup1 I det(A;;}) I= ak < l. Now let D1 be 

any element of the partition P and let x, y E D1 be distinct and fixed. Then X7 .,(D,)(x) = 

X7 ,,(D,)(Y), fork= 1,2 and for all j = 1, ... ,M. Thus, 

M 

fn(x) - fn(y) = Pl Z:Un(T1j1(x)) - fn(T1j 1(y))) I det(Am I XT1,(D,)(x) 
j=I 

M 

+P2 Z:Un(ri;1(x)) - fn(r2j
1(y))] I det(A2}) I XT2,(D,)(x). 

j=I 

Let ]I vary over all integers j E {l, ... , M} such that x E r11 (D1) and let z1 vary over all 
integers j E {l, ... , M} such that x E T21(D1). Then 

JI 

+P2 Z:Un(r2~:(x)) - fn(r2~:(y))] I det(A2,1,) 1-
z, 

Similarly, for each j 1 and z1 we have, 

fn(T15;)(x) - fn(r15;)(y) = P1 Z:Un((r15!)r15;(x))- fn((r15!)r15;(y))) I det(A 11~) I 
12 

+P2 Z:Un(h~:)7 15;(x)) - fn((r2~:)r15;(y))] I det(A2z;) I, 
12 

where j 2 varies over all integers j E {l, ... , M} such that r111 (x) E T11 (D1) and z2 varies 

over all integers j E { 1, ... , M} such that r1Jt (x) E r 21 (D1 ). Repeating the same argument, 

we obtain 

·'2 

+P2 Z:Un((r2~:)-r2~:(x))- fn((r2~:)r2~:(y))] I det(A2t;) I 
t, 

Let T/ = max{ a1 , a2 }. Then if I . I denotes the Euclidean norm on 12
, we have 

I fn(x) - fn(y) I ::; P1T/ LI fnh;;(x)) - fnh;;(y)) I 
JI 
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+P21/ LI fn( 72~:(x)) - fnh~:(y)) I 
z, 

Jt ]2 

+P1P21/
2 LL I fn((r2~:)r1-:;;(x)) - fn((r2~;)r1-:;;(y)) I 

Jl z2 

+P2P11/
2 LL I fn((r;:;;)r2~:(x)) - fn((r;:;;)r2~:(y)) I 

ZJ S2 

+p~r/ LL I fn(h~;)r2~:(x)) - fn((r2~;)r2~:(y)) I. 
21 t2 

Continuing this process U times, we obtain using p2 = 1 - p1 that 

u 
I fn(x) - fn(Y) l:S L(~)Prl/u Su 

u=O 

where each Su is of the form: 

L ... LI fn(rz; ... fe;1(x))fn(rz; ... r;1(y)) I 
,, fo 

with r,, = r1,, or r 2,,. Now for ea.ch u = 0, 1, ... , U, 

is a. collection of atmost mu nonintersecting regions in JN. So for all u, 

Therefore, for any U, 
JN 

I fn(x)-fn(Y) l:S 1/uv fn (9) 

Since 77 < 1 and by Theorem 3.l(c), fn is of bounded variation, (9) implies that fn(x) = 
fn(Y), i.e., fn is constant on D,'s. 

(b) For any f E S we have by ( 4) and Lemma 3. 7 that 

l l 

Pn = L Pk PT. = L PkMk := Mn. 
k=I k=I 

Therefore Mnf = Pnf, for every JES. By Theorem 3.l(b), Pn has a. fixed point fn, which 

by (a) belongs to S. So fn is a right-eigenvector of Mn. 

( c) It is shown in course of the proof of Theorem 3.1 of [ 64], that M 1 , ... , M I a.re similar to 

stochastic ma.trices via simple diagonal ma.trices. Therefore, r(M 1 ), ..• , r(M 1) are all equal 

to 1, where r denotes the spectral radius. It is then easy to show that also r(Mn) = l. 

Hence, Mn has 1 as the eigenvalue of maximum modulus. 

(d) Since by (c) /vtn has 1 as the eigenvalue of maximum modulus and is irreducible, 

the Perron-Frobenius Theorem implies that the algebraic and geometric multiplicities of the 

eigenvalue 1 a.re also 1 and fn is unique (up to constant multiples). D 
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Remark 3.5 Assumptions (A) and (B) of Theorem 3.4 are automatically satisfied if each Tk, 

k = 1, ... , l is piecewise linear. (The converse, however, is not true in general.) Piecewise linear 

Markov transformations have found applications in approximation of various statistical measures 

of chaos and the construction of switched capacitor circuits [47]. 

From Theorem 3.4 and Remark 3.5, we obtain the following corollary, which is a higher 

dimensional generalization of Theorem 1 of [12]. 

Corollary 3.2 Let T : JN -> JN be a piecewise linear and expanding Jablonski transforma

tion with respect to partition P satisfying condition (8). Then every invariant density of T 

is piecewise constant with respect to P. 

3.1.3 Examples 

In this section, we present examples of random maps composed of Jablonski transformations 

on the unit square J2 which illustrate our uniqueness results. 

Example 3.1 Consider a random map R(x) = {rk(x),Pk,k = 1,2}, where r 1 (x1 ,x2 ) = 
(½x1, ½x 2) and r 2 : J2-+ / 2 is a piecewise linear and expanding Jablonski transformation on 

the partition P = { D1 , ••• , D9 }, shown in Fig. 1, and defined by 

where 

! 3X if Q S: X < ½ 

<pz,,,(x)= 3x-l if ½S:x<~, 
3x - 2 if ~ S: X S: 1 

i = 1, 2 and j = 1, ... , 9. 'Pz,ij is shown in Fig. 2. 

Let p1 = ½ and p2 = t· R has the essential ingredients for transition to chaos for random 

maps [57]. Since r1 does not have an ACIM, Corollary 2 of [36] does not yield uniqueness. 

Now, condition (2) is satisfied and therefore R has an ACIM µR, By Proposition 3.3, µR is 

unique. 

Example 3.2 Let X = [-2,2] x [-3,3] and let P = {D1,D2,D3,D4}, where D, is the 

intersection of X with the ith quadrant of the plane (see Fig. 3). Define r1 : X -+ X by, 

r/ = T1 Iv, (x1, x2) = (-~x2 + 2, ~x1), rl = T1 Iv, (x1, Xz) = (-fxz + 2, -ix1), 

3 I ) 4 3 
4 4 3 r1 = T1 v, (x1, Xz = (3x2 + 2, 2x1), T1 = r1 Iv. (xi, x2) = (;jx2 + 2, - 2x1). 

Then rf maps D1 onto D1 U D2, rl maps D2 onto D1 U D2, rf maps D3 onto D3 U D4 , and 

T{ maps D4 onto D3 U D4 . The map r1 is based on Example 1 of [73]. Similarly, we can 

define r 2 : X -+ X by, 

I_ _ 4 3 
r2 = Tz Iv, (x1, x2) - (3x2 - 2, 2x1), 

3_ )-(4 3 r 2 = r 2 Iv, (x 1 , Xz - - 3x2 - 2, 2x1), 



174 KAMTHAN AND MACKEY 

D7 Dg D9 

2/3 

D4 D5 D6 

1/3 

D1 D2 D3 

0 1/3 2/3 

Figure 1: The partition P = { D1, ... , Dg} 

0 1/3 2/3 

Figure 2: The map 'P2,,, 
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(-2,3) (0,3) (2,3) 

Dz D1 

(-2,0) 
(0,0) 

(2,0) 

D3 D4 

(-2,-3) (0,-3) (2,-3) 

Figure 3: The partition P = {D1,D2,D3,D4} 

Then, both r 1 and r 2 are piecewise linear and expanding Jablonski transformations (on 12
, 

by an appropriate scaling) and Markov on the common partition P. It is obvious that both 

r1 and T2 have two ergodic ACIMs. Consider a random map R(x) = {r1(x),r2{x),p1,P2}, 
where p1 = ½ and p2 = ~- Then by Theorem 3.1, R has an ACIM, say µR, Since both T1 

and r 2 have more than one ACIM, uniqueness of µR does not follow either from Theorem 

3.3 or from Corollary 2 of [36]. But since the Markov matrix induced by R is irreducible, 

the hypothesis of Theorem 3.4 is satisfied and µR is unique. 

4 Asymptotic Periodicity of { PJU} 
Let X be a compact metric space and let T : X -+ X be a non-singular transformation. 

An interesting property that the sequence {P;' J} can display is that of asymptotic period

icity, which has been investigated and applied extensively before in various contexts such 

as: deterministic and noise-induced piecewise monotonic maps [58], time-summating binary 

neural networks [74] and coupled map lattices (CMLs) [63]. In this section, we consider this 

property in our context of random maps. 
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A linear operator P : L1 -> L 1 is called Markov if P(D) C 1). The Frobenius-Perron 

operator is an important example of a Markov operator. An operator P : L1 -> L1 is weakly 

(strongly) constrictive, if there exists a weakly (strongly) relatively compact set A C L1 such 

that, 

li~)!,if gEAIIPn f - 9111 = 0, 

for each f E D. The set A is referred to as a constrictor. The above condition can be 

weakened even further. An operator P : L1 -> L1 is quasi-constrictive, if there exists a 

weakly relatively compact set A C L1 and 0 < 1 such that, 

limsup gEAilpnf - 9lh :S 0, f ED. 
n-oo 

The importance of quasi-constrictiveness comes from the realization that it can be con

sidered as a generalization of the Doeblin condition [29] in the theory of Markov processes. 

From [55], we have: 

Lemma 4.1 In the class of Markov operators, the notions of weakly, strongly and quasi

constrictive operators are equivalent. 

The significance of Lemma 4.1 comes from the fact that for many operators appearing in 

applied problems, weak constrictiveness is relatively easy to verify. In the sequel, we delete 

the adjectives strong, weak and quasi for constrictive Markov operators. 

An important property of constrictive Markov operators is reflected in the following result 

[58]: 

Theorem 4.1 (Spectral Decomposition Theorem) Let P : L 1 -> L 1 be a constrictive 

Markov operator. Then there is an integer r, two sequences of nonnegative functions g, E 1) 

and k, E L00 , i = 1, ... , r and an operator Q: L 1 -> L 1 such that for all f E L 1
, 

r 

Pf= 'f:,>.,(J)g, + Qf (10) 
i=l 

where 

>.i(J) = J, fkidm. 
[N 

(11) 

The functions g, and the operator Q have the following properties: 

(a) g,(x)g1(x) = 0, for all i =f j, i,j = l, ... ,r, so that the functions g, have disjoint 

supports; 

(b) for each integer i, there exists a unique integer a(i) such that Pg,= 9a(i), where a(i) 
is a permutation on the numbers { 1, ... , r}. Furthermore, a( i) =f a(j) for i =f j, and thus 

the operator P just serves to permute the functions g,; 

(c) IIPnQ flh -> 0, as n -> oo, for each J E L1. 

From equation (10) it immediately follows that, 

r 

J'"f = L ).i(j)ga"(i) + Qnf, (12) 
i:;::d 
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where Qn = pn-1Q, and on(i) = o(on- 1 (i)) .... Furthermore, IIQnfl[i-> 0, as n-> oo, so 

the terms in the summation in equation (12) are just permuted with each application of P. 

Since r < oo and IIQnfl[i -> 0, as n -> oo, the sequence 

T 

pn J ~ L Ai(j)gc,n(i), (13) 
i=l 

must be periodic with a period :S: r 1• Since { on ( 1 ), ... , on ( r)} is just a permutation of 

{ 1, ... , r}, there is a unique i corresponding to each on ( i). Thus the summation in ( 12) can 

be written as 

(14) 
i=l 

where { o-n ( i)} denotes the inverse permutation of { on( i)}. 

A useful consequence [58, Proposition 5.4.1] of Theorem 4.1 is: 

Proposition 4.1 A constrictive Markov operator P : L 1 -> L1 has a stationary density J* 
given by 

1 T r = - I:g,. 
r i=l 

Theorem 4.1 leads to the following definition [58]: 

Definition 4.1 (Asymptotic Periodicity) If a Markov operator P : L1 -> L1 has the 

representation given by (9), we say that the sequence of densities {Pn J} is asymptotically 

periodic. 

Thus, Lemma 4.1 and the Spectral Decomposition Theorem 4.1 say that if P is con

strictive Markov operator then {Pn J} is asymptotically periodic. By (9) it follows that, 

asymptotically, pn f is either equal to one of the pure states g; or to a mixture of these 

states, each having a weight A;, which implies that the system is quantized from a statistical 

point of view [65]. Physically, we can associate the densities in (9) with a set of metastable 

states, each transformed into another of the sequence under the action of P. Since pn f 
may not necessarily evolve to a stationary density, even if there is one, asymptotic periodic 

systems can be treated as a nonequilibrium systems, periodically alternating among the 

metastable states with some characteristic period [65]. 

We can now prove the asymptotic periodicity of { PJU'}. 

Theorem 4.2 Let R(x) = { rk(x ), Pk, k = 1, ... , 1} be a random map, where each Tk : JN -> 

JN is a piecewise C 2 (not necessarily expanding) Jablonski transformation satisfying condi

tion (2). Then, the sequence of densities {PJU} is asymptotically periodic. 

Proof It is easy to see that Pn is a Markov operator and so by Lemma 4.1, it. is sufficient to 

prove that Pn is constrictive. Using induction on inequality (5) in Proposition 3.1 we obtain 
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Therefore, if f E 'D n C, we have from Lemma 2.1 that 

(15) 

where J<' 2'. 1~". Denote 

1N 
A= {g E 'D: V g :SJ<'}. 

Now, inequality (15) implies that Pf1 f EA for M large enough, and so {PJ1 !} converges to 

the set A in the sense that Jim infn-= 9eA IIPJif - glh = 0. The set A satisfies the conditions 

of Lemma 2.3 and so is weakly relatively compact in L1. Furthermore, by Lemma 2.2, the 

set 'D n C is dense in 'D. Hence, it follows that PR is constrictive. Therefore, by the Spectral 

Decomposition Theorem 4.1, {PJ1 f} is asymptotically periodic. D 

Remark 4.1 Let 1': JN-+ JN be a piecewise C2 and expanding Jablonski transformation and let 

P, be its corresponding Frobenius-Perron operator. Constrictiveness of P, follows by an argument 

similar to that used in the proof of Theorem 4.2. 

Remark 4.2 Asymptotic periodicity of { PJif} also follows as a consequence of lonescu-Tulcea 

and Marinescu Theorem 3.2 (though under stronger assumptions than those of Theorem 4.1) and 

it also implies [43] that stationary processes governed by the system satisfy a central limit theorem 

and weak invariance principles. 

4.1 An Upper Bound on the Period 

By the Spectral Decomposition Theorem 4.1, the period of {PJi} is bounded above by r 1• 

We can make this bound more precise by the next result. 

Theorem 4.3 Let R(x) = {1'k(x),Pk,k = 1, ... ,1} be a random map, where eachTk: JN-> 

JN is a piecewise C2 and expanding Jablonski transformation. Let P,. be the Frobenius

Perron operator corresponding to 1'k, having rk densities in its spectral representation. Then 

PR has r densities in its spectral representation, where r :S min( r 1 , ... , r1). 

Proof Since each 1'k is expanding, condition (2) is automatically satisfied. By Remark 3.1, 

the operators P,., k = 1, ... , I, are constrictive. Therefore, the proof follows immediately 

from Theorem 5 of [13]. D 

Thus, by Theorem 4.3, the upper bound on the period of an asymptotic periodic sequence 

of densities {PJif} of a random map R composed of piecewise C 2 and expanding Jablonski 

transformations 1'1 , •• • , 1'/ is the minimum of the upper bound of the period of asymptotic 

periodic sequences of densities {P;,f}, ... , {P;,f}, i.e., min(r1 , ... , r1)!. 

4.2 Spectral Representation of PR and Ergodic Decomposition 

of R 

By Theorem 4.2, PR is constrictive and so by Theorem 4.1 it has a spectral representation. 

Also, by Proposition 4.1 PR has a stationary density which is an invariant density of R. Then 
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the question that arises is: what is the relation between the number of independent invariant 

densities of R and the number of densities in the spectral representation of PR? We draw 

this connection in our next result. 

Theorem 4.4 Let R(x) == {Tk(x),Pk, k == l, ... , 1} be a random map, where each Tk: JN--; 

JN is a piecewise C2 (not necessarily expanding) Jablonski transformation satisfying condi

tion (2). Then the number n of independent invariant densities in the ergodic decomposition 

of R is bounded above by the number r of densities in the spectral representation of PR, i.e., 

n Sr. 

Proof By Theorem 4.1, we know that PR is constrictive. So by the Spectral Decomposition 

Theorem 4.1, it can be expressed as 

PRU) == L A;(f)g; + Q(J). 
i=l 

Let T be the period of Li=! A;(J)g;. By the Theorem 3.l(b), PR has a stationary density, 

say f R• Therefore, it follows by (3) that, for any k, 

p~T (JR) == JR == L Ai(JR)go,T(i) + Qkr(JR). 
i=l 

Now, since akT(i) is a permutation of i, fR and Li=! A;(J)g; are independent of k and 

IIQkr(/)Jli --; 0, as k--; oo, we have 

r 

fR == LAi(JR)g;. 
i=l 

This implies that suppfR C u;-=1 supp g;. Hence, the number of (independent) stationary 

densities of PR must be less than or equal tor, i.e., n S r. • 

Remark 4.3 By Proposition 4.1, a constrictive Markov operator always has a stationary density. 

Using this fact, it is easy to see that the conclusion of Theorem 4.4 holds, in general, for any 

constrictive Markov operator P, i.e., the number of stationary densities of P is at most equal to 

the number of densities in its spectral representation. 

We now make the above relation between the number of invariant densities of R and 

the number of densities in the spectral representation of PR more precise by giving an 

explicit upper bound on the number of independent invariant densities of the component 

transformations in our next result. 

Theorem 4.5 Let R(x) == {Tk(x),Pk,k == 1, ... ,1} be a random map, where each Tk: 

JN --; JN is a piecewise C2 and expanding Jablonski transformation on the partition Pk == 
{Dk,, . .. , Dkm} related to which the number Mt) is defined. Let Vk be the set of vertices of 

elements of Pk which lie in the interior of JN. Let P,, be the Frobenius-Perron operator cor

responding to Tk, having rk densities in its spectral representation such that the permutation 

{ak(l), ... ,akh)} of{l, ... ,rk} is cyclica/2. If min1'.'y;1 ~ > 1, then 
N 

2 By Theorem 5.5. l of [58] this is equivalent to each of the PT, 's being ergodic 
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n Sr S min{ri, ... , rt}= min{ #V1, ... , #Vi}. 

Proof. By Theorem 4.4 n S r and by Theorem 4.3 r S min { r 1, ... , r1}. We now prove that 

rk = # Vk, for each k = l, ... , l. 

Fix one of the maps Tk, k = 1, ... , 1, say T1 . Since a 1 is cyclical, P;
1
1 gi = g., where 

{g1 , ... , g,1 } are the densities in the spectral representation of Pr,. Since ~ > l, by 
MN 

Lemma 3.6, there can be at most # V1 such densities. Hence, r1 S # V1 . But by Remark 4.3, 

r1 2: # V1 . Thus, r 1 = # V1 • Repeating the argument for Tz, ... , T1, we obtain rk = # Vk, for 

each k. Therefore, we have 

n Sr S min{r1 , ... , rt}= min(#V1 , ... , #Vi). 

• 

Remark 4.4 For N = 1, i.e., in one dimension, Mj;) = 1 and #Vk is just the number of 

discontinuity points of the transformation Tk- Using this fact, we obtain a result similar to (but 

stronger than) Theorem 6 of [13], given for random maps composed of one-dimensional piecewise 

expanding transformations, even though our Theorem 4.5 is not an obvious generalization. The 

bounded variation techniques used in one dimension do not carry over easily to higher dimensions 

[41] due to the much more complex setting and obtaining an upper bound for the number of ergodic 

ACIMs is still a nontrivial task. 

We also have an analog of Theorem 4.5 for piecewise linear Markov transformations, sim

ilar to Theorem 7 of [13], where we do not require that the permutation { ak(l), ... , ak(rk)} 

of { 1, ... , rk} be cyclical. 

Theorem 4.6 Let R(x) = {Tk(x),Pk, k = 1, ... , 1} be a random map, where each Tk: JN--, 

JN is a piecewise linear and expanding Jablonski transformation, with Markov property with 

respect to a common partition P. Let P7 • and PR be the Frobenius-Perron operators corre

sponding to Tk and R having rk and r densities in their spectral representations, respectively. 

If nk and n are the number of independent invariant densities in the ergodic decomposition 

of Tk and R respectively, then we have 

n ::=; r :=; min { r1 , ... , ri} = min { n1 , ... , n1). 

Proof. Let [k, k = 1, ... , 1, and [ denote the eigenspaces of Mk and MR respectively, 

associated with eigenvalue 1. If I 1 is an invertible matrix such that M 1 = I 11 M 1I 1, then 

I 

R-I MRI1 = P1M1 + L PkI11 MkI1. 
k=2 

Since M 1 is similar to a stochastic matrix, it can be put into the Perron-Frobenius normal 

form [34, Chapter XIII, Theorem 10]: 
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Ml 0 0 0 0 

0 M; 

0 0 0 

M1= 0 Mi 
Ml+l,1 Aiq+i,q ;1;q+1 0 0 0 

M;,1 \;("'' / I ;\;(j 

where .\It;, ... , 1\ltj are irreducible stochastic matrices. Then for each ;\It\, i = 1, ... , q, 1 is 

an eigenvalue of algebraic and geometric multiplicity l. The remaining matrices Ml+!, ... , Ml 

on the diagonal have maximal eigenvalues less than I. Hence, dimE1 = q. Now, pu\lt 1 + 
I::~= 2 pkI11 MkI1 has q or fewer blocks along the diagonal. Therefore, dimMR ':'. q ':'. 

dimM 1. Repeating the same argument for M 2 , ... , M1, we obtain: 

clin1;\;(R ':'. min dim.\ltk. 
l<k<I 

Therefore, by Theorems 3.4(b ), 4.2-4.4 and the foregoing we have the desired result. • 

5 Asymptotic Stability of { PJU} 
In this section, we consider a11other asymptotic property of that the sequence { PJU} can 

exhibit: strong convergence to a unique stationary density. 

By Proposition 4.1, a constrictive l\larkov operator always has a stationary density. Even 

though the system is asymptotically periodic, it may not necessarily evolve to a stationary 

density. But if r = 1 in the representation of {P"J} given in equation (12), then the 

summation is reduced to a single term and for every f E D, the sequence {Pn J} converges 

strongly to a unique stationary density, independent of f. We can make this more precise 

by the following [58]: 

Definition 5.1 (Asymptotic Stability) Let P : £1 -+ L1 be a Markov operator. Then 

the sequence of densities { pn f} is said to be asymptotically stable if 

(i) there exists a f' ED such that. Pf* = f* and 

(ii) limn-oo IIP" f - f*ll1 = 0, for every f ED. 

Clearly an f* satisfying Definition 5.l(ii) is unique. In general, condition (ii) does not 

imply that f* is stationary under the action of P. 

The property of asymptotic stabilit~' has !wen studied in various cases: deterministic 

and noise-induced piecewise monotonic maps [:ii:1], C!v!Ls [66] and random maps composed 

of affine transformations such as iterat<'d fu11ct.io11 systems (IFS) [60]. 

Remark 5.1 We say that a Markov operator I': L 1 - J,1 is exact if it has a stationary density 

f* ED such t!tat limn-oo IIP" f ~ /*Iii = 0, for every f ED. Therefore, exactness of Pis equivalent 

to asymptotic stability of {Pn !}. 
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\\-P can now pron~ the a.symptotically st.ability of the sequence of densites { P,qf} !fl our 

case of a random map R. 

Theorem 5. 1 Le I R( .r) = { Tk( .r), Pk• h- = 1, ... , /} be a random map having a uniqu, A C!M 

11 11 will, density f11. wlttrc each Tk I·" ---> JN is a piecewise C2 and expanding Jabl01iski 

/ransfonnahon. For each k = 1, ... , I. ht the Frobenius-Perron operator PTk corresponding 

lo Tk. /,ave rk drnsiti,s in its spectral n-presentation. Then, if any one of the maps Tk, 

k = 1 •... ,/, is uacl. the sequence of densities {PpJ} is asymptotically stable. 

Pmof. By H.emark 5.1, it is sufficient to prove that PR is exact and { PJU} converges strongly 

to _fH. Let, without loss of generality. T1 be exact. Since PT1 is constrictive, by Theorem 

'i.0.:l of [,18]", this implies that r 1 = l. Therefore, by Theorem 4.:l 

r = min(r1, ... , ri) = l. (16) 

Furtlwrmore, since each Tk is expanding, condition (2) is satisfied and so by Theorem 4.2, 

Pn is constrictive. This fact together with (16), implies by Theorem 5.5.2 of [58] that P11 is 

C'Xact. i.e., there exists an f*, I'nf* = f* such that 

uniformly for cwry f EV. Since /IH is unique, f* = fn. Therefore, {P[U} is asymptotically 

stable. D 

5.1 Asymptotic Stability under Special Cases 

In this section, we consider some specific cases where due to existence of a unique ACIM of R 

and exactness of any one of the component transformations, we obtain asymptotic stability. 

Theorem 5.2 Lt/ R(1·) = {Tk(1·),Pk,k = 1, ... ,I} b,. a random map, where each Tk: JS---> 

JS is a piec,wis, C 2 and c.rpandin_q Jablmiski transformation. ff any ant of the maps Tk, 

k = 1, ... , I, has a uniqu,. ACHf with respect to tchich it is exact, then the sequence of 

dtnsities { PJU} is asymptohrally stable. 

Proof. By Corollary :l.l, R has a uniquP ACIM and so the result follows immediately from 

Theorem 5.1. D 

Remark 5.2 By Theorem 4.4.l of [58]. it follows that R is exact if and only if Pn is exact. 

Then by Theorem 'J.'2. we rondude that if for any one of the maps Tk, k = 1, ... , I, {P;;f} is 

asymptotically stable then {PJU} also is asymptotically stable. The converse, however, is not true 

in general, i.e., {PJ'i.f} ran be asymptotically stable even if none of the {P;',f}'s are since R can 

ha,·e a 1rniq11t' AC!~! eve11 if none of the Tk's have a unique ACIM (see Remark 3.4). 

3 EH>n though Theorems 5.5.2 and 5.5.3 of [58] are giveu for the case when a Markov operator has a 

11rufor111 stationary dPI1sity, tlwy can he applied to the case of a nonuniform stationary density by a suitable 

11orrnalization 
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For random maps composed of piecewise linear :'vlarkov transformations, asymptotic sta

bility of the sequence of densities {!'JU} follows from the following result. 

Proposition 5.1 Lt! R(J:) = {Tk(x).Jh, k = 1, .... I} b, a rnndmn map, where each Tk : 

JN -> JN is a pier, 1,•ist linrnr and apanding Jab/01iski lmnsforrnation with ,\farkov proper·ty 

with respect tu a common partition P. Suppose for any one of the maps Tk, k = 1. .... I, 

//,er, erists at> 0 such that for ,.,,,,.y pair of elumr,/s lJ1, D, E P, we have 

( 17) 

Thrn the s,qurnce of dcnsilir:s {i'Jlf} is asymplolirnlly stable. 

Proof. Let, without loss of generality, T1 satisfy the property (17). Then from the results of 

Theorem 1.3 of [78. Chapter 111] and [64, §3.4], it follows that T1 has a unique ACl:\1 with 

respect to which it is exact. Therefore. by Theorem 5.2, { PJU} is asymptotica.lly stable. • 
The following lemma is contained in Theorem 2 of [81] which has been adapted here to 

Jablmiski transformations. 

Lemma 5.1 Lfl T: Is-> fN be 11 Jab/01ish lrnnsjrJ1·11w//on on 11 padi/ior, P = {D1 •... D,~1 } 

defined by 

,(.r) = ,;(:r) = T lo,: lJ,-> JNfor .r E D,, I= l ..... :\1, 

wher, T, satisji,·s illf following r:onditior,s: 

(a) T, is 11 C 2 -dijfcomorphism onto its image. 

(h) ~ -:: 0. det DT, > 0 for j. / = l. ... N. u•litrc 1', = ( T;)- 1 and T, = (T,,1, .... T, ,\ ). 

(c) there frisls a,\> I sue!, that 

inf{] DT,(.r) · y ]:] y ]= l}-:: ,\., 

1ch,n D,,(.r) is /Ii, .Jacobian matri1· of T;. 

(d) if,,. ED; and .T1 'fa,,, for a gi1•,n :S j :S N. thcn 'f 0. whf:re /he a;.J arr 

gi1•rn in Definition 2.1. 

(r) if .r E T;(D,) and .'/j :S J· 1 • for j = 1, .... N. thrn y E T;(D,). 

Then T has 11 nn/qne ACJJ\:f with nsptcl In which ii is eract. 

Theu hy Thrnrem "i.'.1 and Lemma -~.l. we immrdiatel:, obtain tlw next result. 

Proposition 5.2 Let R(1·) = {Tk(J·),pk,k = l, .... 1} b, a random map. where each Tk 

J'V -> JN is a pi,n wise C 2 and u-pa,,diflg Jabl01iski lmnsformalion. ff any nne of the 

maps Tk satisfies till hypotlu:srs of l1m111a 5.1. then the .sequence of densities {PJ'J} is 

asymptotically stab!t. 

In the ucxt rest1lt, we do not assunw that auy of the map Tk's ha,·e a unique AC!!\! but 

ca11 still obtain asnnptotic stability. 

Proposition 5.3 Lt! H(r) = {7c(.r)./Jk./,: = 1, ... ,1} b1 a mndom map, where earh Tk 

JS -> J,v ,:s a pitcell'i.s, linear and upanding Jabloriski transformation with !vfarkov property 

ll'ilh respect to a co1m11on partition P. ff any one of /he maps Tk, k = 1. .. , I, is e.racl and 

1\ltR is irreducible then the St'<Jlltnce of densities { P[if} is asymptotically stable. 
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Proof. By Theorem 3.4, JR is unique (up to constant multiples). Therefore by Theorem :i.L 

{ P1U} is asymptotically stable. • 

5.2 Asymptotic Stability and Physical Measures 

Asymptotic stability implies a global stability of the system R in a statistical sense: the 

iterates {PJ'iJ}, n = 0, I, ... , converge strongly to the unique density JR- Therr,fore. it is of 

significance to know whether JR has any physical relevance. In this section, we show that 

fR is indeed the density of a physical measure. 

In many physical systems it appears that the observed orbits have well-defined time

a\·erages whose histograms are approximately those defined by ergodic invariant measures of 

the system. Oft.en, a dynamical system can have many ergodic invariant measurr,s. though 

not all of these are physically relevant, i.e., they are not observed during physical experinwnts. 

For example, if x is an unstable fixed point of a dynamical system, then the Dirac measure 

at a point is an invariant measure but it not observed. In general, criteria for selecting; a 

physical measure are: (a) that it describes physical time-averages and (b) it is siablr und, r 

small perturbations. A physical measure from this point of view is the SRB-mcasure [7!J]. For 

a random map composed of contracting ( or even contracting-on-average) transforrnat ions on 

a locally compact metric space in [30] and for random diffeomorphisms of a compact manifold 

in [61], the existence of an SRB-measure was established. 

By Theorem 3.1, for a random map R we have 1 he <:'xistence of an ACT\l l'R· Since an 

ACIM is an invariant measure which often appears in numerical and computer experiments. 

the obvious question is: when is /1R an SRB-measure7 The existence of an SRB-mcasure for 

a random map is also of interest from the point of view that it is this measure which appears 

when the dynamics of the two-slit experiment of quantum physics is modelled by a random 

map [11]. 

For a transformation 7 : JN -; JN, the SRB-measurl' is defined as the vague limit of 

{r;'(m)}, if it exists. Let R(x) = {rk(x),Pk,k =!, ... ,/}be a random map, where C'acl, 

rk : JN -, JN_ Analogously, we can define the SRB-measure corresponding to the random 

map Ras the vague limit of {R:(m)}, if it exists, where 

I 

R:(rn) = Ll'k(rk).(n,). 
k=l 

Since each Tk is measurable, R.(m) is well-defined. Now, if each Tk is a piecewise C 2 

and expanding Jablor\ski transformation. then by Theorem :l.l, R has an ACI!l·l /LR and 

dJ-C( m) = (PJ'il )drn. Since { Pfp} is a weakly compact set in L 1
, { PJ'i 1} converges strongly 

to the density of /1R if and only if R is exact [58, Theorem 4.4.1]. Therefore, it follows that. if 

R has a unique AC!!\! /1R, then /LR is the SRB-measure if and only if R is exact with respect 

to /1R· By Corollary 3.1, /1R is unique, if any one of the maps Tk, k = 1, ... , 1, say r1 has 

a unique ACIM and by Theorem -'i.2 R is exact. if r 1 is exact. \Ne thnefore arrive at the 

following result: 
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Theorem 5.3 Let R(.r) = { rk(,r), p,. k = l, ... , /} In a nuulom map hal'ing a 1mique ACIM 

;in. 1chcrc rnrh 'k: P-; JN is a pien1ci;;t C 2 and upanding Jablmiski transformation. ff 

any one of the maps 'k• k = l, ... , /. has a uniqnt AC!:\! with respect lo which it is txact. 

ihtn ;in is an SRB-111cas1ne. 

Tlrns, Theorems 4.2 and 4.3 together imply a 1iliysical asymptotic stability, i.e., strong 

convergence of { Pf!.f} to a physical density. 

\Ve now present an example which shows the importance of condition (2) in Theorems 

4.2 and 5.1. 

Example 5.1 Consider a r;indom map H(.r) = {rk(.r). p,. k = I .... , I}. wlwre '": 12 _, 12 
are defined as follows: , 1(.r1 .. r2) = (l,.r1. ~x2), r,(.r1 .. r2) = (~x1 + i, t1·2), ,3(1:1,1:2) = 
(½,r1, ½1· 2 + ~), r~(.r1,.r 2) = (t.r1 + 1-½,r, + ~), and p, = ¼ for k = 1, ... ,4. Then R(x) 

comprises an IFS [4] whose unique attractor A is a two-dimensional Cantor set of Lebesgue 

measure 0. We claim that the sequence of densities { Pf!.!} is neither asymptotically periodic 

nor asymptotically stable. Suppose {Pf!f} is asymptotically periodic. Then, by definition, 

Pn is constricti\·e. Therefore, by Proposition 4. l, Pu has a stationary density, say l'R· Now, 

the unique attractor A of R, is thl' support of the unique invariant measure of R [4, §9.6, 

Theorem 2]. This implies that support of /LR would be of O Lebesgue measure, which is a 

co11traclictio11. From this, it is obvious that {I'Jlf} is also not asymptotically stable. 

6 Stability of Asymptotic Properties of Densities 

Physical systems are usually affect Pd In· a number of small external fluctuations ( e.g. clue to 

external noise or cluP to roundoff/truncation errors in computation). \\ie are thus concerned 

with the question of stability of quantitators/properties characterizing the dynamics of the 

system in presence of these fluctuations. The properties which recover from the fluctuations 

can be considered as stable under perturbations and thus have physical sense. The quan

titators/propcrties we are interested here are Frobenius-Perron operator Pu, its stationary 

density f R, asymptotic periodicity and asymptotic stability. In spite of the fact that both the 

properties of asymptotic periodicity and asymptotic stability have been extensively studied 

both numericall_v and ana.lytically, the issue of their stability or persistence under pertur

bations has not been emphasized. This is significant since in various cases [63], [76] these 

properties have been numerically illustrated and conclusions have been drawn on their basis. 

In this SPclion, we examine the above question in the context of random maps from two 

different perspectiws: (a) stability under pcrt1l1-baiion of ti,, initial density, and (b) stability 

und,.,. perturbation of the map R. 

6.1 Perturbation of the Initial Density 

Let a pertmbation be such that a density fu be tra11sfonnecl to a density f~ (and does not 

perturb the map R itself). Then, due to equations (:l) and (4), fn and Pn respectively 
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are independent of the initial density, and hence are stable. Let a sequence of densities 

{PJUo} have the properties of asymptotic periodicity and asymptotic stability. We are 

then led to the question whether { PfU~} has the properties of asymptotic periodicity and 

asymptotic stability. Now, the property of asymptotic stability is stable, since by definition it 

is independent of the initial density. This however is not necessarily the case with asymptotic 

periodicity, which depends on the initial density, as the scaling coefficient .\,'sin (12) depend 

on f. For piecewise monotonic maps of an interval, this has also been indicated in the 

illustrations of [63). Therefore, it is of interest to obtain conditions under which {PJ'J~} has 

asymptotic periodicity; we leave this problem for future research. 

6.1.1 Shadowing Property for PR 

To deal with the stability of the orbit { PJif} itself, we employ the (pseudo-orbit) shadowing 

property, which has been widely used in testing the reliability of computer-generated orbits 

of chaotic systems in presence of unavoidable roundoff/truncation errors and the system's 

sensitive dependence to initial conditions [48]. The shadowing property for random maps 

composed of hyperbolic transformations has been analysed in [85], [52], [6]. We shall show 

that, regardless of whether a random map R : JN --> JN has the shadowing property, 

its corresponding Frobenius-Perron operator PR V, --> Ve can still have the shadowing 

property, where Ve is any compact subset of V. 

Let { <Pn} be a countable dense subset of C(IN), the space of real-valued continuous 

functions on IN in the sup-norm topology. Let /3n = supxEIN I <Pn I> 0 and let { un} be 

a sequence of positive real numbers such that I::=l unf3n :S: 1. Define the norm 11-llw on 

Ll(JN) by 

llfllw = I: °'n IL ¢,J(x)drnl · 
n=l 

Then if Ve CV is a weakly compact set, il-llw defines the weak topology of L 1 restricted to 

V,. 

Let T : L 1 --> L 1 be a linear operator and a 8 > 0 be given. A 8-pse1tdo-orbit for 

T : L1 --> L 1 is a sequence {fn}:=o, fn E L1 such that IIT J~ - fn+1 Iii :S: 8, for each 

n = 0, 1, .. .. Given an e > 0, a 8-pseudo-orbit for T is E-shadowed by a point f E L 1
, if 

IITn f - fnllw S: E, for each n = 0, 1, .. .. 

Definition 6.1 (Shadowing Property) We say that a linear operator T : (L1, II-Iii) --> 

( L1, 11-11 w) has the shadowing property if for each E > 0 there exists a b > 0 such that every 

b-pseudo-orbit for T can be c-shadowed by some point of L 1
. 

We can interpret the existence of the shadowing property for T as implying stability of 

{Tnfo} with respect to small perturbations of the initial density fo in the followit1g sense: 

given a pseudo-orbit of T, there will always exist a true orbit of T (starting from a different 

initial density) close to it, for arbitrary long times. A shadowing property for constrictive 

Markov operators was given it1 [10]: the following lemma is contained in Theorem 1 of [10]. 
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Lemma 6.1 Let P : 1 1 ----> 1 1 be a constrictive Markov operator with the constrictor A 

consisting of a single elemrnt in V, and let P(Vc) CV,. If 

lil~ IIP''f - Alli= 0, 

un(fonnly for all f EV,. then P: (V,, II-Iii)----> (V,, 11-llw) has the shadowing property. 

Applying Lemma 6.1 to our setting of random maps, we have the following result which 

can be interpreted as stability of {l'J'Ju} with respect to small perturbations of the initial 

density f 0 . 

Theorem 6.1 Let R(1:) = {,k(x),Pk,k = 1, ... ,1} be a random map, where each •k: JN----> 

IN is piecewise C 2 and e:rpanding Jabl01iski transformation. If any one of the maps •k, 

k = 1. ... , /. has a unique ACIM with respect to which 1t is exact, then PR : (Ve, 11-11 1 ) ----> 
(V,, 11-llw) has the shadowing properly. 

Proof. Let 
JN 

V, = {g EV: V g <; I<, I< < CX) }. 

Then, Ve is a weakly compact subset of 1 1 and by (11), PR(V,) C V,. From Theorem 

4.2, PR is constrictive and by Corollary 3.1, R has a unique ACIM with density say fR• 

By Theorem 2.l(c), fR E V,. Therefore, from the proof of Theorem 5.1, it follows that 

limn-oo IIPi'J - Alli = 0, uniformly for all f EV" where A= {JR}. Hence, by Lemma 6.1, 

PR: (Vco II-Iii)----> (V .. 11-llw) has the shadowing property. D 

6.2 Perturbation of R 

In this section, we deal with the question of stability of different asymptotic properties of 

densities of R studied in previous sections with respect to the perturbation of the map. 

6.2.1 Stability of Asymptotic Periodicity and Asymptotic Stability 

In this section, we examine the stability of asymptotic periodicity and asymptotic stability 

under perturbations of the map R. To do this, we invoke the theory of stability developed 

in [Tl] to study th<' behavior of ACl!\ls under small stochastic perturbations, which can also 

be applied to our case. 

Let R(x) = {,k(.r),Pk,k = 1, .... /} be a random map, where each each k = l, ... ,l, 

'k: Is----> JN be a piecewise C 2 (not necessarily expanding) Jablor1ski transformation. For 

n = 1. 2, ... , we consider a family of densities tn(x,. ). x E JN with respect tom, the Lebesgue 

measure on JN. The densities tn are bounded and measurable functions of 2N variables. 

Definition 6.2 For each k = 1, .... l. respectively the family of transition densities 

Bk.n(.r,.)=tn(•k(x),.), n=l,2, ... , 
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with respect to m, is called a stochastic perturbation of the map Tk, It is small if for any 

u > 0, we have 

inf { tn(x,y)dm(y)-> l, as n-> oo. 
xE[N }{y,lx-yl<u) 

(18) 

Define operators 

(Qnf)(y) = j tn(x,y)f(x)dm(x), y E IN 
JN 

and 
l 

(Pnf)(y) = L LPkSk,n(x,y)f(x)dm(x), y E IN. 
k=I 

(19) 

Since tn and I:~=I PkSk,n are stochastic kernels, it is easy to see [58, §5. 7] that Qn and Pn 

are Markov operators on L1
. 

Perturbations considered in the sequel are small as they are local, i.e., for n = l, 2, ... , 

there exists Un> 0 such that tn(x, y) = 0 for Ix - y I> Un, and Un-> 0 as n-> oo. 

Specifically, let R(x) = {rk(,1:),pk,k = 1, ... ,1} be a random map, where for each k = 
1, ... , I, Tk: IN-> IN is a piecewise C 2 (not necessarily expanding) Jablonski transformation, 

satisfying the condition (2). Let IIn = { Dn,I, . .. , Dn,a(n)} be a partition of IN into rectangles 

such that max1:,,:,a(n) m(Dn,j) -> 0, n -> oo. Define, 

and set4 

{ 
[m(Dn,,)J-I 

tn(x,y) = t(IIn)(x,y) = O 
for x, YE Dn,j 

otherwise 
(20) 

for n = l, 2, .... Since Qn is an operator of conditional expectation, the perturbations gener

ated by tn 's are known as average-like perturbations. 

The proofs of the following two lemmas are analogous to that of Lemmas 4 and 7 of [16] 

respectively. 

Lemma 6.2 Pn = Qn o PR, for each n = 1, 2, ... 

Lemma 6.3 For f E L 1
, 

for all n = 1, 2, .... 

Lemma 6.4 For n = 1, 2, ... , Pn is constrictive. 

Proof. Using Lemmas 6.2 and 6.3, we have 

[N JN JN 

V Pnf = V Qn O PRf '.S V PRJ. 

Now, using (5), the result follows as in Theorem 4.2. D 

4 Neither of the operators P(ITn) and Q(ITn) are related to the operators P and Qin the Spectral De

composition Theorem 3.1; we keep the notation for historical reasons 
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We then have: 

Theorem 6.2 Let R(x) = { rk(x), Pk, k = 1, ... , 1} be a random map, where each Tk : IN -, 

IN be a piecewise C2 (not necessarily expanding) Jablonski transformation, satisfying condi

tion (2). Then { PJU} is asymptotically periodic. Let R be subjected to perturbations given 

by Definition 6.2 and (20) giving rise to a sequence of densities governed by the operator Pn 

defined by {19). Then {P:f} is also asymptotically periodic. 

Proof. By Lemma 4.1, it is sufficient to prove that Pn is constrictive, which follows by 

Lemma 6.4. Therefore, by the Spectral Decomposition Theorem 4.1 {P~f} is asymptotically 

periodic for each n = 1, 2,.. .. D 

The proof of Theorem 6.2 also follows from Corollary 5.7.2 of [58]. We now show the 

asymptotic stability of {P~f}. 

Theorem 6.3 Let R( x) = { Tk( x ), Pk, k = 1, ... , 1} be a random map having a unique A CIM 

µR with density JR, where each Tk : IN -, IN is a piecewise C2 and expanding Jablonski" 

transformation. If any one of the maps Tk, k = 1, ... , 1, is exact, then { PJU} is asymp

totically stable. Let R be subjected to perturbations given by Definition 6.2 giving rise to 

the sequence of densities governed by the operator Pn defined by {19). Then {P:f} is also 

asymptotically stable. 

Proof. Let I<(x, y) = L~=I PkSk,n(x, y). By definition of Sk,n and (19) it follows that, I<i, the 

kernel corresponding to P~ satisfies 

inf f Ki(x,y)dm(y) > 0. 
JxE]N 

Then, by Corollary 5.7.1 of [58], {P~f} is asymptotically stable. D 

6.2.2 Stability of PR and JR 

In this section, we examine the stability of PR and JR under perturbations given by (20). In 

this context, we can invoke a theory of stability for quasi-compact operators developed in 

[50]. 

By T we denote the class of operators P: L 1 -, L1 which satisfies conditions (a)-(c) of 

Ionescu-Tulcea and Marinescu Theorem 3.2. The subclass of T satisfying condition (b) for 

a given a and/( is denoted by T(a, K). For operators P: EV-, L1 define the norm 

Ill - Ill:= sup{IIP /Iii : / E EV, 11/llv S 1}. 

A sequence {Pn}nEN of operators is called T-bounded if there are O <a,< 1 and J( >Osuch 

that Pn E T( a, K) for all n E N. Since 4> defined in (6) is continuous, we can introduce the 

following: 

Definition 6.3 PET is stable if Ill Pn - P Ill_, 0, as n _, oo implies that 114>(1,Pn) -

4>(1,P)lh _, 0, as n _, oo for each T-bounded sequence {Pn}nEN· 
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The sequence { Pn}nEN can be interpreted as having resulted from external perturbations 

of the operator P. The following lemma is contained in Theorem 2 of [50]5. 

Lemma 6.5 P E T is stable if and only if dim{/ : Pf = !} = l. 

Lemma 6.6 Let {Pn} be the sequence of operators defined by (17). Then {Pn}nEN _are 

T-bounded. 

Proof. The proof immediately follows from Lemma 6.4. D 

Lemma 6.7 PRE T. 

Proof. It is sufficient to show that PR satisfies conditions (a)-(c) of Ionescu-Tulcea and 

Marinescu Theorem 3.2 from which the result follows. 

Condition (a) follows immediately since PR is a Markov operator. Condition (b) follows 

from Lemmas 2.1, 2.2 and Proposition 3.1 and the fact that, 

1N 

V PR/+ IIPR!lli 
JN 

< °' V / + KIi/iii + II/Iii 
:S nll/llv + K'll/lli, 

with I<' ?: J( + l. Finally, condition ( c) follows from the definition of PR, Remark 3.1 and 

Lemma 2.3. D 

Now, since Pn is constrictive, by Proposition 4.1, it has a stationary density, say fn, for 

each n = l, 2, .... Proposition 3.1 and Lemmas 6.2 and 6.3 imply 

Lemma 6.8 The sequence {V 1
N fn} is bounded. 

From [14], we have: 

Lemma 6.9 For f E £ 1 , the sequence Qnf _, f in L 1 as n _, oo. 

From Lemmas 6.2 and 6.9, we have 

Lemma 6.10 For f E L1, the sequence Pnf _, PR/ in L1 as n _, oo. 

The following lemma is a special case of a result due to Kolmogorov [70, Chapter IV]. 

Lemma 6.11 Let:F C L1(RN) be a norm bounded set of/unctions and assume the following 

limits are attained uniformly over f E :F: 

(a) 

Jim / I J(x + !::..x)- J(x) I dx = 0, 
.D..x-+O}RN 

(b) 

Jim / I /(x) I dx = 0, 
K-oo }RN\{-K,K} 

5 Although Theorem 2 of [50] deals only with functions of bounded variation of one variable, the proof 

given there carries over without changes to our setting since it uses only the spectral representation of P 
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where l:.x E RN, I l:.x I< 1, l:.x ,f 0. Then :Fis a (strongly) precompact subset of L1(RN). 

Proof. The proof is based on Theorem 3.5 of [7]. For f : JN --t R define f: RN --t R by 

f(x)= { f(x) if xEJN 
0 if x E RN\ JN 

Let :F = {fn}~=I> where fn are extensions of the fixed points fn of Pn- Then condition (b) 

is trivially satisfied. Since by Lemma 6.8, {V 1
N fn} is bounded, condition (a) follows from 

an argument similar to the proof of Lemma 3.7 of [7]. D 

Lemma 6.12 Let R(x) = {Tk(x),Pk,k = 1, ... ,1} be a random map, where each Tk: JN --t 

JN is a nonsingular Jablonski transformation. Let there be a sequence of bounded linear 

operators Pn : L1 --t L1 satisfying the following conditions: 

(a) Pn --t Pn strongly in L1
• 

(b) For each n, there exists fn E L1, fn 2". 0, II fn Iii such that Pnfn = fn-

Then any limit point f of the sequence Un}~=l is the density of an ACJM µn of R. 

Proof. The proof is an obvious extension of Theorem 1.1 of [7] to random maps and follows 

immediately by noting that: (1) any limit point of fn, say f, obviously is a density and (2) 

by the Uniform Bounded Principle, supn II Pn Iii< oo, so that 

II Pn - f 111 ::0: II Pnf - Pnf Iii + II Pnf - Pnfk Iii 
+ II Pnfk - Pnfk 111 + II J"k - f Iii, 
--t O as n --t oo. 

• 

Remark 6.1 Lemma 6.11 and a deterministic version of Lemma 6.12 were used in [7] for the 

approximation of invariant densities of Jablonski transformations on JN_ Lemma 6.12 is important 

from the point of view that it does not assume the existence of an ACIM for R. Rather, it implies 

the existence of one, which is in agreement with the fact that condition (2) of Theorem 3.1 is 

sufficient but not necessary for the existence of an ACIM for R. 

By Lemma 6.5-6.12, we therefore arrive at the following result: 

Theorem 6.4 Let R(x) = { Tk(x ), Pk, k = 1, ... , /} be a random map, where each Tk : JN --t 

JN be a piecewise C2 (not necessarily expanding) Jablonski transformation, satisfying con

dition (2). Let R be subjected to perturbations given by {20) giving rise to the sequence of 

densities governed by the operator Pn dljined by (19). Then 

(a) for f E L 1 , the sequence Pnf--, Prd in L1 as n--, oo. 

(b) If R has a unique A C/M with denslty fn, then J~ --t fn in L1
• 

Now, by Lemma 6.6 {Pn}nEN are T-bounded and by Lemma 6.7, Pn ET. From Lemma 

6.5, Pn is stable in sense of Definition 6.3 if and only if it has a unique invariant density. We 

therefore conclude, using Theorem 6.4, the following: 
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Theorem 6.5 Let R( x) = { Tk( x ), Pk, k = 1, ... , /} be a random map having a unique A CIM, 

where each Tk : JN -> JN is a piecewise C2 and (not necessarily expanding) Jablonski trans

formation. Then PR is stable under perturbations given by {20). 

7 Approximation of JR 
Let R(x) = {rk(x),Pk,k = 1, ... ,1} is a random map, where each Tk: JN-, JN be a 

piecewise C2 (not necessarily expanding) Jablonski transformation satisfying condition (2). 

Even though Theorem 3.1 guarantees the existence of an invariant density JR for R, solving 

the resulting functional equation PRJR = JR is usually impossible except in the most trivial 

cases. From (3), we know that any invariant density JR of R is approximated by the sequence 

and we can have an explicit formula for PR using the expression 

I M 

PRJ(x) = LPk Lf(r;:;1(x)) I det(A;;}) I X,,,(D,,)(x) 
k=l j=l 

where DkJ is an element of the partition Pk= {Dk 1 , ... ,DkM}, k = 1, ... ,1, j = l, ... ,M 

on which Tk is defined. Even then it is a very difficult to use the sequence of partial sums. 

If R satisfies the conditions of Theorem 5.1, we have 

IIP;U - !Rlli -> 0, as n-> =, 

uniformly for every f E D. But again the iteration of PR is prohibitively complex. Further

more, analytic expressions of various statistical quantifiers of chaos such as entropy, correla

tion functions (see Section 8) and Lyapunov exponents [l]), involve an expression containing 

f R explicitly. Therefore, it is of importance to have a numerical means of approximating JR. 

Let X a compact metric space and T : X -> X be a non-singular transformation with 

Frobenius-Perron operator P,. In [84, Chapter 6, §4], Ulam conjectured that it was possible 

to construct a numerically computable sequence of finite-dimensional operators which ap

proximate P, and whose fixed points approximate the fixed points of P,. Using a method 

based on van Neumann Ergodic Theorem, the conjecture was first proven in [62] for one

dimensional piecewise expanding maps by reducing the original infinite dimensional fixed 

point problem to the fixed point problem of stochastic matrices. Since then the conjecture 

has been proven in various cases: for one-dimensional piecewise expanding maps of an in

terval in [54], [26], [25], [27], [44]; for one-dimensional non-expanding maps of an interval in 

[67]; for maps on the real line in [20]; for higher dimensional maps in [5], [14], [7], [45], [28]; 

and for random maps in [16], employing different techniques such as Markov approximation 

methods [26], Monte-Carlo methods [44] and Galerkin projection methods [27]. Convergence 

rate analysis and error estimates of projection methods [31] and for a Markov approximation 

method [21] have also been carried out. In this section, we extend two of these methods to 

our case of random maps. 
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7.1 Approximation in the Space of Piecewise Constant Functions 

When a Markov operator P is restricted to a finite dimensional subspace of L1 , it is said to 

be of finite rank [25]. In this situation the matrix representation of P with respect to the 

basis consisting of densities is a stochastic matrix. 

In [16] it was shown that there exists a sequence of finite rank operators Pn whose fixed 

points fn converge weakly to the fixed points of PR, i.e., fn --+ JR weakly in L1
. In this 

section, we show that fn --+ JR strongly in L 1
. As pointed out in [71, Example I.A.l], 

[50, §4] these approximating sequence of operators can be interpreted as having resulted 

from stochastic perturbations of the map (like the ones we have considered in Section 6). 

Therefore, from this point of view, results of this section can be considered as a special case 

of those of Section 6. We now proceed to construct the desired sequence of operators Pn. 

For any integer n, let JN be divided into nN equal subsets 11 , ... , lnN with 

lj = [~, r1: 1) x ... X [r:, rN n+ 1) 
for some r1, ... ,rN E {0,1, ... ,n- l} and m(h) = 
fraction ls which is mapped into ft by Tk, i.e., 

I 
nN, 

pk _ m(l_, n Tkl ft) 

st - m(Js) , 

and 

k=l, ... ,nN Define P:i as the 

Let li.n be the nN-dimensional linear subspace of L1 which is the finite space generated 

by {Xj };:1 , where Xj denotes the characteristic function of Ij, i.e., f E li.n if and only if 

f = r::;:1 ajXj for some constants a1, . .. , (1,nN. 

Define a linear operator P n'(R) = P n1 
: li.n --+ li.n 

nN l 

Pn
1
Xr = LPrsXs = LPkP:xr, 

s=l k=l 

where 
nN 

P!xr = L P/sXs• 
s=l 

We then have the following lemma [16]. 

Lemma 7.1 Let li.~ = {'f_:;:1 arXr: ar 2: 0 and r:;:1 ar = l}. Then Pn' maps li.~ to a 

subset of li.~. 

Since P n'(li.~) C li.~ is a compact convex set, the Brouwer Fixed Point Theorem implies 

that there exists a function 9n E ti.;,, for which P n19n = 9n· Let fn = nN 9n· Then fn E li.n 

and II fn Iii= 1 for each n. 

For J E L 1 and for every positive integer n, define an operator of conditional expectation 

Qn '. L1 
--4 li.n by 
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nN 

Qnf = ?;CrXr, where Cr= m!Ir) l f(x)dx. 

Then P n' and Qn satisfy Lemmas 6.2-6.4,6.8 and 6.9. We extend P n' to an operator on 

L1 in the following natural way 

We then have: 

Lemma 7.2 For f E L1, Pnf-> PRf in L 1 as n-> oo. 

Proof. The proof follows from Lemma 6.9 and from the fact that 

II QnPRQnf - PR/ Iii 
:S: II QnPRQnf - QnPRf Iii + II QnPRf - PR/ Iii 
:S: II Qnf - f Iii + II QnPRf - PR/ Iii · 

We therefore finally have : 

• 

Theorem 7.1 Let R(x) = { Tk(x ), Pk, k = l, ... , I} be a random map, where each Tk : IN -> 

IN be a piecewise C2 (not necessarily expanding) Jablonski transformation, satisfying condi

tion (2). Then 

(a) there exists a sequence of finite rank operators Pn with stationary densities fn on the 

space of piecewise constant functions such that Pn -> PR in L1
• 

(b) If R has a unique ACIM µR with density f R, then fn -> f R in L1
• 

Proof. (a) follows from the definition of Pn and Lemma 7.2. Now, by Lemma 6.8, the 

sequence {/c} is bounded in BV(JN). Therefore, by Lemma 2.3, there is a subsequence 

Un,} of Un} which converges to a gin L1(IN). Now 

II PR9 - g IJi :S: II g - fn, Iii + II f n, - Qn, O PRfn, Iii 
+ II Qn, O PRfn, - Qn, O PR9 IJi 
+ II Qn, O PRg - PR9 Iii • 

Let nk -> oo. Then obviously the first term is zero. Since Qn, o PRfn, = fn, the second 

term is zero and since 

the first and third terms are zero. Fourth term is zero by Lemma 6.9. Hence, PRg = g. It 

is obvious that g is a density and since JR is unique, g = fR- Since {/n,} was arbitrary, (b) 

follows. • 

7.2 Approximation in the Space of Continuous Piecewise Linear 

Functions 

In the previous section, we constructed a sequence of finite-rank operators on the space of 

piecewise constant functions ~n which converges to PR in L1 and whose fixed points converge 
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to the fixed point of PR, i.e., JR- In order to improve the rate of convergence, it is natural 

to generalize the piecewise constant approximation scheme to higher order polynomials. 

In [28], an approximating sequence of finite-rank operators on the space of continuous 

piecewise linear functions was constructed for general piecewise C 2 and expanding transfor

mations on RN using the Giusti definition of bounded variation [35]. In this section, we 

obtain an extension of that result to random maps composed of Jablonski transformations. 

Since the Giusti definition reduces to Tonelli definition in two dimensions [41], we restrict 

ourselves to the unit square X = / 2 so that we can apply our results of previous sections. 

We now proceed to construct an appropriate space of continuous piecewise linear functions 

and sequences of finite-dimensional operators analogous to Pn and Qn of Section 7.1. 

Divide the interval O :::; x :::; 1 into M equal parts with h = ty, and divide the interval 

0:::; y:::; 1 into N equal parts with k = fi· Let I;= [x,_1, x,], x; = ih for i = 1, ... , M, and 

Ji= [Yi-t,Yi], Yi= jk for j = 1, ... , N. Now divide each rectangle X,i = I, x Ji into two 

simplices conv{(x,-1, Yi-iJ,(x;-1, Yi),(x;, Yi)} and conv{ (x,-1, Yi-I ),(x;, Yi-I ),(x;, Yi)}, where 

convA denotes the convex hull of A. Thus, we obtain a triangulation of /2 into a family 

of 2M N simplices; each with area ¥-- In the following, let v,i = (x,, Yi), i = 1, ... , M, 

j = 1, ... , N denote the vertices of these simplices. For any vertex v,i = (x,, Yi) of the 

triangulation, let 

V;i = LJ{a: v,i is vertex of a, where a is a triangulation of / 2
}. 

Let #(i,j) denote the number of simplices that are contained in V;i and let ll.c be the space 

of continuous piecewise linear functions corresponding to the above triangulation. Then ll.c 

is a linear subspace of £1(/2) of dimension c = (M + l)(N + 1). Let <Pii E ll.c be such that 

<Pii( Vr,) = 8,r8i., i.e., <Pij is 1 at the vertex v,i and is Oat all other vertices of the triangulation. 

Then { </,,j} 's are linearly independent and ll.c = span { <Pii}, i = 1, ... , M and j = 1, ... , N, 

and therefore [28] form a basis for ll.c with the following properties: 

(a) II <P,j Iii= it¥hk. 
(b) </,,j 2'. 0 and 1:;',;0 I:f=o <P,j = 1. 

(c) If f E ll.c then f = E;',;0 E7=o f,j<Pii = 1 if and only if f(v,i) = /;j for i = 1, ... , M 

andj=l, ... ,N. 

Define Qc: £1(/2)--> ll.c by 

M N 2 ( ) 
Qc =LL#(. ")hk j fdm <Pij-

i=l j=l i, J V,, 

Then Qc is a Markov operator on £1(12
) [28, Remark 3.1]. Furthermore, we have: 

Lemma 7.3 For f E L1, the sequence Qnf--> f in L1 as c--> oo. 

Proof. As c --> oo, ll.c --> 0. Therefore, the result follows immediately from Lemma 3.2 of 

~- D 

We have the following lemma analogous to Lemmas 3.4 of [28] using the fact that the 

Giusti definition of bounded variation used there reduces to that of Tonnelli definition used 

here. 
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Lemma 7.4 Let f E BV(I2). Then there exists a constant p > 0 such that 

For J E .6.c, define P; = Qc o PR. Since both PR and Qc are Markov operators, P;: t,.c-> t,.c 

is a Markov operator of finite rank. 

Now we order the basis { </)ij} in the following way: 

</)oo, ···,</)Mo, <PM1, • · •, <PoN, • · ·, <PMN, 

and {v;j}, {V;j}, and #(i,j) are ordered accordingly. In this order, we may write the basis 

functions as <Pi, ... , <Pc with c = (M + l)(N + 1). Let P; = (ur.,) be the corresponding c x c 

representation matrix of P; under this basis. Then P;Jc = Jc for Jc = Li~i w;</,; if and only 

if wP; = w, where w = ( W1, . .. , we) is the row vector. We then have: 

Lemma 7.5 There exists a density Jc E .6.c such that P;Jc = fc

Proof. The proof is similar to Lemma 3.5 of [28]. By definition, 

P:q\, = Q, o PR<Pr = t #(:)hk (iv, PRefi,dm) ¢,,. 

Therefore, the representation P; = (u,,) of P; under the natural basis {¢,1 , ... ,¢,} is given 

by 

for r, s = 1, ... , C. The matrix A is non-negative. Let e = ( 6' ... '(,f be such that(, = 1tp 
for r = 1, ... , c. Then using the properties of ef,;'s, we have for each r = 1, ... , c, 

Therefore, P;( = ( and there exists a non-negative row vector w =fc O such that wP; = w. 

This completes the proof. D 

Lemma 7.6 If pa< 1, then for all stationary densities J, Et., of P" the sequence {VI' Jc} 
is bounded. 

Proof. From Proposition 3.1 and Lemma 7.4, we have 

/2 /2 

V Q, 0 PR! ::0 p V PR! 
I' 

s pa VJ+ K' 11 f Iii, 

where !{' = pl{ > 0. Since pa < 1, this implies VI' f, :S 1 ~~~" and so {VI' J,} is uniformly 

bounded. D 

As in Section 7.1, P: can be extended to whole of £ 1 by defining Pcf = P:Qcf. Then, 

using Lemma 7.3, we obtain the following result which is analogous to Lemma 7.2: 

Lemma 7.7 For f Et." the sequence Pcf-> PRJ in L1 as c-> oo. 



STATISTICAL DYNAMICS OF RANDOM MAPS 197 

We then have the following convergence result. 

Theorem 7.2 Let R(x) = { rk(x ), Pk, k = 1, ... , 1} be a random map, where each Tk : J2 -; 
I2 be a piecewise C2 (not necessarily expanding) Jablonski transformation, satisfying condi

tion (2). If pa< 1, where ex and pare defined in Proposition 3.1 and Lemma 7.4 respectively, 

then 

(a) there exists a sequence of finite rank operators Pc with stationary densities fc on the 

space of continuous piecewise linear functions such that Pc-; PR in L1(J2). 
(b) If R has a unique ACIM µR with density JR, then fc-; JR in L1(J2). 

Proof. (a) follows directly from Lemmas 7.5 and 7.7. (b) is similar to that of Theorem 7.l(b) 

and follows from Lemmas 7.6 and 2.3. D 

Remark 7.1 We presented two methods of approximating the invariant JR density of a random 

map R by approximating the Frobenius-Perron operator PR- An alternative approach, could be 

approximating the map R itself instead of PR. To be precise, let R = {rk,Pk,k = 1,2}, Tk: 

JN --> JN be a given random map with a unique invariant density JR and let Rn = { Tkn, Pk, k = 
1, 2}, n = 1, 2, ... be a sequence of random maps with a unique invariant density fRn such that 

Rn --> R, as n --> oo uniformly. We then have the question: does !Rn converge to JR? This 

requires establishing a compactness theorem, for the invariant densities associated with the family 

of approximating transformations, which has been shown to hold for ( deterministic) one dimensional 

piecewise expanding [39] and non-expanding [72), and higher dimensional [17), [2] maps. We leave 

this problem for future research. 

8 Applications to Entropy and Correlation Functions 

8.1 Asymptotic Periodicity, Asymptotic Stability and 

Conditional Entropy 

Let P : L1 
-; L1 be a Markov operator. In this section, we draw the connections between 

the properties of asymptotic periodicity, asymptotic stability and entropy of the sequence of 

densities {Pn !}. Assuming the existence of a density f on the phase space X (C JN in our 

case) describing a thermodynamic state of a system at a particular time, Gibbs introduced 

the concept of the index of probability, given by Inf. Weighting the index of probability by 

the density f, the Boltzmann-Gibbs entropy is given by [65], 

Hae(!)= - fx flnfdm, 

and is considered to be standard mathematical analog of the thermodynamic entropy [80]. 

Hae adequately describes the behavior of the entropy of a density under the action of a 

Markov operator with a uniform stationary density but leads to limitations for Markov 

operators with a nonconstant one [65, Example 3.7]. This has led to a generalization of 

Boltzmann-Gibbs entropy, the conditional entropy. 
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Definition 8.1 Let f, g E 1) such that supp f C suppg. Then the conditional entropy of 

the density f with respect to g is, 

He(! I g) = -l fin (fl dm. 

Since g is a density, He(! I g) is always defined. If g is a constant density, g = l and 

He(! 11) = HBa(/). It can be shown [65] that 

(21) 

(The equality holds if f = g.) Let P: L1 --+ L1 be a Markov operator. By [86], 

He(Pf I Pg)~ He(! lg), (22) 

for f, g E 1>, supp/ C suppg. Therefore, if g = f* is a stationary density of P then 

by (21) He(P f I Pf*) ~ He(! I /*), and so the conditional entropy with respect to the 

stationary density is always non-decreasing and bounded above by zero. Therefore, it follows 

from Remark 9.2.4 of [58] that He(P f I /*) always converges, but not necessarily to zero 

as n --+ 0. Denote limn-oo He(Pn f I /*) = H';'(Pn f I /*) and call H';' the asymptotic 

conditional entropy. Since supp/ C supp/* implies supp? f C supp? f* = supp JR, H';' is 

well defined. We can define the asymptotic Boltzmann-Gibbs entropy analogously. 

We can now examine the asymptotic behavior of the entropy of a sequence of densities 

{PJ'if} in our case of a random map R. 

A consequence of asymptotic periodicity is that thermodynamic equilibrium of the system 

may consist of a sequence of metastable states which are visited periodically. Its implication 

for the asymptotic Boltzmann-Gibbs entropy is reflected in the following result: 

Proposition 8.1 Let R(x) = {rk(x),Pk,k = 1, ... ,1} be a random map, where each Tk: 

JN --+ JN is a piecewise C2 (not necqsarily expanding) Jablonski transformation satisfy

ing condition (2). Let R have a unique constant invariant density. Then the asymptotic 

Boltzmann-Gibbs entropy of { PJ'if} oscillates periodically in a metastable equilibrium in the 

following sense: 

where a is a permutation of i E {l, ... , r} and aP(i) # i, p < m. 

Proof. From Theorem 4.2, {PJ'if} is asymptotically periodic. Therefore, by (13), am(i) = i 

implies that limn-oo PJU = limn-oo pR+m f as n --+ oo. Now, using the definition of H80 , 

the proof follows. D 

Now, let R(x) = {rk(x),Pk,k = 1, ... ,1} be a random map, where each Tk: JN--+ JN 

is a piecewise C 2 (not necessarily expanding) Jablonski transformation satisfying condition 

(2). Then, by Theorem 4.2, PR is constrictive and so by (13) and (14) in the Spectral 

Decomposition Theorem 4.1, we can write 
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r 

P'?d ;:,; I; .\.-•,,)(f)g,. (23) 
i=l 

Furthermore, by Proposition 4.1 
1 r r = - I;g, 
r i=l 

(24) 

is a stationary density of PR, Let R have a unique ACIM µR with density JR > 0. By 

Remark 2.1, JR is stationary density of PR and since JR is unique, f* = JR. Then by (23) 

and (24) and the orthogonality of the g;'s from Theorem 4.l(b), we have, 

H;o(P?d I JR) = - Jim J, P?dln (PJJU) dm 
n-oo ]N R 

-t J, \,-"(i) (f)g, ln(r .\,-•(,) (!) )dm. 
JN 

1=1 

Since the permutation a(i) is invertible and the scaling coefficients .\;'s add up to 1, we 

obtain 
r 

H;o(P?d I JR)= - In r - I;.\;(!) In[.\;(!)]. 
i=l 

Furthermore, since O '.::'. .\, '.::'. 1, for all i, it follows using (21) that - In r '.::'. H';(PiU I JR) ::; 0. 

Now let each rk, k = 1, ... , I, be expanding and Pr, be its corresponding Frobenius-Perron 

operator. Then by Remark 4.1, Pr, is constrictive and therefore has, say, rk densities in its 

spectral representation. Therefore, using Theorem 4.3 we finally have 

Hence, for asymptotically periodic sequence of densities {PJ'i.f} corresponding to the random 

map R, we obtain a bound for the asymptotic conditional entropy. We can also obtain a 

partial converse of this result. 

Let R(x) = {rk(x),Pk,k = 1, ... ,1} be a random map, where each Tk: JN--+ JN is 

nonsingular. Let R have an ACIM µR with density JR > 0. If there is a constant c > 0 such 

that for every bounded f E T>, Hc(PJ'i.f I JR) 2 -c for sufficiently large n, then by Theorem 

6.6 of [65] the sequence of densities {PJl.f} is asymptotically periodic. We state the above 

as: 

Theorem 8.1 Let R(x) = { rk( x ), Pk, k = l, ... , I} be a random map, where each rk : JN --+ 

JN is nonsingular. Let JR> 0 be a stationary density of PR- Then 

(a) if each Tk is a piecewise C2 (not necessarily expanding} Jablonski transformation 

satisfying condition {2} and if JR is unique, we have 

(25) 

where r is the number of densities in the spectral representation of PR- Furthermore, if each 

Tk is piecewise expanding then Pr,, k = 1, ... , 1, is constrictive (having say rk densities its 

spectral representation}, we have 
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- min lnrk < -lnr < H';(PIU I fR) < 0. ISkSI - - -

(b) if there is a constant c > 0 such that for every bounded f E D, 

for sufficiently large n, then the sequence of densities { PJU} is asymptotically periodic. 

From Theorems 4.5 and 8.l(a), we may conclude 

Proposition 8.2 Let R(x) = {Tk(x),Pk,k = 1, ... ,1} be a random map, where each Tk: 

JN --, JN is a piecewise C2 and expanding Jablonski transformation on the partition Pk = 
{Dk" ... , Dkm} related to which the number M<;) is defined. Let Vk be the set of vertices 

of elements of Pk which lie in the interior of JN. Let PR have r densities in its spectral 

representation and let f R > 0 be its unique stationary density. For each k = l, ... , I let 

Pr• be the Frobenius-Perron operator corresponding to Tk, having rk densities in its spectral 

representation, such that the permutation {ak(l), ... , ak(rk)} of {l, ... , rd is cyclical. If 

min1 SkSI -!,.r > 1, then 
N 

For random maps composed of piecewise linear Markov transformations, we can make 

the estimate of Theorem 8.l(a) more precise. 

Let R(x) = {Tk(x),Pk,k = 1, ... ,1} be a random map, where each Tk: JN--; JN is a 

piecewise linear and expanding Jablonski transformation having the Markov property with 

respect to a common partition P = {D 1 , ..• ,Dm}- By Theorem 3.1, R has an ACIM, 

say µR, Suppose µR is unique with density JR > 0. From Theorem 3.4(a), JR E S, i.e., 

JR = z;'J!,1 C1xo, for some (positive) constants C1, ... , CM. We therefore have, for any 

f ED, 

- JN P?Jln ( MPfU ) dm 
1 Lj=1 C,xo, 

-t J, Pnf In (Pjf) dm 
3;;1 D, J 

M M -~ l, Pnfln(Pnfldm + ~ l, Pnf ln(Cj)dm 

s - L Pnfln(Pnfldm + (tln(Cj)) liN Pnfdm. 

Since PRJ E D, we finally have Hc(Pnf I JR) S HBa(Pnf) + C, where C = L~1 ln(C1). 

Denoting lim,..- 00 H 8 a(Pnfl = H8a(Pnfl, and using Theorems 4.6 and 8.l(a), our next 

result can be stated as: 

Theorem 8.2 Let R(x) = { Tk(x ), Pk, k = l, ... , I} be a random map, where each Tk : JN --> 

JN is a piecewise linear and expanding Jablonski transformation with the Markov property 
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with respect to a common partition P. Let P7 , and PR be the Frobenius-Perron operators 

corresponding to Tk and R, having rk and r densities in their spectral representations respec

tively. Then 

- min In rk < - In r < H;:"(P?d I JR)< H'fi'a(P?d) + C < C. 
l5k5/ - - - -

We now prove that, as a consequence of asymptotic stability, the asymptotic conditional 

entropy does attain its maximum and vice versa, i.e., whenever the asymptotic conditional 

entropy attains its maximum, the system is asymptotically stable. 

Let R(x) = {rk(x),Pk,k = 1, ... ,1} be a random map, where each rk: JN-> JN is 

piecewise C 2 and expanding Jablonski transformation. Then if any one of the maps rk is 

exact, it can be shown (as in the proof of Theorem 5.1) that PR is exact. Let JR be the 

stationary density of PR with respect to which it is exact. If JR is unique, then exactness of 

PR is equivalent to asymptotic stability if {PJU. Thus, from Theorem 5.1 and Theorem 7.7 

of [65], we have the following result: 

Theorem 8.3 Let R(x) = { rk(x ), Pk, k = 1, ... , I} be a random map, where each rk : JN -> 

JN is nonsingular. Then 

(a) if each rk is a piecewise C2 and expanding Jablonski transformation, and if any one 

of the maps rk, k = 1, ... , /, is exact, we have 

H;:"(P?d I JR)= 0. 

(b) if H';:°(P;;J I JR)= 0, the sequence of densities {PJU} is asymptotically stable. 

8.2 Asymptotic Periodicity, Asymptotic Stability and 

Correlation Functions 

In this section, we consider the consequence of asymptotic periodicity and asymptotic sta

bility of {PJU} on both auto-correlation and time-correlation functions. 

Let r : X -> X, X a compact metric space, be a nonsingular map with a unique ACIM 
with density f*. 

Definition 8.2 For any two bounded integrable functions a, 17 : X -> R, the auto-correlation 

function of a with 17 is defined as 

and the time-correlation function C!,; is defined as 

where 

c!,;(T) = c:,;(T)- <a>< 17 > 

j T-1 

<a>= Jim - L ar'(x). 
T-oo T t=O 
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In [65, Chapter 5, §C], it has be shown that 

CAC(T) = f a(x)P;[1)(x)f*(x)]dm(x), 
(7,7] l1N 

which we can use, in an analogy with the deterministic case, to define correlation functions 

in case of random maps. Let R(x) = {Tk(x),Pk,k = 1, ... , I} be a random map with a unique 

ACIM µR with density JR, where each Tk : JN ---+ JN is nonsingular. 

Definition 8.3 Let a and 1) be as in Definition 8.2. Then, the auto-correlation function in 

case of R is defined by 

c:~(T) = j a(x)PA[1J(x)JR(x)]dm(x). ,., JN (26) 

The time-correlation function in case of R is defined using the relation in Definition 8.2 and 

(26). 

We then have the following result relating asymptotic stability of {PJU} and asymptotic 

auto-correlation and asymptotic time-correlation functions. 

Theorem 8.4 Let R(x) = {Tk(x),Pk,k = 1, ... ,/} be a random map with a unique ACIM 

µR with density JR, where each Tk : JN ---+ JN is a piecewise C2 and expanding Jablonski 

transformation. If any one of the maps Tk is exact, then 

Jim c:~(T) =<a>< 1J > T-oo ,., 

and 

Jim C;~(T) = 0. T-oo ,., 

Proof. Since one of the maps Tk is exact, by Theorem 5.1 R is exact and hence mixing. 

Therefore, by Corollary 4.4.1 (b) of [58] we have 

Ji..~ < PR('lfR), a>=< 1)/R, 1 >< JR, a> . (27) 

The result then follows from (26), (27) and Definition 8.3. • 
Now, let R(x) = { Tk(x),Pk, k = 1, ... , I} be a random map with a unique ACIM µR with 

density JR, where each Tk : JN---+ JN is a piecewise C 2 (not necessarily expanding) Jablonski 

transformation satisfying condition (2). Then by Theorem 3.2, {PJU} is asymptotically 

periodic and so by Theorem 3.1, we have the spectral representation (8), i.e., 

r 

PAJ = L >.;(J)gar(i) + Qr f. 
i::::1 

Also, since PR is constrictive, by (23) we have 

1 r 

.fR = - L9i-
r i:;:;;1 

Combining these with (26), we obtain 

c:,;;(T) = t >.;(1J(x)) iN 9aT(i)(x)a(x) + Qr1)(x)dm(x) 
i=l 

(28) 
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Thus, as in [65], we have arrived at the following result: 

Theorem 8.5 Let R(x) = {7k(x),Pk, k = 1, ... , I} be a random map with a unique ACIM, 

where each 7k : JN -> JN is a piecewise C 2 (not necessarily expanding) Jablonski transforma

tion satisfying condition (2). Let a and T/ be as in Definition 8.2. Then the auto-correlation 

function c:i ( and hence the time-correlation function CJ.i) seperates into sustained periodic 

and decaying stochastic components represented by expression (28). 

8.3 Examples 

In this section, we consider examples which illustrate some of the previous results. 

Example 8.1 Consider a random map R(x) = {7k(x),Pk, k = 1, ... , 4}, where 7 1 , ... , 7 4 are 

defined as in Example 5.1 and 75 : /
2 -> / 2 be the map 7 2 of Example 3.1. Let Pk = fri for 

k = 1, ... ,4 and p5 = ½- Then R satisfies condition (2) with 

~ Pk 2 
6 sup ' = - < 1. 
k;J i I '-Pk,;/x;) I 3 

Therefore, by Theorem 4.2, the sequence {Pji,J} is asymptotically periodic. By Theorem 

5 of [14] 75 has a unique ACIM and so by Proposition 3.3, R has a unique ACIM. Hence, 

applying Theorem 8.l(a) we have an upper and lower bound on the asymptotic conditional 

entropy of {PJi,f} as in (25). 

Remark 8.1 By an argument similar to that of Example 5.1, it follows that { P,';_ f} is not asymp

totically periodic for any of the maps 7k, = 1, ... , 4, in Example 8.1. Thus, we conclude that { Pjlf} 

can have asymptotic periodicity even if none of the { P,';_ f} 's are asymptotically periodic. 

Example 8.2 Consider a random map R(x) = {71(x),72(x),p1,p2}, where 7k: 12-> 12 are 

defined on a common partition P = { D1 , .•• , D9 } shown in Fig. 1. Let 7 1 be the map 7 2 of 

Example 3.1 and 7 2 be defined by 

where 

1
1 - 3x 

<p2,ij(x)= 3x-l 

-3(x-l) 

i = 1, 2 and j = l, ... , 9. <pz,ij is shown in Fig. 4. 

if O :'o X < ½ 

if ½ :'o X < ~ , 
if ~ :'o X '.'o l 

Let Pk= ½fork= l, 2. Then both 7 1 and 

7 2 are piecewise linear and expanding Jablonski transformations with Markov property on 

the partition P. As in Example 3.1, 7 1 has a unique ACIM. It is easy to see that 7 1 satisfies 

condition (17), since it satisfies the much stronger communication property. Therefore, 7 1 is 

exact and so by Proposition 5.1, the sequence of densities {Pjl/} has asymptotic stability. 

By Proposition 3.3, R has a unique ACIM, which by Theorem 5.3 is an SRB measure. By 

Theorem 8.3(a) the asymptotic conditional entropy of {Pjl/} attains its maximum value, 

i.e, 0. 
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0 1/3 2/3 

Figure 4: The map 'P2,ij 

9 The Inverse Perron-Frobenius Problem 

In previous sections, based on the assumption that a random map is given, we studied the 

asymptotic dynamics of densities of its orbits. Often, all that is available from experimental 

observations is stochastic data (time series) in the form of an attractor A and a density f 
supported on A. We are then faced with the problem of inferring the underlying dynamical 

system from the data. The inverse problem of constructing the random map (an IFS), given 

the attractor has been considered in form of the Collage Theorem [4, §9.6, Theorem 3]. 

The techniques which are employed in direct estimation of a model face many numerical 

difficulties [56] and are computationally expensive [22]. In [42], a different approach was taken 

and a method was proposed of determining a one dimensional piecewise linear transformation 

whose invariant density was given. This problem is called as the inverse Perron-Frobenius 

problem. In this section, we consider the results of [42] in view of random maps. We begin 

with the following definition, which gives a generalization of a Markov transformation. 

Definition 9.1 (Semi-Markov Transformation) A transformation T: JN-+ JN is called 

a semi-Markov transformation with respect to a partition P = {D1 , ... , L} if there exist dis

joint regions EJ') such that for any i = 1, ... , L, we have 
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D . = uk(,JE(iJ d (E('J) E P 
i ;=l 1 an r 1 . (29) 

The next result generalizes Corollary 3.2 to semi-Markov transformations. 

Proposition 9.1 Let; : JN -> JN be a piecewise linear and expanding Jablonski transfor

mation with respect to partition P satisfying condition (29). Then every invariant density 

of; is piecewise constant with respect to P. 

Proof. Using Corollary 3.2, the proof follows along the lines of Theorem 2 of [42]. D 

In the case of a semi-Markov transformation,, the matrix induced by, is given MT= 

(m,,)i<;,,i<;L, where 

m,j = { I det(Ak')J- 1 I if ,(Ek'))= D1, 

0 otherwise 

Definition 9.2 A piecewise linear semi-Markov transformation ; with respect to partition 

Pis said to be a 3-band transformation if its induced matrix MT= (m,1) satisfies 

m,, = o, if I i - i I> 1 

for any i = 1, ... ,Z. 

A property of the invariant density of a 3-band transformation is given by the next lemma. 

Lemma 9.1 Let;: JN-> IN be a 3-band transformation and let f be any invariant density 

of,. Denotef,=flD,,foreachi=l, ... ,L. Then 

mi,i-1 · Ji = mi-t,i · fi-1, 

for each i = 2, ... , L. 

Proof. The proof follows along the lines of Theorem 3 of [42]. • 
The following lemmas are from [42]. 

Lemma 9.2 Let M be a L x L stochastic matrix and P be an equal partition of I. Then 

there exists a semi-Markov transformation; with respect to P such that MT= M. 

Lemma 9.3 Let J be a density on an equal partition of I. Then there exists a (not neces

sarily unique) piecewise expanding 3-band transformation ; such that f is invariant under 

1'. 

We now give the main result of the section, whose proof follows from Proposition 9.1 and 

Lemmas 9.1-9.3, along the lines of Theorem 5 of [42]. It is stated here in one dimension since 

higher dimensional generalizations of Lemmas 9.2 and 9.3 do not seem feasible at present. 

Theorem 9.1 Let P be a partition of I and let JR be an invariant density of a random map 

R on I, which is piecewise constant with respect to P. Then there exists a (not necessarily 
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unique) piecewise linear and expanding semi-Markov transformation T with respect to P such 

that JR is invariant under T. 

Remark 9.1 Theorem 3.4(a) guarantees the existence of JR in Theorem 9.1. Given a density f 

piecewise constant with respect to a partition P, it is not always possible (42] to find a Markov 

transformation which leaves it invariant. Theorem 9.1 states that we can solve the problem using 

semi-Markov transformations. Theorem 9.1 is of interest since it states that even though we may 

not be able to construct a random map R itself from its given invariant density f, a 3-band matrix 

can be constructed that can be viewed as a deterministic point transformation T which has f as its 

invariant density and so the orbits of T mimic the dynamics of R in the statistical sense. 

10 Conclusion 

We have analysed the flow of densities for a large class of random maps from a dynamical 

point of view. In spite of the diversity of issues investigated, there are many important 

questions that remain open and may be the object of future research. 

We first address some questions directly related to the results of previous sections. In 

Section 4, we proved the asymptotic stability of {PJif} using the fact that PR is constrictive. 

It would be of interest to know whether we can have asymptotic stability without this 

assumption, using other techniques such as the existence of a lower bound function for PR 

(in which case the asymptotic stability follows immediately from Theorem 5.6.2. of [58]). 

Asymptotic stability for random maps composed of nonexpansive continuous maps on locally 

compact metric spaces has been shown in [60] using such techniques. Now, let a sequence 

of densities {Plifo} have asymptotic periodicity which is perturbed in such a way that the 

initial density Jo is again transformed to a density f~ (and does not perturb the map R itself). 

Then, as pointed out in Section 6.1, it would of interest to obtain conditions under which 

{Plif~} has asymptotic periodicity. To approximate the invariant densities of more general 

random maps than considered here, it would be useful to approximate the map R itself and 

establish a compactness result for invariant densities of a sequence of approximating random 

maps, as indicated in Remark 7.1. Finally, since a lot of interesting random dynamics takes 

place in two or more dimensions, it would useful to obtain a higher dimensional analogue of 

Theorem 9.1. 

The results of this paper apply only to random maps which are composed of piecewise

expanding transformations or at most expanding-on-average transformations defined on rect

angular partitions. It would be of interest to know whether our results can be extended to 

random maps composed of non-expanding transformations, in particular, affine transfor

mations which give rise to IFSs such as in [3] or to random maps composed of piecewise

expanding transformations defined on more general domains which are not necessarily rect

angular (so the transformations are not of Jabloiiski type). For example, it seems possible 

to extend Corollary 3.2 (and hence Proposition 9.1) to piecewise- expanding transformations 

of the type considered in [38]. 
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An important question is to what extent do the computer-generated orbits of a dynamical 

system represent the behavior of the true-orbits. Two tools have been employed in analysing 

this question [48]: the shadowing property, in a geometrical study, and the existence of 

an ACIM, in the statistical study of the system under consideration. For certain random 

maps composed of uniformly expanding hyperbolic transformations a shadowing property 

was proved in [85], [52], [6]. It is of significance to know whether the shadowing property 

exists for any class of random maps ( composed of non-hyperbolic transformations, such as 

in our case) that have been studied in this paper. In [37], it was shown for deterministic 

transformations that if there exist long periodic computer orbits, or long non-periodic orbits 

which occupy a significant portion of the computer space for all precisions, then the measures 

derived from computer simulation must approach the ACIM of the theoretical transformation 

under consideration. Once again, it would of interest to know whether such a result can be 

proved for random maps considered here. 

Applications of the random map framework to an analysis of deterministic systems would 

be of interest as well. Random maps have been applied [49] to an approximation of statistical 

quantifiers describing the dynamics of spatially extended systems such as CMLs. Modelling 

of CMLs by IFSs has been suggested in [18]. 
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