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Abstract

Here we consider cell population dynamics in which there is a simultaneous proliferation and maturation. The
mathematical model of this process is formulated as a nonlinear first order partial differential equation for the cell
density u(r, x) in which there is retardation (delay) in the temporal (¢) variable. Thus we consider a transient
reaction—convection equation in which the cell density is convected with maturation velocity r. For localized initial
perturbations the equation has positive and negative traveling front solutions. Positive fronts correspond to the
invasion of the zero amplitude solution by a finite amplitude solution, and negative fronts correspond to the
reversed case. Three classes of fronts are found according to the strength of the convection velocity; (i) For strong
convection (r> 1) the fronts are simple translations of the initial data, regardless of delay strength; (ii) for weak
convection (r < 1) two types of fronts exist: (a) reaction—convection fronts arise if the localized initial perturbation
acts at a non-zero maturation on the zero amplitude state, and (b) convection fronts arise if the localized initial
perturbation acts at zero maturation on a finite amplitude state. For weak convection (cases (ii)a and (ii)b) a
further classification arises according to whether the magnitude of the temporal delay is larger or smaller than a
critical value =°. It is found that the critical delay 7" corresponds to the Hopf bifurcation of the reaction equation
that is obtained in the absence of convection (r=0). For delays larger than 7° the convective and reaction—
convection fronts are oscillatory. In addition all the reaction—convection fronts reverse their direction of motion,
undergo a positive to negative transition, and display non-uniform kinematics. Simulation results are validated and
interpreted using solutions for the unretarded equations, and by local stability analysis.

1. Introduction

Mathematical models for a variety of biological dynamics are most appropriately framed as
differential delay equations [1]. Many of these problems involve descriptions of cell replication, and in
this circumstance the natural delay is the cell cycle time.

* Corresponding author.

0167-2789/95/809.50 © 1995 Elsevier Science BV. All rights reserved
SSDI 0167-2789(94)00174-X



A.D. Rey, M.C. Mackey | Physica D 80 (1995) 120-139 121

In previous papers we have considered a model for cell replication in which cells are both
proliferating and maturing [2-4]. The dynamics of this situation are described by the solution of a first
order partial differential equation, in which there is a retardation in the time variable as well as
nonlocality in the maturation variable. The computed dynamics, partially validated by local analysis,
are characterized by a rich variety of spatially homogeneous and nonhomogeneous stationary modes,
spatially homogeneous oscillating modes, and regular and chaotic traveling wave modes. Many of the
time dependent modes were found to be directly associated with a limit cycle solution to the pure birth
and death cell population balance equation [3].

In this paper we consider a simplified version of the previous model [2,3] in which the nonlocality in
the maturation variable is neglected, but the dynamics are still dependent on the temporal retardation.
This simplification is motivated by our desire to capture the minimal ingredients that yield the features
of the more complex model. The essential ingredients of the simplified cell population model are linear
convection and nonlinear reaction. The growth function in the reaction or kinetic term contains the
controlling retardation or delay parameter, of essential biological relevance. As is well known,
convection-reaction systems propagate fronts [5]; for convection domination the uniformly moving
fronts are simple translations of the initial data, as predicted by the advection equation. Our aim here is
to present a characterization of delay-induced instabilities and unsteady kinematics of propagating
convection—reaction fronts, predicted by the first order delay partial differential equation. As in [2,3] it
will be shown that oscillatory front propagation is associated with the presence of a limit cycle in the
purely reactive equation. In Section 2, we derive the model equation, and in Section 3 we present the
results of reaction—convection fronts for localized initial functions. The paper concludes with a brief
discussion in Section 4.

2. Model cell population equation

A detailed description of the biological significance and mathematical derivation of a cell population
model with simultaneous cell replication and maturation, and containing spatial nonlocality and
temporal retardation has been given in [3,4]. The governing equations in this case are given by

du ou
¥+cxg:D(u)+B(uT), O0<x=1, >0, (1a)
D(u)=—-8u, B)=iu(1-u), u =u(t-7xe ), (1b,c,d)

where u(z, x) is the cell population with maturation x at time ¢, D(u) is the death function, B(u,) is the
delayed birth function, and cx is the maturation dependent convection velocity. The symbols 6 and A
represent constant parameters. The nonlinear growth function contains the time delay 7 and the spatial
retardation e ", To complete the specification of the problem requires an initial function, taken here as

u(,t)=9x), xE0,1]x[-70]. (2)

In the present paper, we simplify the model by neglecting the spatial retardation in the birth function
B and replace the convection velocity cx with a constant . Without loss of generality we set A = 1. With
these modifications the equation investigated in this paper becomes

ou ou +
6t+rgx—=—5u+u7(1*ul_), u, =u(t—T1,x), (. ) €0, 1] xR, ()
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together with the initial function in Eq. (2). As shown in Section 2, the fixed points of the kinetics given
by D(u) + B(u,) =0 are

ug=0, u,=1-6=«a. 4)

Throughout this paper u, represents the trivial solution and u, represents the spatially homogeneous
steady state. Of interest here is to study the invasion of one fixed point solution by another through the
propagation of a sharp front. The presence of reaction naturally leads to the invasion of the unstable
fixed point u, by the stable fixed point u, , here denoted by u, — u,. On the other hand the presence of
convection leads to the invasion of stable fixed point u, by the unstable fixed u,,, denoted as u,— u, .
Following [6] we denote the former as positive fronts and the later as negative fronts. In addition, for
sufficiently large values of the delay parameter, it will be shown that the finite amplitude fixed point u ,
undergoes a Hopf bifurcation and becomes a limit cycle for the reaction equation (r =0), and the
heteroclinic trajectory then joins the zero amplitude u, fixed point with a limit cycle, giving rise to
positive oscillatory fronts, denoted as u(x,f)—u,. The presence of convection allows for the
corresponding negative case, in which the zero amplitude fixed point invades the wave solution that
exists in the wake of the front, denoted as u,— u(x, 1).

Since we wish to study front propagation, the initial functions used in this paper are time independent
localized spatial perturbations of the fixed points; this class of initial functions lead to front propagation,
while initial functions with small gradients usually do not lead to front propagation solutions [2,3]. The
three types of initial functions ¢(x), used in this work and that lead to front propagation, are

ero(x) =a(l—x""
initial functions (¢(x)): { @y, (x) = ax'"” x,0e€[0,1]x[-7,0],n>1. (5)
o+ (X) = ax”

Each of the three initial functions is associated with a representative class of front propagation
solutions, described below. The initial function ¢, ,(x) = a(1 —x'’"), represents a perturbation on the
zero amplitude solution u,, on a narrow region in the vicinity of x =0; the second initial function,
€. (¥) = a ””, represents a perturbation on the finite amplitude solution u, , on a narrow region in the
vicinity of x = 0; while the third initial function ¢,,, (x) = ax”, represents a perturbation on the zero
amplitude solution u,, on a narrow region in the vicinity of x = 1.

Since we are motivated by biological constraints, we have restricted the maturation interval x € [0,1].
Therefore, in some cases, the arising front kinematics of biological interest are of transient nature. The
localized nature is captured for sufficiently large values of n, here we use 5=n=10. The boundary
conditions used in this work are u(0,¢) =0, <0, whenever ¢(0) =0, but no conditions are enforced
whenever ¢ # 0. In the numerical section of this work we use § =0.2 and @ =1 — & = 0.8 throughout.
With these choices the model output, for various values of the variable parameter vector V(r, 7, n), is
given by

u=u(x,t,V), (xtV)E[0,1]xR" xR*". (6)

In the remainder of this paper we study the solutions of (3) using the three initial functions (5) to
obtain insight into the modes of front propagation behavior that are possible, and their dependence on
the time delay 7, the convection velocity r, and the initial function ¢(x). Particular emphasis is placed on
the analysis of the propagation of oscillatory fronts that arise whenever the delay strength 7 exceeds a
critical value 7°. Analytical solutions for the special unretarded case (7 =0) are presented and used to
identify the particular features introduced by temporal retardation. The reader is refered to [2,3] for a
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detailed description of numerical methods used in this work as well as their accuracy and validation. A
number of authors [7-12] have studied the global stability properties of a class of differential equations
that include Eq. (3) when 7 =0. These results indicate that when ¢(0) >0 the solutions of (3) (with
7 =0) will be globally asymptotically stable. However when ¢(0) =0 the solutions are chaotic on a
function space. The last case is of potential practical importance since chemotherapy and radiotherapy
may produce states that correspond to ¢(0)=0.

2. Analytical results for the transient reaction equation (r =0)

In this section we present some analytical results necessary to understand and validate the numerical
solutions to Eq. (3). In the absence of convection (r=0) the model equation (3) simplify to the
following delay ordinary differential equation, that describes the transient kinetics:

du
P —Sutu(l-u). (7)

The two fixed points of this equation are the trivial solution u, = 0 and the positive amplitude solution
u,=1-6é=a.

2.1. Stability of the trivial solution

To examine the local stability of the trivial solution we linearize (7) about u, to give

dz

—d? = —62 + ZT(l - ZT) ’ (8)
wherein z = u — u,. The associated eigenvalue u is given implicitly by

u=-38+e* 9)

and it follows that u <0 for § >1, u =0 for § =1, and u >0 for § < 1. Thus when the zero amplitude
solution u, is the only non-negative solution it is locally stable, and loses its stability as soon as the
positive amplitude solution u, exists.

2.2. Stability of the positive amplitude solution

Next we examine the local stability of u,. Again linearizing (7) about u, gives

%;1= ~8z+(26 - 1)z, , (10)
where z =u — u, . Assuming a time periodic solution of the form e'* "', we obtain

wtiw=-86+(26—-1)e * e . (11)
Separating (11) into real and imaginary parts gives

u=—38+(2-1)e *coswr, o=28—-1)e " sinwr. (12a,b)

For a given 8 such that

V@17 5" <cos (5527 (13)
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using the criteria of Hayes [13] it is simple to show that uw <0, and when the inequality is reversed,
p > 0. Thus whenever (13) holds we know that u, is locally stable.

2.3. Bifurcation from u, to a periodic solution

It is straightforward to show that u =0 when 7 and § satisfy

7\/(26—1)2—62=cos*1<-26i_1~) . (14)

For a given 8, denote the unique solution of (14) by 7°(8) This solution corresponds to a periodic
solution u,, of the linear equation (10) with period

b
R — (15)

© \2s-1p-8°

The zero in the denominator of (15) occurs at 6 = 1. The limiting conditions of Eqs. (12) and (14) are
as 80, P—47"=2% and as 8—1, P— + and 7P — +oo,

Thus when (14) is satisfied, so 7 =7"(8), there is a Hopf bifurcation from the finite amplitude
solution u, to a periodic solution u, of period P, given by Eq. (15). Close to the Hopf bifurcation, after
initial transients die out, the periodic solutions are approximated by

u)=a+ecoswr, e<l. (16)

Fig. 1 shows the bifurcation diagram in the (7, 8) plane, obtained from (14). The full line denotes the
Hopf bifurcation on which there are periodic oscillations, above which u is unstable, and below which
the solutions are locally stable steady states. These locally stable steady states are of two types. To the
right of the 6 =1 vertical line they are the trivial solutions u,, and between the Hopf bifurcation line
and 6 =1 they are the positive amplitude solutions u,. In our numerical study below we always use
8 =0.2, which yields 7 =3.412, P =11.22.

SOF
0

0}

1
0 0 0.5 1 1.5
8

Fig. 1. Bifurcation diagram in the (r, §) plane, obtained from (14). The full line denotes the Hopf bifurcation on which there are
periodic oscillations and above which u, is unstable, and below which the solutions are locally stable steady states. These steady
states are of two types. To the right of the § = 1 vertical line they are the trivial solutions u,, and to the left they are the positive
amplitude solutions u, =1—8 = «. In the numerical solution we use § =0.1 and 0 <7 =< 10.
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3. Results and discussion

The presentation of results below follows the natural classification arising from the operating time
scales of the problem, given in Table 1. The multiple time scales {7,} operating in the partial
differential equation (3), represent the elapsed time for effective change brought forth by the time
delay (T =), by convection (T, = 1/r), by the death rate (T, =1/8), and by the birth rate (T, = 1);
these last two time scales give rise to the representative time scale for net growth (7, = 1/a). The only
time scales changed in this paper are the retardation 7 and the convection time scale T, = 1/r, with all
others remaining fixed.

As is typical of multiple scale systems, we find that different characteristics regimes are obtained by
changing the nature of the slowest and fastest process. When T, is the smallest time scale, the dynamics
are dominated by convection. There is no time available for significant change to occur in the restricted
maturation scale (0 <x = 1), and the initial data are translated without significant change. On the other
hand when T, is the slowest time scale, and the available time for significant change is therefore large,
relative solution changes due to birth, death, and retardation dominate. In this case, we find that for
fixed T, and T, (T, <T,), the distinctive temporal retardation effects on the dynamics become
prominent whenever 7> 7" > T,, with r° given by (14).

Table 2 presents a summary of the different front propagation regimes, defines the nomenclature,
and gives the corresponding parametric conditions in terms of the initial function (¢(x)), convection
speed (r), and delay strength (7). This classification arises naturally from the existence of the two fixed
points (4), and by the presence of the multiple time scales (see Table 1). The strength of convection
investigated in this paper results in two families of fronts: (a) for strong convection (r>1) we find
translating fronts (F), and (b) for weak convection (» < 1) we find (i) convection fronts (C) if the initial
localized perturbation of u, occurs at x =0 and (ii) reaction—convection fronts (R) if the initial

Table 1
Time scales of the cell population model
Time scale Delay Convection Death Birth Net growth

(7) (Ty) (7,) (7,)
T T 1/r 1/8 1 l/a
Table 2
Classification of front solutions and related parametric conditions
Exchange type Initial function Convection speed Delay Figure
(symbol) ex)0=x=1 (r) (1)

—T=t=0

translating fronts (F)

u, = u,(F,,) (P,(,=(1(1“Xl'l") r>1 >0 -
Uy—u, (F(H) (P,n:a-xlm r>1 >0 -
convection fronts (C)

uy—u. (Cy,) @, =ax'" 0<r<l D=r<7® 2,3
u*_)u(x’t) (C+u) Qplj-zaxli" 0<r<l1 T>7" 3,4

reaction—convection fronts (R)
1<ty u, —u, ©prs = X" 0<r<l1 O=r<t" 5,6.78,9,10
1>ty uy— 1, (R,.)

L<ty, ulx, )= u, ®. =ax" 0<r<l P<r<tt 10, 11,12, 13
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localized perturbation of u, occurs at x = 1. The table also shows that further differentiation in both
convection and reaction—convection fronts occur whenever the strength of the temporal delay 7 exceeds

b
T .

3.1. Translating fronts

The upper two rows of Table 2 correspond to translating fronts (F). For convection domination, the
convection time scale is small (7, = 1/r <1) compared to the fixed reaction time scales, here given by
T,=1/6 =5 for death, and T, =1 for birth. The two initial functions that lead to these solutions are
¢.o(x) and ¢, (x), given in Eq. (5). In this case we have uniformly translating fronts that move in the
+x direction with constant velocity  and which, regardless of the delay 7, are accurately approximated
by the solution to the linear advection equation:

au ou

E+rE‘=0, r>1. (17)
In this almost trivial case we have positive (F,,) and negative (F,,) fronts, given by uniform
translations of the initial functions ¢, ,(x) and ¢, (x), respectively:

translating fronts{Fﬂ,: ux, 1) =@, (x —rt)=a(l— (x—r)'""), (18a.)

r>1) Fo.: u(x,t)=(pn+(x—rt)=a(x—rt)“" .

The first positive front solution represents the invasion of u, by u,, while the second negative front
solution represents the invasion of u_, by u,, both occurring with the constant convection speed r.

3.2. Convection fronts

The third and fourth rows in Table 2 correspond to convection fronts (C). In this case the convection
velocity is small, and the reaction time constants for death (7, = 1/8) and for birth (T, = 1) are smaller
than for convection (T, = 1/r). For convection fronts we enforce the boundary condition ¢(0,¢) =0, ¢ €
R™. The initial function corresponding to this particular family is ¢,, (x). As the name implies the fronts
are driven by convection of the zero amplitude solution in the increasing maturation direction. These
are then negative fronts, but a further categorization arises depending on the magnitude of the time
delay. For relatively small delays such that 7 <7°, the negative fronts (C,, ) correspond to the invasion
of u, by u,. On the other hand, for relatively strong delays with r>1", the negative fronts (C,,)
correspond to the invasion of a time dependent spatially non-homogeneous solution u(x, t) by the zero
amplitude solution u,. Below we present numerical evidence for this behavior and provide explanations
for their existence. Analytical results for the unretarded case (r = 0) provide a useful reference.

3.2.1. Analytical solutions for unretarded convection fronts (C,,, 7 =0)

The bifurcation diagram of Fig. 1 for the reaction equation (13) shows that for 6 =0.2 and
r<7°=3.4, the steady state solution u, is locally stable. The parametric conditions for the present
regime are <1 and 7 =0 < 7". Thus we expect the translating fronts to be monotonic. In addition, for
sufficiently weak delays, the solution of (3) with 7 = 0 provides a good asymptotic approximation to the
solution for small delays (7 <1), and gives insight into the solution behavior for finite 7 < r°. Using the
method of characteristics we obtain, for 7 =0 and ¢, (x), the following solution to Eq. (3):
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a(x —rt)'’"

—: x=rt,
ur, =3 e “[I—@—r) "+ @x-r)" * " (19a,b)
an X=<rt.

The front location x* is defined as the maturation level at which u(x*, t) = a/2. From (19) we find that
the front position x*(r) is given by the sum of a convection and a reaction contribution:

x*(t) =rt + (1—%) . (20)

The first term on the right hand side of (20) is the convection contribution and the second term is the
reaction contribution to the front motion. The front kinematics are defined by dx*/dr. Eq. (20) shows
that for the parameter values corresponding to this regime (r<1;n>1, @ =0(1)) the front velocity
dx*/dt quickly converges, in a time scale of the order (1/a), to the constant convection velocity r. Thus
after the short lived transients die out, the front kinematics are dictated solely by the magnitude of the
convection velocity r. At early times (= 1/a) the front thickness rapidly decreases and a steep
shock-like front develops.

Fig. 2 shows the cell density as a function of maturation as given by Eq. (19) for n = 10 and r = 0.01,
at three different times. The arrows indicate the direction of front motion. The fronts show a shock-like
structure that is characteristic of convection-driven fronts. The shock structure arises due to the small
magnitude of the convection velocity (r<<1). To maintain the front’s motion, the convection term
r ou/dx must dominate over the reaction terms, and since r<<1 this leads to the shock structure
(du/dx>1).

3.2.2. Numerical solutions for monotonic convection fronts (C,.)

The parametric conditions for this case are r<1 and 7 <7°. Thus we expect that the translating
fronts are monotonic, and that they should be approximated by the unretarded solutions presented
above when 7 <1.

Fig. 3 shows the computed cell density u(x, ¢) as a function of maturation x, for two different delays
and several times. The arrows denote the direction of front motion. For weak delays (top) the shock
solutions representing C,, are completely identical to those given by Eq. (19). On the other hand, the
bottom solution for 7=5> 7", which does not belong to this regime but is shown in this section for

1.0
=0
o8t :
£ i
5 06| i
> .
K] . L Ly
é 04 |
5 |
[+ N
O 02} 1
!
0.0 L 1

1
0 02 04 0.6 0.8 1
Maturation, x
Fig. 2. Cell density u(x, r) as a function of maturation x, as given by Eq. (19), for n =10, 7 =0, r = 0.01, and corresponding to
the following times : 10 (full line), 40 (dashed-dotted line) and 80 (dashed-triple dotted line). The arrows indicate the direction of
front motion. The shock-like fronts appear because convection drives the front and du/dx =o(1/r).
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Fig. 3. Cell density u(x, t) as a function of maturation x, for r =0.01, n = 10, and 7 = 1 (top) and 7 =5 (bottom), corresponding
to the following times ¢: 10 (full line), 40 (dashed-dotted line), and 80 (dashed-triple dotted line). The arrows denote the direction
of front motion. For small delays 7 <7° = 3.142 the shock solutions, representative of convective fronts, are completely identical
to those given by Eq. (19). On the other hand, the solution for 7 =35 >7"=13.412, which is an oscillatory convective front but is
shown in this section for comparative illustration, has a front velocity identical to the previous case (r = 1) but up-stream from the
front it oscillates.

comparative illustration, has a front velocity identical to the previous case. However the invaded
solution is now temporally oscillatory and spatially non-homogeneous. Thus we conclude that the delay
strength has no effect on the solution behavior whenever 7 < r°. Although no analytical results
analogous to Eq. (20) are available for the front position for <", the simulations shows that the
delay only modifies the reaction contribution to the front motion x*(t) = rt + f(t, a, n, 7) but again this
contribution f(¢, @, n, 7) is negligible. The steepness of the front arises because in this regime r <1 and
for convection to drive the front, the slope must be large and of the order of 1/r>1. Hence we can
conclude that for this type of front time delays do not have a significant effect on the front kinematics.

3.2.3. Numerical solutions for oscillatory convection fronts (C,,)

The parametric conditions for these negative fronts are <1 and r>7" = 3.412. For this case the
reaction equation (12) exhibits a limit cycle solution. As shown in Fig. 3b, the solutions for 7=5
describe the invasion of a time dependent spatially non-homogeneous solution u(x,t) by the zero
amplitude solution u,. The front velocity is constant and equal to . A prominent characteristic of the
time dependent solution shown in Fig. 3b is the presence of two temporally oscillatory features. The
temporal oscillation is reflected in: (i) the periodic changes in the slopes ahead of the shock, and (ii) in
the contact point between the shock and the spatially inhomogeneous region of u(x, t). For the selected
times the figure shows that this point oscillates between u = 0.6 and u = 1. Since r <1, we expect that
whenever u(¢) exists it will be weakly perturbed by the small convection effect.

To understand the nature and origin of this unusual front solution, characterized by a shock structure
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connecting an oscillatory and spatially non-homogeneous solution with the trivial «, amplitude solution,
we integrated the reaction equation (7) using the initial conditions ¢,, = a{ "7 0=¢ =1 and compared
the results with the solution to the full convection-reaction equation (3), for a wide range of
V = (r, 7, n) values. This integration is identical to integrating (3) along its characteristics, x = { + rt, for
the trivial case r = 0. By momentarily focusing on the dynamics generated by the reaction terms, we find
the source of the complexity shown in Fig. 3b.

Fig. 4 shows the cell density u(x, ¢) as a function of maturation x (full line) on the right scale, and the
retarded u (1 —u,) (dashed-triple dotted line) and unretarded u(1—u) (dashed-dotted line) birth
functions as a function of maturation on the left scale, for r =0.001, 7 =3.6, and n = 10. The open
arrows indicate the corresponding axes for each curve. The selected early times are indicated in each
plot and the delay is now slightly large than 7° =3.4. The dashed line represents the solution to the
reaction equation (7). At this early times the shock forms close to x =0 and, driven by convection,
starts moving in the +x direction. The figures show that up-stream from the front the solutions are
spatially monotonic since the driving force u (1 —u,) is monotonic. The fact that up-stream from the

1.0 o
-~ 1=3.6
0s | a Jos ~
q =
5 1
; 0.6 [ Jos =
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o | . E
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g osh {os
172
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© =
02 =
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Fig. 4. Cell density u(x, ¢) as a function of maturation x (full line) on the left scale, and the retarded u (1 — u,) (dashed-triple
dotted line) and unretarded u(1— u) (dashed-dotted line) birth functions as a function of maturation on the right scale, for
r=0.001, 7=3.6>7"=3.412, and n=10. The open arrows indicate the corresponding axes for each curve. The times are
indicated in each plot. The dashed line represents the solution to the reaction equation (7).
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front the slopes oscillate is explained by focusing on the effect of the existing retarded birth u (1 —u,)
compared with the unretarded birth u(1 — u). Due to the delay, the up-stream solution is above (below)
u, whenever the retarded birth is larger (smaller) than the unretarded birth. The figure also shows that
the solutions to Eqgs. (3) and (7) are only spatially shifted but otherwise identical. The solution to the
reaction—convection equation is shifted to the right by the maturation distance x =rt due to the
convection effect, exactly as predicted by the method of characteristics [5] applied to our first order
hyperbolic partial differential equation (3).

In partial summary, we have shown that if the convection is weak (r<1) and the temporal
retardation large (7 >7") the solutions to (3) are slow propagating shocks in which the zero amplitude
solution invades a strongly temporally oscillating and spatially nonhomogeneous solution. The origin of
the oscillations has been identified and lies entirely in the reaction terms of (3).

3.3. Reaction—convection fronts

The last two rows in Table 2 correspond to reaction—convection fronts (R). In this case the
convection velocity is again small, and the reaction time constant for death (T,=1/8) and birth
(T, = 1) are smaller than for convection (T, = 1/r). For reaction—convection fronts we use the boundary
condition ¢(0,7)=0, tER" to capture the competition between the right traveling convection of u,
with the left traveling reaction front. As the name implies the fronts are driven by both reaction and
convection, and are obtained when using the initial function ¢,,, (x) = ax”. Since u, is unstable, it will
be invaded by a finite amplitude solution and the resulting positive front will move in the —x direction.
On the other hand the u, solution is convected in the +x direction with a speed r and the resulting
interaction of the positive front and the convective motion gives rise to a reversal in the front’s direction
motion. The collision between the convection driven u, steady state and the reaction driven front
results in an unusual front transition, at which positive fronts become negative fronts. The time (¢,) and
location (x*(¢,)) for the front transition depend strongly on the magnitude of r. The kinematics are now
of accelerating and decelerating type. For relatively weak delays, <", the positive and negative
fronts (R, ,) correspond to the invasion of u, by u, followed by the reverse invasion. On the other
hand, for strong delays such that » > 7°, the negative fronts (R,,) correspond to the invasion of the zero
amplitude solution u, by a time dependent spatially non-homogeneous solution u(x, t) if ¢ < t,,, followed
by a withdrawal when ¢ >¢,. Below we present numerical evidence and further explanations for these
phenomena.

3.3.1 Analytical solutions for unretarded reaction-convection fronts (R, =0)

The bifurcation diagram of Fig. 1 for the reaction equation (13) shows that when & =0.2 and
r<r’= 3.412, the u, solution is stable. The parametric conditions for the present regime are r <1 and
7=0<7". Thus we expect monotonic translating fronts. For sufficiently small delays, the solution of
(3) with =0 provides a good asymptotic approximation. Using the method of characteristics we
obtain, for 7 =0 and ¢, , (x), the following solution to Eq. (3):

alx —rt)" ‘
ux,)=9e “[I-@x—rm"1+x-—m""’
U, , xX<rt.

X =1, (21a,b)

To find the driving forces governing the front kinematics we again define the front location x* as the
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maturation location at which u(x*,t) = /2. With this definition, Eq. (21) predicts that the front
position x* is given by the sum of a convection contribution and a reaction contribution:

x*()y=rt+ (1_:?>1/n . (22)

For the parameters of this regime (r <1, n>1, a =0(1)) it is seen that at early times reaction controls
the positive front motion, but at intermediate times the increasing convection matches the decreasing
reaction effect, resulting in a direction reversal of the front’s motion at time ¢ = f, when dx*/ds =0. An
explicit approximation for ¢,, whenever 1, >« is

a

t="1n(). (23)

As r— 0 the limits of (22) and (23) are, t,— += and x*(¢,)— 0. Eq. (22) shows for ¢ >¢,, the front
kinematics are governed by convection and the front velocity converges to the convection speed. Fig. 5
shows the front position x* as a function of time (full line) and the front velocity as a function of time
(dashed line), for r =0.01, n =10, and 7 =0. The arrows indicate the corresponding axes. For this
values ¢, =26.03 and x*(t =¢,) = 0.385. The figure shows that when ¢ > ¢, the front velocity asymptotes
to the convection speed r =0.01. Fig. 6 shows the corresponding cell density u(x, t) as a function of
maturation for three different times. The arrows now indicate the direction of front motion. At early
times (r<t,=4.01) the positive front decelerates, at ¢ =28.04 =¢, the front has just reversed it’s
direction of motion, and for ¢ > ¢, the negative front accelerates up to the convection speed. The front
exits at time f,=1/r=100. The figure shows that the positive fronts are spread out due to the
dominance of reaction, but the negative fronts driven by convection have the same shock structure as
the convection fronts. Thus for > ¢, and 7 = 0 the reaction—convection fronts become identical to the
convection fronts.

3.3.2. Numerical solutions for monotonic reaction—convection fronts (R, )

In this regime since 7 <7°, we expect monotonic fronts, and if 7 is sufficiently small we expect that
Eq. (21) will provide a good approximation. Fig. 7 shows the computed cell density u(x, t) as a function
of maturation x for three different times. The arrows denote the direction of front motion. The front
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Fig. 5. Front position x* (full line) and front velocity (dashed line) as a function of time, for » =0.01, n =10, and 7 =0. The
arrows indicate the corresponding axes. For these values front reversal occurs at t, =26.03 and x*(t=1,) = 0.385. The figure
shows that when r> 1, the front velocity is asymptotic to the convection speed r =0.01.
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Fig. 6. Cell density u(x,r) as a function of maturation for times f: 4.01 (full line), 28.04 (dashed-dotted line), and 68.01
(dashed-triple dotted line) with the parameters as in Fig. 5. The arrows now indicate the direction of front motion. At early times
(r<4.01) the positive front decelerates, at ¢ =28.04 =1, the front has just reversed the direction of motion, and for ¢ > ¢, the
negative front accelerates up to the convection speed. The front exits by crossing x = 1 at time ¢, = 1/r = 100.

with no arrow corresponds to a time ¢=28.82=¢,. For weak delays, the fronts remain heteroclinic
trajectories between u, and u,. Although no analytical results, as in Eq. (20), were obtained for the
front Kinematics for 7 # 0, the simulations show that the delay only modifies the reaction contribution to
the front motion as in Eq. (23), but in contrast to the convection front regime this contribution controls
the front motion as 7 increases. The delay effect (r > 7°) on kinematics will be discussed further in the
next section, where stronger delay regimes are discussed. The steepness of the front that develops for
t > t, arises because in this regime r <1, and for convection to drive the front, the slope must be large
and of the order of 1/r>1.

Fig. 8 shows the front position x* as a function of time for three different convection velocities. The
figure shows the trends captured by Egs. (22), (23). As r decreases the fronts penetrate further into the
small maturation region, but the retraction from this region is slower. Fig. 9 shows the corresponding
cell density u(x, t) as a function of maturation at front reversal. Note that the front steepness increases
for decreasing r.

For this regime, we also found that when 7 <7°, the fronts are monotonic. The main effect of the
delay is to gradually slow the kinematics, and reduce the penetration distance d = 1 ~ x*(¢,) (see Fig. 8

1.0

0.3
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04}

Cell density, u(x,t)

0.2}

0.0
0

Maturation, x

Fig. 7. Cell density u(x, r) as a function of maturation x, for r =0.01, n =10, and 7 =0.1 at the times ¢: 3.2 (full line), 28.82
(dashed-dotted line), and 64 (dashed-triple dotted line). The arrows denote the direction of front motion. The front with no arrow
corresponds to a time ¢ =28.82=1,. For delays 7 <7"=3.412, the fronts are monotonic.
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Fig. 8. Front position x* as a function of time for r = 0.1, n = 10, corresponding to the following convection velocities 7: 0.01 (full
line), 0.003 (dashed line), and 0.001 (dashed-triple dotted line). The figure shows the trends captured by Egs. (24), (25). Namely,
as r decreases the fronts penetrate closer to x =0, and their retraction is slower.

below). When 7 is sufficiently close to 7°, pretransitional decaying oscillations are observed, since the
nature of u, is that of an attracting spiral fixed point.

3.3.4. Numerical solutions for oscillatory reaction—convection fronts (R,,)

The parametric conditions for these fronts are r <1 and 7>7"=3.4. For this case the reaction
equation (7) exhibits a limit cycle solution. As mentioned above, increasing 7 slows the positive front
kinematics and reduces the distance at which there is motion reversal. Fig. 10 shows the computed front
position x* as a function of time and the corresponding front velocity, for » = 0.01, n = 10, and for three
different delays. The figures clearly show the trends for increasing delay magnitudes. At sufficiently low
7, the fronts penetrate further and the kinematics follow that of the unretarded case (Egs. (22), (23)).
For larger 7 the penetration toward x =0 is greatly reduced, and the kinematics are slower. For
sufficiently large delays 7> 7°, the fronts do not penetrate and the solution evolves to u,.

Fig. 11 shows the cell density u(x, ) as a function of maturation x, for r =0.001, r=3.6>7", and
n =10, and for three different times. For 7>r" the kinetics has a limit cycle and the observed
oscillations clearly reflect this fact. The fronts are now heteroclinic loops joining u, and u,. The arrows
in the figures denote the direction of front motion; for ¢ <t, = 72 the positive fronts have an oscillatory
wake with a wave length that increases for increasing distances from the front. At ¢ = ¢, the front comes
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Fig. 9. Cell density u(x,f) as a function of maturation at front reversal (t=1,). The parameters are as in Fig. 8. The
corresponding location and times are (x*, 7,): (0.41, 28.82); (0.288, 70), and (0.128, 110). Note that the front steepness increases

for decreasing r.
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Fig. 10. Front position x* as a function of time and corresponding front velocity dx*/dt, for r =0.01, n =10, and for the
following delays 7: 0.1 (full line), 3.6 (dashed line), and 10 (dashed-triple dotted line). At low 7, the fronts penetrate further and
the kinematics follow that of the unretarded case (Egs. (24), (25)). For larger 7 the penetration is greatly reduced, and the

kinematics are slower. For sufficiently large delays, 7 > 7° =~ 11 the fronts do not penetrate and the solution evolves to u, (see Fig.
14).

to a halt and with a more refined spatial structure in the wake. Finally for ¢ > ¢, the gradual refinement
of the spatial structure continues as the front moves, driven by convection, to exit at x = 1. We have
performed extensive computations for this regime and Fig. 11 is representative for this regime. Similar
types of oscillatory fronts can be found in other reaction—diffusion models [14], and in the KdV
equation [15]. We have found that as r— 0, i.e. as the perturbation of the reaction equation weakens,
the penetration distance increases and the wave length of the oscillation tends to zero. We note that the
negative fronts have the typical shock-like structure of convection driven fronts whenever r <1.

To understand the nature and origin of these front solutions we integrated the reaction equation (7)
using the initial conditions ¢({)=al", 0=<¢ <1, and compared the results with the solution to the full
convection-reaction equation (3) for ¢, ,(x) = ax" and a wide range of V= (r,r,n) values. Fig. 12
shows the cell density u(x, r) as a function of maturation x (full line) on the right scale, and the retarded
u,(1—u,) (dashed-triple dotted line) and unretarded u(1 — u) (dashed-dotted line) birth functions as a
function of maturation on the left scale. The open arrows indicate the corresponding axes for each
curve. The dotted line corresponds to the numerical integration of Eq. (7) for the same parameters.
The time intervals are chosen to be 57. The selected times are indicated in each plot and the delay is
now slightly larger than 7° = 3.412. At early times the front forms close to x =1 and start moving,
driven by reaction, in the —x direction. The figures show that at ¢ = 18 and up-stream from the front,
the solution is u,, since the driving force u (1 — u,) is zero. The fact that the wake of the front oscillates
is explained by focusing on the effect of the existing retarded birth u,(1—u,) as compared to the
unretarded birth u(1 — u). Due to the delay, the solution in the wake is above (below) u, whenever the
retarded birth is larger (smaller) than the unretarded birth. In contrast to the oscillating convection
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Fig. 11. Cell density u(x, ¢) as a function of maturation x for r =0.001, 7 = 3.6>7°, and n = 10, and for three times #: 72 (top),
144 (middle), and 504 (bottom). For 7> 7" the kinetics show limit cycle behavior and the observed oscillations clearly reflect this
fact. The arrows in the figures denote the direction of front motion. For ¢t = 72 <t, = 144 the positive fronts have an oscillatory
wake with a wave length that increases for increasing distances from the front. At ¢ =, = 144 the front comes to a halt and has a
more refined spatial structure in the wake. Finally at t > ¢, the gradual refinement of the spatial structure continues as the front
moves in the +x direction, driven by convection, to exit at x = 1.

fronts (C,,), the function u,(1 — u,) is oscillatory instead of monotonic (on 0 =x = 1) and always lags
the unretarded function u(1 — u). The dotted line representing the solution in the absence of convection
exhibits the same oscillations, and again the only effect of the weak convection is a simple spatial shift,
as in the case of oscillating convection fronts. For example, at ¢ = 36, if we translate the front predicted
in the absence of convection to the right by rf = 0.36 we recover the wake predicted in the presence of
weak convection. Note that as time increases the wave length of the peaks next to the front decrease.
The bottom figure clearly shows the origin of structure refinement for »>0. Since 7 =36>1, the front
has already reversed its motion and now moves to the left, but the second peak in the front’s wake is
still moving to the right, as seen by comparing its position at ¢ = 54 with that at t = 36. The net effect is
then that the front reverses its motion but the wave in the wake of the front still travels to left, resulting
in a wave length decrease. This wave length decrease is a function of the distance from the front since
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Fig. 12. Cell density u(x, ) as a function of maturation x (full line) on the left scale, and the retarded u,(1 —u,) (dashed-triple
dotted line) and unretarded u(1 — u) (dashed-dotted line) birth functions as function of maturation on the right scale, for r = 0.01,
7=3.6>7"=3.412, and n = 10. The open arrows indicate the corresponding axes for each curve. The dotted line corresponds to
the numerical integration of Eq. (7) for the same parameters. The chosen time intervals are equal to 5r.

before the motion reversal the waves were shorter closer to the front. All these observations also hold
for Fig. 11.

Fig. 13 shows the cell density u(x,?) as a function of maturation x for » =10 (top) and n=35
(bottom). The figure shows that increasing n, thus decreasing the length scale of the local perturbation,
affects the transient kinematics of the reaction—convection fronts. For larger n the penetration distance
is smaller as predicted by Eq. (22). On the other hand the figure also shows that, after the initial
transient dies-out, the oscillations are shifted but of similar wave length.

3.3.5. Perturbation dissipation and strong delays

As shown in Fig. 10, if 7 is too large, fronts do not propagate, the initial perturbation is dissipated,
and the solutions evolve towards u,. Fig. 14 shows the cell density u(x, f) as a function of maturation x
(full line) on the left scale, and the retarded (dashed-triple dotted line) and unretarded (dashed-dotted
line) birth functions as a function of maturation on the right scale, for r =0.01, 7 =10>7°, and n = 10.
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Fig. 13. Cell density u(x,t) as a function of maturation x, for r=0.01, t=3.6, n=10 (top) and n=35 (bottom). The
corresponding times are ¢: 18 (full line), 36 (dashed-dotted line), and 54 (dashed-triple dotted line). The figure shows that
increasing n, and thus decreasing the length scale of the local perturbation, affects the transient kinematics of the reaction—
convection fronts. For larger » the penetration toward x = 0 is smaller, in agreement with Eq. (24). After the initial transient dies
out, the oscillations are shifted but of similar wave length.

The arrows indicate the corresponding axes for each curve. The figure shows that large delays produce a
birth rate that cannot sustain growth, as seen by a direct comparison of the retarded birth function
u,(1 —u,) with the unretarded birth function u(1 —u). Thus although an increase in the strength of the
delay refines the structure of the front solution, there is a threshold above which insufficient growth

occurs. A rough estimate of 7° is obtained by requiring the death rate to be equal to the initial retarded
birth:

du=e@x—rr)X(1-e(x—rr)). (24)

Using the representative value u = a/2 and the appropriate initial condition, we find for n =10 and
& =0.2 that the predicted 7°= 11, in sufficiently good agreement with the simulation results.

4. Conclusions

Cell population models consisting of first order partial differential equations with temporal and
spatial retardations were previously shown to predict a rich variety of phenomena. In this paper we
have shown that a simplification of the more complex model, containing only temporal retardations,
displays an interesting family of front propagation solutions depending on the magnitude of convection
and the temporal delay. In the strong convection limit, the model reduces to the advection equation,
which just translates initial data. On the other hand, for weak convection and relatively simple
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Fig. 14. Cell density u(x, ¢) as a function of maturation x (full line) on the left scale, and the retarded (dashed-triple dotied line)

and unretarded (dashed-dotted line) birth functions as a function of maturation on the right scale, for r=0.01, 7= 10>+ =
3.412, and n = 10. The arrows indicate the corresponding axes for each curve. The figure shows that large delays produce a birth
rate that cannot sustain growth, as seen by a direct comparison of the retarded birth function u, (1 — u,) with the unretarded birth
function u(1 — u).

nonlinear reaction kinetics, front propagation may be driven by convection or it may be driven by a
changing competition between convection and reaction. The change in competition results in the
reversal of front motion. Both types of convection and reaction—convection fronts exhibit temporal and
spatial oscillatory behavior whenever the delay exceeds a critical value. This critical value corresponds
to a Hopf bifurcation of the reaction equation. The structure of the oscillatory reaction-convection
fronts is finer when convection is weaker.

Recently it has become possible to modify various parameters related to the cell maturation/
proliferation process using techniques from molecular biology. Extensions of the results of this work
provide theoretical predictions that are, for the first time, potentially testable. In the process we stand
to greatly expand our knowledge on the dynamics of the cell replication process. This will be the subject
of a later paper.
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