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Abstract. We study the effect of noise on the behaviour of a dynamic cell popula- 
tion model in which cell replication and maturation take place simultaneously. We 
assume that the maximum proliferative potential v fluctuates uniformly about 
a mean value of 9, and show that a decrease in 9 and/or the input flux ui, into the 
population can lead to an increase in the variance in the cellular efllux u I. We draw 
a qualitative correspondence between this behaviour and the commonly observed 
increase in the variance of circulating blood cell numbers following chemotherapy 
and radiotherapy, both of which lead to a decrease in 9 and ui,, and bone marrow 
transplant which probably corresponds to a decrease in ul,. 
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I Introduction 

Many biological populations are age structured in that the recruitment of new 
individuals into the population depends on the density of a cohort of older 
individuals, e.g. all populations of replicating and maturing cells. Models of these 
age structured cellular populations are most naturally framed in terms of first order 
partial differential equations ("transport-like" equations) that are nonlinear be- 
cause of dependencies of birth and/or death rates on cell population number (cf. 
Metz and Diekmann 1986 for an excellent survey of general age structured 
population models). However, these age structured cell replication models have 
never, to our knowledge, considered the effect of parametric fluctuations on the 
eventual solution behaviour of the model. 

An assessment of the effects of parametric fluctuations in such models becomes 
of more than academic interest when one considers the nature of the recovery 
phase of patients following chemotherapy and/or bone marrow transplant (Prof. B. 
Cooper, personal communication). Though there seems to be no published litera- 
ture in this area, the anecdotal evidence indicates the following pattern. Typically, 
following chemotherapy and/or bone marrow transplant the circulating numbers 



762 H. Schwegler, M. C. Mackey 

of platelets and white blood cells fall to extremely low levels (often less than 1% of 
normal) and remain there for a period of days, displaying low level fluctuations. 
Then during a recovery phase these cell numbers gradually rise, first showing 
a waxing and then a waning in their variance as the mean values increase. The 
maximal variance occurs during this (hopefully) transient phase. In examining the 
recovery data from a number of patients post chemotherapy or bone marrow 
transplant (kindly provided by Prof. Cooper) we have noted precisely this same 
qualitative pattern. It is unfortunate that there is, at this time, neither any well 
documented presentation of this phenomena nor any characterization of the 
statistics (mean and variance) of peripheral blood cell counts in time series from 
normal individuals. We present the results of this paper in a hope that it will 
motivate clinical and experimental hematologists to examine the nature of blood 
cell fluctuations in both health and disease. 

The plan of the paper is as follows. Section 2 presents a simple cellular 
replication-maturation model. In Sect. 3 we discuss the behaviour of the system in 
the absence of noise, while Sect. 4 considers the effects of noise on the model system. 
Finally, in Sect. 5 we discuss the significance of the results of Sect. 4 with respect to 
the effects of either chemotherapy or radiotherapy on fluctuations in the numbers 
of circulating hematopoietic cells. 

2 A simple biological example 

2.1 Physiological considerations 

It is generally accepted that there is a population of pluripotential stem cells 
(PPSC) within the bone marrow that give rise to primitive stem ceils committed to 
the production of erythrocytes, platelets, white blood cells, and lymphocytes. The 
committed stem cells for the erythroid series (CSC-E) are assayed in vitro by the 
primitive and mature burst forming units (BFU-E) and colony forming units 
(CFU-E). The committed stem cells for the white blood cells (CSC-GM) have the 
colony forming units/granulocyte-macrophage (CFU-C) as their in vitro analogs 
(Quesenberry 1990). 

Within the erythroid system there is a well established long range negative 
feedback humoral control mediated by erythropoietin. A fall in the number of 
circulating red blood cells is followed by a decrease in tissue pO2 levels. This, in 
turn, stimulates the production and release of renal erythropoietin whose action is 
to increase the flux of cells from the PPSC into the CSC-E and/or the proliferative 
rate within he CSC-E. A similar control mechanism, mediated by the regulator 
granulocyte-macrophage colony stimulating factor (GM-CSF), operates for the 
white blood cells. 

In addition to these long range control mechanisms there are local regulatory 
mechanisms that exercise control over the proliferative rates within the PPSC, the 
CSC-E, and the CSC-G such that the proliferative rate is maximal at low cell 
numbers and monotonically decreases as cell numbers rise. 

2.2 The model 

From these comments we may now turn to a mathematical formulation of a model 
for a renewing and maturing cellular population. A similar model has previously 
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appeared (Lasota et al. 1981; Loskot et al. 1991), which is an extension of the Burns 
and Tannock (1970) cell cycle model (cf. Smith and Martin 1973). 

We characterize every cell of the population by two internal variables: a, the age 
of the cell in the cell cycle, and m, the maturation level of the cell. At birth, cells have 
age a = 0 and their age increases with a unitary velocity V, = 1 until cell division 
occurs at age a = aD. In terms of maturation, cells are assumed to first become 
identifiable members of the population under consideration at a maturation level 
m = too. These cells mature at a velocity V,, until they reach the maturation level 
m = ml of a totally mature cell. During this entire process of maturation, the cells 
proliferate. It is important  to emphasize that this process explicitly allows cellular 
movement through the cell cycle to proceed hand in hand with cellular maturation. 
The sufficiency of this hypothesis to explain existing granulopoietic and erythroid 
precursor cell kinetic data in humans, rats, and guinea pigs has been demonstrated 
by Mackey and D6rmer (1981, 1982). 

We denote the number of cells of age a and maturation level m at time t by 
n(t, m, a). Though the partial differential equation governing the evolution of this 
quantity is well known (cf. Metz and Diekmann 1986), from the outset we consider 
the age integrated quantity 

g(t ,  m) = n(t, m, a)da, 

which is the total number of cells of all ages with maturation level m at time t. 
Assuming that the proliferation rate of cells of maturation level m depends on the 
number N(t, m) through a Verhulst type law (Mackey 1978; Mackey and Milton 
1990), and that Vm is independent of the maturation level m, N satisfies the partial 
differential equation 

0N 0N 
~--~ + V~-~m = vN(1 - B N ) ,  N ~ [0, B - t ] .  (1) 

B and v are nonnegative constants characterizing the Verhulst replication law. 
v will be called the maximal proliferative potential, and B -  1 is the maximum value 
of N. 

Some of the parameters appearing in the model are superfluous and may be 
eliminated by a judicious choice of variables. To this end we introduce 

u = B N ,  ue[O, 1] (2) 

and define a dimensionless maturation variable x by 

m - m o  
x - - - ,  x e [ 0 , 1 ]  (3) 

m 1 - m o 

where mo and ml are the initial and final maturation levels respectively. Then we 
have a maturation velocity c of the normalized maturation variable x given by 

dx V~ 
e - dt ml - m o  (4) 

With these conventions, (1) becomes 

Ou ~u 
~ t  + c ~  = vu(1 - u). (5) 
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x = l  

tin 

Fig. 1. Trajectories of three 
different cohorts corresponding 
to different q, 

To complete this model of blood cell production, (5) must be considered as 
a boundary value problem. This is a consequence of the physiological fact that new 
cells continuously enter the population at the initial maturation value mo (x - 0) 
with a cell number N(t, too), so the behaviour of the population for t > T is 
completely determined if the boundary values 

u(t, x = O) = ui,(t) (6) 

are given for all times t > T -- e -  1 with a finite advance of c -  1, as one can observe 
from the corresponding characteristics (cf. Fig. 1). 

Equations (5) and (6) describe the behaviour of the cell population in the case of 
a constant proliferative potential v. We obtain a partial differential equation 
perturbed by noise if we assume that this coefficient is subject to fluctuations. (A 
previous paper (Mackey and Schwegler 1993) has considered the effects of fluctu- 
ations on the solution behaviour of (5) viewed as an initial value problem.) We 
assume that these fluctuations enter the system in such a way that a symmetrically 
distributed stochastic fluctuation (d~/dt) is added to v so the effective proliferative 
potential is v + (d~/dt) with mean value v. 

3 Behaviour of  the system in the absence of  noise 

In the absence of fluctuations, the partial differential equation (5) is easily solved 
using the method of characteristics. The ordinary differential equations for the 
characteristics are simply 

dx 
- -  = c (7) 
dt 

and 
du 
dt=VU(1 - u ) .  (8) 

Using well known procedures, we arrive at the solution 

u(t, x) = (9) 

1 + u i , ( t - x ) [ _ e  ~x/c- 1] 

for t e ( - ~ ,  m ) and x ~ [0, 1] since at x = 1 (corresponding to m = ml) the cells 
are fully mature and leave the system. 

We stress that the characteristics, (7) and (8), can be interpreted as governing 
the evolution of cell numbers u with time through the maturation space x for a 
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Fig. 2. Growth  of  the cell 
number  in a cohor t  during the 
time span ti. < t < t I 

cohort  of cells that entered at time tin with maturation x( t i . )  = 0 and cell number 
u(ti.) = u~.. Along the cohort trajectories, u(t) increases monotonically as shown in 
Fig. 2. 

4 The effects of noise 

We now examine the effect of perturbing the proliferative potential v with 
a stochastic white noise d~/dt  so the characteristic equation (8) becomes a stochas- 
tic differential equation 

du 
- -  - vdt + d~ .  (10) 
u(1 - u) 

Defining a new variable 

(10) becomes 

u 
V - l _ u ,  r E [ 0 ,  oo), (11) 

dv 
- -  = vdt + d~ ,  (12) 
v 

which is easily integrated using either the Ito or Stratonovich calculus (both give 
the same results) to obtain 

In / v( t )  [ = v ( t  - t , . )  + ~(t)  - ~ ( t , . ) .  (13) 

Defining 

w ( O  - - (14) 
(13) can be rewritten as 

v(t) = v( t i . )e  v(t t,.) eW(t), (15) 

with a corresponding formula for u(t) 

u(ti.)e~(~ - ..) eW(t) 
u(t) = 1 + u(tl.)[eV(~-t'") e w(') - 1] " (16) 

Eliminating tl. through the relation x = c ( t -  ti.), we finally arrive at the field 
solution u(t, x) of the boundary value problem with noise (9) 

u(t, x) = / . . \  (17) 

1 + u i . ( t  - ± ]  [eVX/~e~(°-  1] 
k c /  
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We assume, for simplicity, that the random variable w(t) defined in (14) is uniformly 
distributed with mean of zero and a band width of 2Aw. Thus the density g of w is 

f 1 g(w) = 2A----~ -- Aw < w < Aw 

0 otherwise. 

In the limit t -  ti,--* oo, the exponential e v( t - t" )  would dominate all other 
terms so v(t) --* oo and u(t) --* 1 for the path of each cohort, and the influence of the 
perturbation of the proliferative potential v would disappear. This disappearance 
of the effects of the fluctuations in the t - ti, --* oo limit does not occur in the 
physiologically realistic case when maturation terminates at x = 1. Therefore we 
next calculate the mean cell number and its variance when x = 1. 

In reality the maturation and proliferation processes within a given cohort  
terminate at t s with a maturity level of x = 1 and a corresponding cell number 
u(t, 1) give by 

u(t, 1) = (18) 

1 + u i , ( t - - ~ ) [ e V / C e W ' t ' - - 1 ]  

From the assumptions concerning the stochastic process w, the mean value of u is 
given by 

1 f~w - -  u(t,  1 )dw (19) (u(t, 1)) = 2Aw _j~ 

where u(t, 1) is given by (18). A straightforward integration gives 

(u(t, 1)> = ~ I n / 1  + v°f(t)e-~J 

v°s(t) (Aw) 2 v}(t)(1 + v°r(t)) 
- l+v°r ( t  - ~ )  + ~ [ l+v)( t ) ]  3 

where v°i(t) = v°(t, 1) is the final value of v in the absence of  noise, 

+ (9((Aw)4), (20) 

 21, 

The first term in the second line of (20) is the final value u°i(t) without noise and the 
second term is a shift of the mean value due to the effect of the noise. This shift is 
positive if the noiseless solution v } (t) < 1, corresponding.to a noiseless cell number 
u°s(t) < ½. Otherwise, it is negative. 

The variance 2 a.(t ,  1) = (u2(t, 1)) - (u(t, 1)) 2 can be calculated in a similar 
manner. First we obtain 

{ , 1 } 
+--~--1 1 1 v°r-(t)e - ~  (uZ(t, 1)) = (u(t, 1)) 2Aw + v°y(t)e A~ + (22) 
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and after an expansion 

~2(t, 1) - (Aw)~2 [v~(t)]2 + (9((Aw)4). (23) 
3 [1 + v~(t)] 4 

The variance aZ(t ,  1) has a maximum value o f ( A w ) 2 / 4 8  for v°y(t) = 1 corresponding 
to u°f(t) = ½. Hereafter, we assume that the values ui,( t)  - u(t,  x = 0) which deter- 
mine the boundary value problem are constant at least over time intervals which 
are long compared to the lifetime c-1, so 

ui, (24) 
IAin = "1 - -  blin 

is also constant. 
In this circumstance, by (17) the cell numbers u(t, x) and thus also u(t ,  1) depend 

on time t only through the stochastic process w(t).  Without noise, the solution 
would be stationary and therefore u~ and v~ in (20) through (23) are constant: 

O V f : Vin ev/c 

Vin ev/c Uin ev/c 

u°Y = 1 + vi, e v/c - 1 + u i , [ e  ~/c --  1] " (25) 

To summarize the results of this section, it is sufficient to highlight the central 
results embodied in (20) and (23) which give, respectively, the mean and variance of 
the cell numbers leaving the replicating population. These are of practical import- 
ance since they are potentially observable quantities, and in the next section we 
consider how these might vary in two physiological circumstances. 

5 Physiological and clinical implications 

To examine the physiological implications of the results of the previous section, we 
assume that in the normal state the physiological system utilizes its proliferative 
power in an optimal fashion defined below. We consider the situation correspond- 
ing to cohorts who start their maturation at x = 0 with the same incoming cell 
number ui, independent of the initial time ti.. Thus all of these cohorts have the 
same behaviour between the initial time ti, and the final time t f ,  described by 
Verhulst growth according to equation (16). For simplicity we use a representative 
Verhulst curve such that 

(cf. Fig. 3a). Thus 
e vt 

u(t)  - 1 + e ~ "  (26) 

We say that the physiological system uses its proliferative potentials in an optimal 
way if, for the representative choice (26), the time interval t f  - ti.  is symmetric with 
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Fig. 3. Growth of a cohort: a under 
normal conditions in which the 
maximal proliferative power is 
utilized; b when, due to treatment, 
the initial cell number ui. has 
decreased and v is unchanged; and 
e when the proliferative potential 
v has been decreased by treatment 
but ui. is normal 

respect  to t M  = 0. This  a s sumpt ion  impl ies  tha t  

~ 2~ 
t~ .  - , t :  = - ,  t f  - q .  = - - ,  (27) 

V V V 

where  a is an  unde t e rmined  p a r a m e t e r  which descr ibes  the lifetime in te rms of  the 
prol i fera t ive  po ten t i a l  v. Since t f  - t i .  = c - 1  we have 

V 
- = 2 ~ .  ( 2 8 )  
C 

I t  follows f rom this a s sump t ion  tha t  the ini t ia l  cell n u m b e r  ui. of  a coho r t  is 

1 
ui. - 1 + e ~ (29) 
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Fig. 4. The graph of h(ct) (32) 
characterizing the relative strength of the 
final variance as a function of the lifetime 
parameter 

since vi, = e - ' .  Wi thou t  noise, the final cell n u m b e r  u} is 

1 
u} = 1 - ui, 1 + e -~ (30) 

O ~ e ~,  and v I 
N o w  consider the effects of  the noise. With  noise, the Verhulst  curve is 

s tochastical ly modif ied and  thus u¢ is statistically distributed. I t  has a slightly 
shifted mean  value given by 

(Aw) 2 e ' (1 - e ~) 
uf  = u )  + T (1 + e~) 3 " (31) 

T o  illustrate this effect, for e = 1 we have 

o o _ 0.73 ui, - 0.27, v /  - 2.7,  u r 

and the second te rm in (31) is 0.09 (Aw)Z/6. Further ,  the final cell n u m b e r  has 
a var iance given by 

(Aw)2 e2~ (Aw)2 h(c~) (32) 

a }  - 3 (1 + e~) * - -  4 ~ -  ' 

(cf. Fig. 4). Thus  for sufficiently long lifetimes t I - t~, = 2e/v we will see negligible 
f luctuat ions in the cell numbers  in the final state. 

Us ing  this model  to consider  the potent ia l  influences of  chemotherapy ,  
rad io therapy,  and /o r  bone  m a r r o w  t ransplan t  is quite instructive. Thus  let us 
assume that  with these t rea tments  the cell replicat ion process is influenced in such 
a way that  either: 

(1)  The initial cell density is decreased; or 
(2)  The proliferative potent ia l  v is decreased. 

We consider  bo th  of these possibilities within the context  of  our  previous analysis 
and discussion. 

5.1 Decrease in initial cell number 

If  the initial cell n u m b e r  ul, is decreased and the prol i ferat ion potent ia l  v remains  
unchanged,  then after the finite lifetime a decreased final cell n u m b e r  u~ is also the 
result according to (25) (see also Fig. 3b). Moreover ,  the var iance cr} of the 
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fluctuations about  u~ also changes, and with decreasing u~ the variance increases 
as a consequence of  the treatment.  The extreme case, in which the variance is 
maximal,  occurs when u~ = ½ corresponding  1 to v~ = 1, and a maximal  variance of 
(Aw)2/48. This is to be compared  with the values presented in Fig. 4 where we have 
such smaller values of  the variance in the untreated system for sufficiently large 
~, e.g. h(~ = 2) = 0.024. 

5.2 Decreased proliferative potential 

If  the proliferative potential  v is decreased with ui, unchanged,  then there will be 
a decreased final cell number  u~ (see Fig. 3c) which is once again associated with an 
increased variance a}  of the fluctuations about  u~. In  the worst  case when u~ - ½, 
cor responding  to v~ = 1, the variance can again reach its maximal  value of  
(Aw)Z/48. 
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