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We consider the dynamics of a multistate age-structured population as a non-
autonomous system of partial differential equations. This system generates a
positive process on a space of bounded functions. We give sufficient conditions
for asymptotic similarity of this process, i.e., we show when the asymptotic
behaviour of the process at 1 — = is independent of the initial distribution. © 1994
Academic Press, Inc.

1. INTRODUCTION

Mathematical models of age-structured populations have had a long
history starting with the work of McKendrick {17] on epidemics, the von
Foerster [26] considerations of cell kinetics, and Keyfitz’s {11] work on
demography. Subsequently, considerations of the dynamics of age-struc-
tured populations have received substantial and sophisticated treatment
in a variety of fields [see 1, 3-8, 13, 19-21, 23-25]. Metz and Diekmann
(18] provide an especially thorough and readable survey.

Here we examine the limiting growth characteristics of a multistate age-
structured population of the type considered by Inaba [8]. Specifically, we
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consider a population of individuals consisting of n subtypes such that the
vector of population numbers at time ¢ and age a is given by

pl(ay t)

pAa, )

pla, t) =: (1.1a)

pala, )

These n subtypes can be thought of as, e.g., n phenotypes or n demo-
graphically distinct populations or with n = 2 a two sex population, erc.
The interpretation is clearly quite flexible.

Under the assumption that units of these subpopulations age with uni-
tary velocity, then the evolution of the vector p through (a, ¢) space is
governed by the first-order partial differential equation (transport equa-
tion)

apla, t) dp(a,t)

+ = a, t a, t s llb

51 Py Qla, Npla, 1) (1.1b)

wherein Q is the instantaneous (1 X n) transition rate matrix. (We make

these specifications more precise in the next section.) To complete the

formulation of this problem requires the specification of a boundary con-
dition

p(0, 1) = jo M(a, Hp(a, 1) da, (1.2)

where M is the (n X n) reproductive rate matrix, and an initial condition
pla, t = 0) = p(a). (1.3)

Inaba [8] has exploited a semigroup approach to the study of the asymp-
totic properties of the system (1.1)—(1.3) in the special case where the
death and reproductive matrices Q and M are autonomous, i.e., indepen-
dent of time t. In this paper Inaba has shown strong ergodicity of this
system, i.e., the exponential growth of p(a, f) to some distribution which
does not depend on the initial condition. This property is also called
exponential stationarity (see [14, 22]). When the matrices Q and M de-
pend on time, then the phenomenon that the iong-run behaviour of the age
distribution is independent of the initial date is called weak ergodicity (see
Lopez [16]). In [9] Inaba has given a sufficient condition for weak ergodic-
ity of p(a, t). His method is based on the Birkhoff [2] lattice-theoretic
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approach to muitiplicative processes. Another method of investigation of
nonautonomous populations is given in the recent paper of Inaba [10].
The multiplicative process corresponding to system (1.1)-(1.3) can be
obtained by perturbing some semigroup, which allows one to prove the
strong ergodic theorem for this system.

In the present paper we prove a theorem on weak ergodicity of non-
autonomous populations for a large class of matrices Q and M. This
theorem generalizes Inaba’s results concerning weak ergodicity [9] and
strong ergodicity {8]. The method of proof is based on ideas similar to
Inaba [9]. However, we restrict our investigation to a space of real-valued
bounded functions with the supremum norm. This allows us to omit the
lattice-theoretic apparatus used in [9)].

The plan of the paper is as follows. In Section 2 we precisely formulate
the problem posed by the system (1.1)-(1.3), while Section 3 introduces
the property of asymptotic similarity. The notion of asymptotic similarity
describes the same feature of the multiplicative process as weak ergodic-
ity, but in our case it is more convenient. Section 4 presents our main
result (Theorem 2) on the growth properties of the system, and this result
is proved in Section 5. Finally, Section 6 considers both autonomous and
nonautonomous growth properties using Theorem 2. In particular, if the
matrices @ and M are periodic with respect to ¢, we show that the process
exhibits behaviour similar to the exponential growth observed in the au-
tonomous case.

2. FORMULATION OF THE PROBLEM AS AN INTEGRAL EQUATION

We consider the following system of equations:

0 ad
(5; + 55) pla, 1) = Oa, Hp(a, 1) 2.1)
p(0, 1) = fo M(a, Hp(a, 1) da. 2.2)

Remember that Q is the transition rate matrix while M is the reproductive
rate matrix. We assume that

(1) the elements g;(a, t) and my(a, 1), 1 =i, = n, of the matrices Q
and M are continuous bounded functions;

) myfa, ) =0for 1 =i,j = n, so the average number of progeny
of type i produced by individuals of type j at (a, #) is nonnegative;

(3) gyla, 1) = 0 fori # j, so the instantaneous transition from type j
to type i at (a, t) is nonnegative; and
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4) qila, ) = —pda, 1) ~ ;4 q;la, 1), where uia, 1) = 0. Therefore,
the death rate of type i at (a, t) is nonpositive.

Formally, the matrices Q and M are defined for a = 0 and ¢ = 0, but for
technical reasons we assume that Q and M are defined and continuous for
all real numbers a and ¢. Moreover, my(a, t) = 0 for ¢ = a,, where a,
denotes the maximum reproductive age. We assume that the function
pla, 1) is given for t = 0 by (1.3), p(a, 0) = ¢(a).

Now let a and r be given real numbers. The survival rate matrix
L(h; a, 1) is defined as the solution of the matrix differential equation

-dcitL(h; a, t) = Qa + h, t + h)L(h; a, 1), L(O;a,1)=1, (2.3)

where [ denotes the (n X n) identity matrix. From the definition of
L(h; a, 1) it follows that the elements of the matrix L(h; a, t) are continu-
ous functions of a, ¢, and 4; all elements of L(#A; a, 1) are nonnegative (8,
Lemma 1); and for all real numbers a, 1, A, and h; we have

Lhi + h;a,t) =Lhg;a+ h,t + hLh; a, ). (2.4)

Integrating Eq. (2.1) along characteristics, the solution of Eq. (2.1) is
given by the formula

L(a;0,t — a)p0, t — a) fort = a

pla, 1) = { (2.5)
Lit;a -1, 0)pla—10) fort < a.

Substituting (2.5) into (2.2) we obtain
p(0. 1) = jo Ma. )L(a: 0,  — a)p(0. { ~ a) da

+ f M(a, DL(t; a — . O)p(a ~ 1, 0) da.

According to (2.4),
Lit;a—t,00=L0a;0,t —a)L(t —a;a —t,0). 2.6)

Further, if we set K(a, 1) = M(a, t)L{(a; 0, t — a) and w(r) =
L(=r; r, 0)p(r, 0), then

p(0, 1) = jﬂ K(a, )p(©, 1 — a) da + f K(a, hwia — 1) da.
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The matrix L{a; 0, t — a) is the solution of (2.3) on the finite interval [0,
a,} (remember that «, is the maximum reproductive age), so all elements of
this matrix are bounded and continuous. Hence all elements &; of the
matrix K are bounded continuous nonnegative functions.

The function p(a, 1) is given for 1 = 0, and therefore the function w(r) is
defined for r = 0. Now substituting ®(t) = w(—1) for t < 0 and ®d(1) =
p(0, 1) for 1 = 0, we obtain

&) = jﬂ K(a, Dt - a) da. Q.7
Since %; ;j(a, 1) = 0 for a = a,, Eq. (2.7) is equivalent to
d(1) = fo K(a, ®( — a) da. (2.8)

If we assume that the function @ is given on the interval [ty — «,, o), then
Eq. (2.8) has a unique solution ®:[t;, <) — R” in the class of locally
bounded functions. Moreover, if forevery i € {1, ..., n} and w € [t; — a,,
ty) we have ®(w) = 0, then ®(r) = O foreveryi €{l,...,n}andr = ¢,. In
our case the function & is given for f = 0 and all coordinates @, are
nonnegative for ¢ < 0, which implies that Eq. (2.8) has a unique nonnega-
tive solution for ¢+ > 0.

3. PROCESSES GENERATED BY THE INTEGRAL EQUATION (2.8)

Let D be an arbitrary nonempty set and B(D) be the space of all real-
valued bounded functions defined on D with the norm || f|| = supyep|f(x)|.
Let X be an arbitrary fixed linear subspace of B(D) and

X, ={feXx: irelgf(x) > 0}.

We assume that X, is a nonempty set.
A linear operator P: X — X is called positive if P(X.) C X.. A family
{P(t, 5)}=s=p Of linear operators P(r, s): X — X is called a process if

(i) P(s,s) = Id (Id = Identity); and
(i) PG, nPr,s)f=Pi, s)fforfEXandt=r=5=0.
A process {P} will be called positive if, for every 1t = 5 = 0 the operator

P(t, 5) is positive. Further, the process {P} is said to be eventually uni-
formly positive if {P} is a positive process and there is a subset X, C X,



ASYMPTOTIC STABILITY AND MALTHUSIAN GROWTH 553

dense in X, as well as a constant & > 0 such that for every f € X,and s =
0 the inequality

P(t, s)f .

Pa oA~ (3.1)

holds for sufficiently large ¢ (say t = 1y = to(f. 5)).
The process {P} is asymptotically similar if for every fE X, g € X,
and s = 0 there is a constant ¢ = ¢(f, g, s) such that

(3.2)

P, s)f “ _ 0
= P2, syg ~ N

The process {P} is weakly ergodic if for every f, g € X, and s = 0, we
have

lim supep(Pt, 5)f(x)/P(t, 5)g(x)) _
= Infeep(P(2, $)fF(X)P(2, 5)g(x))

From asymptotic similarity weak ergodicity follows immediately. But in
fact, according to [9, Proposition 3.2], both of these notions are equiva-
lent.

In our study of systems described by (2.8), we will use the following
theorem.

THEOREM 1. Every eventually uniformly positive process has the
property of asymptotic similarity.

A simple proof of theorem 1 is given in [15], but this theorem also
follows from the results of Inaba [9].

In the case considered here, D = [—a,, 0) X {1, ..., n} and X is the set of
all bounded measurabie functions f: D — R. The operators P(¢, s) on X are
defined by

(P(t, s)Nw, k) = Ot + w) forw € [—a,,0 andr = 0,
where @ is the solution of (2.8) satisfying
Dis + w) = flw, k) for w € [—a,, 0). (3.3)

The semigroup properties (i) and (ii) of {P} follow immediately from the
uniqueness of the solutions of (2.8).
If we assume that for every ¢t > 0 and [ € {l, ..., n} there exist a €
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(t — a,, ) and j € {1, ..., n} such that £y (a, 1) > 0, then from Eq. (2.8) it
follows that the process {P} is positive.

4. ASYMPTOTIC SIMILARITY

Now we formulate our main theorem.

THEOREM 2. Assume that there exist continuous nonnegative
bounded functions by [0, ®)— [0, x), | <i,j < n, satisfying the following
conditions:

(@) byla) = kyla, 1) for every a € [0, a,] and t = 0,
(b) the matrix [cj], where ¢; = f o bila) da, is indecomposable.

Then the process {P} generated by Eq. (2.8) has the property of asymp-
totic similarity.

Remark 1. A nonnegative n X n matrix C = [¢;] is called decompos-
able if there exist two subsets G and H of integers J = {l, 2, ..., n} such
that GN H=J, GUH=J, and¢; =0fori € G,j € H. A nonnegative
matrix C = [¢y] is called indecomposable if it is not decomposable and is
not the zero matrix of order one. A matrix C is indecomposable if and
onlyifforevery 1 =i < nand | =j < nthere exists a sequence or chain of
integers 1 < iy, ..., i, = nsuch that i, =i, i, = j, and

ioﬁci\i: o cim 1im > 0. (4])

From condition (b) it follows that forevery 1 =i < nand | = < n there
exists a sequence of integers 1 < iy, ..., i, = n and a sequence of real
numbers ay, ..., a, C [0, a,] such that i, = {, i,, = J, and

biqf|(al)bi|iz(a2) - b,

ia (@) > 0. 4.2)
Condition (a) in conjunction with (4.2) implies that the process {P} is
positive.

Remark 2. The assumptions of (a) and (b) of Theorem 2 can be inter-
preted biologically in the following way. For each i and j, the individuals
born in the subtype i have descendants in the subtype j.

Remark 3. In the paper of Inaba [9] the property of asymptotic simi-
larity was proved under some stronger assumption. Namely, the follow-
ing two conditions were assumed:
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(1) there exist numbers v, y:, and a primitive matrix N = 0 such
that

K(a, ) = N  forall(a, 1) € [y, v2] x [0, ),

(2) the elements of the matrix §(a, ) defined by

S@.n = ["M@+p.1+ plipia, 0 dp
satisfy the condition
max sg(a, t) = o min sg(a, 1)

for (a, 1) € [0, a,] X [0, ), | =j =< n, and some w > 0.

We recall that a nonnegative matrix A is primitive if some power of A is
strictly positive. It is well known that a primitive matrix is indecompos-
able, but not vice versa.

5. PROOF OF THEOREM 2
In the proof of Theorem 2 we use the following notation:

(1) if 10, =) — R is a locally integrable function then

It = [ lrwide  foro=a<b <

(2) iff:{0, ®) — R”is a locally integrable function then

Il =3 [ ol dr forosa<h<e

The proof is based on two lemmas.

LEMMA 1. Let ® be a solution of (2.8) satisfying (3.3), where f € X,
and s > 0. Then there exist positive constants ty, p, and I independent of
f, such that fort = ty + sand j = 1, ..., n we have

d1) = TP\ -, - (5.1)
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Proof. SetZ={ijl=<sisnl=j=nlandZ ={i j) € Z:by
# 0}. Then there is an o € (0, 1) and & € (0, 1) such that for every (i, j) €
Z' there exists an interval

Ay = [dy, d; + h} C [0, a]

with by(r) = afor7 € A;. Let I = (iy, iy, ..., Iy) be a chain which connects
type i with type j. The letter & will be called the length of the chain 1.

From the definition of ® in Eq. 2.8 and from condition (a) it follows
immediately that for t = a (3 — 1) + s we have

a,

d,(1) = fu f: Gt — 7 =~ T)bT) by, i (TeddTy - dTy

Za"f Aj (D,‘(I_T[—"“‘T,))dT]"‘dTg,

where

A:Ar}.i.X”'XA

iy 1ig*
By an inductive argument it is easy to verify that

-1 s
@) = a (ﬁ) [ " @ - day - 1) dr, (5.2)

3 hid—1)73

where d (I) = d;;, + -+ + d;, ,;,. Inequality (5.2) can be rewritten in the
form

h 91 _ _ _
@0 = ot (&) Joyiantosn, (5.3)

Denote by /(i) a chain which connects type i with type 1 and by I'(i) a
chain which connects type 1 with type i. Let ¥ be the length of /({) and &/
be the length of 1'(i). Type i can be connected with type j by means of a
long chain 1(i, j) which contains the chain /(i), x chains /(1), and the chain
I'(j). Then d(1(i, j)) = d(I(i)) + xd(I(1)) + d(I'({)) and the length of I(i, )
is 9; + x3 + ¥;. We set

E=max {9, + ;1 =i, j=n}

and
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n =max {dd) + dll'()): 1 =i, j=<n}

Then
= daton - 20 P <~ caaqy - on D
and
¢~ dU, ) ~ h 3’91—;—2 =7 — xdU() -5 — h ‘ii—f-;i"—‘—’.
Take an x sufficiently large such that
h @Lf—l—) - h g ~n = 3a,

and set

p=xdlI(l)) +n +h Mi—'———g
Then

t — dU, ) ~ Zh*(i;——l—) =t-p-—3a,
and
t ~dlu, ) - h@‘lgll—lz t—p.
From inequality (5.3) it follows that
p\Poet _
o= et (B oL, forizas,

where #y = p + 2a,. Finally defining

_ _l. (%)PMI*.F
‘y n 3 A
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we obtain

O = T @[0, fori=1+s,

t—p~3a,
and the lemma is proved. |

The second lemma required for the proof of Theorem 2 is the following.

LEMMA 2. Let ® be a function and p be the constant from Lemma 1.
Then there exist positive constants t, and L, independent of @, such that

|P(n)| = L P02, fort =1, (5.4)

t~p—2a,

Proof. Since the functions k{a, ¢) are bounded there exists a positive
constant A such that

kj(a, 1) = M foril=i,j=n,a€{0,a], and s = 0.

This implies that
[D(2)] < Mn ﬁw |D(7)|dT fort = a,.

Let u = s be given. Then for 1 = 1 we have

D] = Mn J'“w [®(r)ldr + Mn J: |D(7)|dr.

o

From Gronwall’s inequality it follows that
()| = Mn f *o@)dretntw  fort = u,
Setu=t—p— a,and L = Mnet"P*4) Then

-p—d

@l =L |77 oldr = L) 9775,

fort =t =p+ a, + 5. Thus Lemma 2 is proved. |
With these two results, we can prove Theorem 2.

Proof of Theorem 2. Since (P(t, s)f)w, k) = O (w + 1), from Lemma |
it follows that

(P(t, $)fNw, ky = T|| |@] ||ITeP = NN

t+w-p-3a, t~p—3a,
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for sufficiently large . From Lemma 2 we obtain

P, s)fll = L maxm @] 125 < ] ] in=e

wEla. 1—p—2a,tw t—=p—3a,
for t = ¢;. Thus for sufficiently large ¢ we have

(P, $)fNw, k) _
P, oA =7

[ ) ( . )

6. ASYMPTOTIC SIMILARITY IN AUTONOMOUS AND
NONAUTONOMOUS SITUATIONS

In this section we characterize the asymptotic behaviour of the popula-
tion in two cases:

(1) when the matrices ¢ and M are independent of ¢ (the autono-
mous case); and

(2) when these matrices are periodic with respect to ¢ (the non-
autonomous case).

Theorems covering these two situations are preceded by the following
proposition which has a general character and is, simultaneously, auxil-
iary to Theorem 2.

PROPOSITION 1. Assume that the elements of the matrices Q and M
satisfy all of the assumptions of Theorem \. Let p(a, t) be a solution of the
system (2.1), (2.2) such that inf{p(a, 0):a € [0, a,]} > 0. Then for every
solution p(a, t) of the system (2.1), (2.2) there exists ¢ € R such that

pla, 1)
pi(a’ [)

lim cH =0 fori € {1, ..., n}, 6.1)

—-x

and the process generated by (2.1), (2.2) is asymptotically similar.

Proof. Let ® and ® be the solutions of (2.8) corresponding to p and p
and let g(w, k) = ®(w) and f(w, k) = Pw) for w € (—a,,0)and k € {1, ...,
n}. Then @t + w) = (P(1, 0)glw, k) and Or + w) = (P, 0} Nw, k).
Thus, according to Theorem 2, there exists ¢ € R such that

Ot + w) _
Ot + w)

fim =0 fori € {1, ..., n}.

1—%

C

This and (2.5) implies (6.1). |
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6.1. The Autonomous Case

If the matrices Q and M are independent of time, then a result of [§]
follows directly. Namely, we have the following.

PROPOSITION 2. Let k= o ki{a)da and assume that the matrix K* =
(k] is indecomposable. Then there exist a vector v € R" and a real
constant X such that for every solution of (2.1} and (2.2) we have

lim |le *p(a, 1) — ce ™ ™L(a)v| = 0

for some positive constant ¢. The matrix L(a) satisfies the equation
L'(a) = Q(a)L(a) with the initial condition L(0) = I, and the vector v
and the constant A satisfy the equation

N
U-—jﬂ e MK(t)v dr.

Proof. 1f the matrices Q and M do not depend on ¢, then neither does
the matrix K so K(a) = M(a)L(a), where the matrix L (a) is the solution of
the equation L’(a) = Q(a)L(a) with the initial condition L(0) = [. If K
does not depend on ¢ we also have P(z, s) = P(t — s, 0), and setting P, =
P(z, 0) we obtain a semigroup {P} (i.e., Py=Ildand P,,, = P,e P, fort =0
and s = 0).

Let fbe a function from X. Then P, f € X for h > 0. From Theorem 2 it
follows that there is a function ¢ : [0, ) — R such that

P{(th)__)

Py W

uniformly on D,
Let®:[—a,, =) — R" be a function such that P, f(w) = $(t + w). Then
for every kK = 1, ..., n we have

bt + h) _

lim = c¢(h).

- D)
From (5.5) it follows that
y=cth) = l/y for h € [0, 4,].

This implies that the function

z(h) = log c¢(h)
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is bounded at 0. Moreover, if we take A, > 0 and 4. > 0 then we have
clhy + ha) = clh)elhy).
This implies that the function z satisfies Cauchy's equation
Z(hy + ha) = z(hy) + z(ha).

It is known [12] that all sclutions of Cauchy’s equation bounded at Q are of
the form z(t) = Xt where A € R. From this it follows that

¢.)‘“ + h)__, e)\h
(0 '

Now set v(t) = ®(1)/|®(1)|. Then [v(r)] = 1 and v(1) = y/n for sufficiently
large t. Substituting v into Eq. (2.8) we obtain

_ fa @ - 1) 3
vt = JO W K(n)vlt — 7)dr. (6.3)

Hence
o(1) = jﬂ e NK (r)v(t)dr

7 [ — 1)l _ T]
+ fo [W — e M1 K(rv(dr

7P = 7))
" f(] Tle K@t = 1) = ).

Both integrands in the second and third integrals are bounded and tend to
0 when 1 — = for every 7 € [0, ¢,]. Thus Eq. (6.3) can be rewritten in the
form

v(t) = (f: e“)‘TK(T)dT) v(t) + w(o),

where w(f) — 0 when t — =,

Since [v(r)] = 1 for t > 0, we can choose a sequence 1, — = and a vector
v € R" such that v(¢,) — v. The vector v is positive (v, > 0 fork = 1, ...,
n), lv| = 1, and satisfies the equation

v = fo MK (t)v dr. (6.4)
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From (6.4) it follows that the function ®(r) = ¢*v is a solution of (2.8).
This and (2.5) imply that the function e*"~“L(a)v is a solution of (2.1) and
(2.2). Proposition 1 now gives (6.2). |

The biological interpretation of this theorem is interesting. From Propo-
sition 2 it follows that if the population growth and transition laws (M and
@) are autonomous, then the population numbers grow almost exponen-
tially with a Malthusian parameter A which is independent of the initial
conditions. Further, in the asymptotic limit the density of the population
age and type distribution function does not depend on the initial distribu-
tion.

These properties of populations with time-independent growth and
death laws are well-known. What is a bit surprising is that a time-depen-
dent (nonautonomous) population can display some of the same features.
Thus, from Proposition 1 it follows that the distribution function of the
population is asymptotically independent on the initial function. How-
ever, in this nonautonomous case the population will, in general, not grow
exponentially since we can control the population growth by altering the
matrices () and M.

6.2. The Nonautonomous Case

Now we consider the alternative case in which the matrices ¢ and M
are periodic with respect to t. The major result in this instance is given in
the following.

PROPOSITION 3. Assume there exists a T > 0 such that for every u €
(0, a,] and t = 0 we have

Qla, t + T) = Qla, t) and M(a,t +T) = M(a, ).

Moreover, we assume that the elements of the matrices Q and M have
continuous bounded partial derivatives and that all conditions of Theo-
rem 2 are fulfilled. Then there exists a strictly positive solution of the
problem (2.1), (2.2) satisfying the condition

pla,t + T)=apla,t) fora€l0,q4],t=0,

where « is a positive constant. Moreover, for every solution pla, t) of
(2.1), (2.2) there exists ¢ € R such that

pan [, o9

.
ath pla,

1

Proof. From the assumption that Q(a, t + T) = Q(a, t) it follows that
L(h;a,t + T) = L(h; a, t) for every a, t, h and consequently
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Ka,t+T)=Kla,t) fora € [0, a], t = 0.
This implies that the process P satisfies
P+ T,s+T)=Pl,s) fort =s=0. (6.6)

Let & be a strictly positive solution of (2.8). Then from (5.5) it follows that
there exists y € (0, 1) such that for sufficiently large ¢ (say r = fo) we have

q)l{t + wl) l _ . .
Y = ij(t T o) = ¥ w,w €[—a,,0],i,jE {1, N n}. (6.7)

Let
|D(1)] = |®y(1)] + -+ + |D(0)]
and

&t + T)

v, (1) = —’—(’W fort€[—a,,T],v=(a + IO)/T.

The relation K(a, t + T) = K(a, t) implies that
0() = [ K(a, vt = a)da  for 1 € 10, T). (6.8)

All of the v, are continuous functions from [—a,, T] to R” and from (6.7) it
follows that the sequence {v,} is bounded in the space C([—a,, T], R").
We next show that the sequence {v,} is equicontinuous. Since

&'(1) = K0, nd(t) — K(a,, N®@ — a,) + fiu %K(z — 5, HP(s)ds,

there exists a constant 8 such that for every t+ = (0 we have
|P'(1)] = B sup{|®(s)|:s € [1, t — a/l}.
This and (6.7) imply that

|®'(n) = g |D(1)] fort = 1,

and consequently
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win) = & o).
Y

Hence the sequence {v,} is bounded and equicontinuous, and by the Ar-
zeli-Ascoli theorem, the sequence {v,} contains a subsequence {v,.}
which converges to some v € C{{—a,, T], R"). The function v is strictly
positive and satisfies Eq. (6.8) for ¢t € [0, T].

Next we show there exists e > 0 such that for every t € {—a,, 0] we
have v{t + T) = auv(?). Indeed, let

flw, k) = dyw) forw € [—a,, 0], k € {1, ..., n}.
and g = P(T, 0)f. Then from (6.6) it follows that
P+ T,0f=Put+T NPT, 0 f= P OPT, 0)f= P, 0)g.

According to Theorem 2 there exists « > 0 such that

P, 0)g .
P(t,O)f—)a if 1t = =,
This implies
Ot + .
*’%@—Qﬁa ift— = forke€l{l, .., n}
From this it follows that
q)k(f+VT+T)__) if - x
oG ian « if v
and consequently
Uu,k(’ + T) .
—t———— if v — x,
vv.k(t)

The last condition implies that v(t + T) = av(t) for t € [—a,, 0].

Finally we extend the function v on the set [T, =) by setting v(z) =
a™v(t — nT) fort € [nT, (n + 1)T). It is easy to check that v satisfies Eq.
(2.8) for t = 0 and v(t + T) = av(z) for t = 0. This implies that

pla, t) = L(a;0,t — a)p(t — a)
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satisfies the system (2.1) and (2.2) and p(a, t + T) = ap(a, T) for every
a € [—a,, 0] and 7 = 0. Condition (6.5) follows immediately from Proposi-
tion 1. This finishes the proof of the proposition. |

The interpretation of this result is surprising. Namely, if the matrices Q
and M are periodic then every solution of (2.1), (2.2) asymptotically ap-
proaches a solution p which has the property p(a, t + T) = aP(a, t). This
result is very similar to the exponential growth found in the autonomous
case, because from this it follows that p(a, t + nT) = a"p(a, 1).
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