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This paper discusses the effects of diffusively coupling two identical one dimensional maps. Attention is focused on 
situations where the local (isolated) maps are statistically stable, but where the coupled system is not. A biologically 
motivated map and the quadratic map are numericatly shown to display this behavior. The piecewise linear tent 
map is then investigated analytically, and we give a phase diagram of this system which displays the location of 
nonequilibrium phase transitions. It is conjectured that the diffusive coupling of two chaotic but statistically stable 
maps (i.e. with asymptotically stable Perron-Frobenius operators) can yield a two-dimensional system which is not 
statistically stable, whose associated Perron-Frohenius operator is asymptotically periodic. 

1. Introduction 

In this paper, we examine phase transitions (defined in section 1.1 below) in two-dimensional maps 
obtained by diffusively coupling two identical one-dimensional chaotic maps. We discuss situations 
in which the statistical behavior of  the decoupled maps is qualitatively different from that of  the cou- 
pled system. The local maps are statistically stable, they possess an absolutely continuous invariant 
measure, and physical observables (the Boltzmann-Gibbs entropy, the mean activity, the autocorre- 
lation function, etc .... ) converge to a constant value in the asymptotic regime. The coupled maps, 
however, cycle statistically: the invariant measure is not reached asymptotically for almost all initial 
preparations, but instead a periodic cycle in density-space is reached (see the definitions of  section 
1.2). Physical observables in the latter situation are also seen to cycle periodically in the asymptotic 
regime, so that the thermodynamic equilibrium is in fact a sequence of metastable states visited pe- 
riodically. Three systems are used to illustrate our discussion. The first is a biologically motivated 
map which is obtained from a model of  neural activity framed as a differential delay equation. The 
other two are the celebrated quadratic map, and the generalized tent map, respectively. The latter is 
investigated analytically. 

This work is motivated in part by the many investigations of coupled map systems known as coupled 
map lattices (CML's) [ 19,20 ], which are known to display a wide range of dynamical behaviors [ 5-7 ]. 
Statistical cycling has been numerically reported in the literature, mostly in cellular automata schemes 
[ 5,16] (although there is mention of numerical observations of this behavior in coupled map lattices 
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[4] ). Houlrik's investigation of periodic symbolic orbits in two coupled Chatd-Manneville maps 
[ 14 ] indicates that there is a underlying statistical periodicity. Previous investigations of two coupled 
maps, from different perspectives, include the works of Yamada and Fujisaka [32 ] (and references 
therein), Yuan et al. [ 18 ], Froyland [8 ] but these do not address the periodic statistical behavior 
reported here. The most striking observation is the possibility that large networks of elements with 
simple dynamics can display stable periodic statistical behavior [4,16]. There has been speculation in 
the literature concerning the possibility that such behavior be asymptotically observable in physical 
systems [ 16,27 ]. The results presented here show that statistical cycling can be explained analytically 
in a simplistic model, as be expected in more general settings: they clearly indicate the existence of 
complicated states of thermodynamic equilibria in the simplest CML (i.e. two elements). Discussion 
of this behavior in larger systems will be presented elsewhere, where we give sufficient analytic criteria 
for statistical cycling in classes of arbitrarily large (but finite) coupled map lattices [24]. 

In section 1.1, we introduce the three systems which will be discussed in this paper, as well as some of 
the ideas concerning the relation between phase space densities and thermodynamic states. In section 
1.2, we formally define phase space densities, asymptotic stability and asymptotic periodicity. 

In section 2. I, we relate discrete time maps to differential delay equations, and statistical cycling is 
discussed in section 2.2 for a biologically motivated map obtained from a differential delay equation. 
This behavior is studied numerically for the quadratic map in section 2.3. 

In section 3, a detailed analytic and numerical investigation of the dynamics of two coupled gener- 
alized hat maps is presented. A phase diagram giving the loci in parameter space where phase transi- 
tions occur is described analytically in section 3.1, while section 3.2 illustrates the temporal evolution 
of a statistical quantifier, the Boltzmann-Gibbs entropy, when the underlying system is statistically 
periodic. 

Section 4 presents a brief summary, and several conjectures concerning the Perron-Frobenius op- 
erator associated with the two-dimensional map are put forward. 

1.1. Three simple maps 

The two-dimensional maps considered here are constructed by diffusively coupling two one- 
dimensional maps: 

t ~ o ( x , y )  = (xl ,yl) ,  with {Xl = ( 1 - e ) S ( x ) + e S ( y ) ,  
Yl = ( 1 - e ) S ( y ) + e S ( x ) ,  e E  [0,1], (1) 

where S denotes the local map. In this paper, we focus on three systems. One is the tent map rescaled 
so that it is onto [0, 1 ] independent of the parameter a: 

a z + 2 - a ,  a n d a  6 (1,2]. (2) i f  z ~ [O, (a - 1 ) / a ]  
S ( z )  = a ( 1 - z ) ,  i f z E  [ ( a - 1 ) / a ,  1] 

Another is obtained in section 2.1 by taking a singular perturbation limit on a differential delay 
equation to obtain 

az  
S ( z )  - 1 + z n' a, n E R. (3) 

The third map is the celebrated quadratic map 
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S(z)  = a z ( 1 - z ) ,  aE (1,4], (4) 

whose behavior reproduces that of the more realistic system (3), suggesting that the behavior discussed 
here may be generic in systems with a locally quadratic maximum. 

Depending on the system's location in parameter space, the map ( l ) with nonlinearities (2), (3) or 
(4) transforms the unit square into a simply connected set (as shown in figs. la, 2a, 4b, for example) 
or a collection of disconnected sets (as in figs. lb, 2b, 5b or 7). Here, we investigate the boundaries 
between regions in the (a, e ) plane #1 in which the number of these sets differ. When the attractor is 
a simply connected set, ensemble statistics can be computed from a numerically obtained invariant 
measure to which almost all initial preparations evolve; we conjecture that this reflects a property 
of the associated Perron-Frobenius operator known as asymptotic stability. When the attractor is a 
collection of disconnected sets, almost all numerical initial conditions eventually reach a cycle in 
density space, and statistical quantities like the Boltzmann-Gibbs entropy, the temporal correlation 
function and more generally all ensemble averages are seen to cycle in the asymptotic regime with 
a period related to the number of disconnected sets forming the attractor. Such cyclical statistical 
behavior is well described for certain one-dimensional maps, and is conjectured here to reflect a 
property of the associated Perron-Frobenius operator known as asymptotic periodicity [21,26 ]. 

Before proceeding, let us clarify the link between phase transitions (i.e abrupt changes in the ther- 
modynamic state of a system) and qualitative changes in statistical behavior (reflected by abrupt tran- 
sitions in the number of disconnected sets forming the attractor). Consider the system S{~} : X, , X, 
parametrized by {a}, a set of real parameters. S{~} could be a map, a set of ordinary differential equa- 
tion, or more generally any (semi)dynamical system, X being called the phase space (or state space) 
of S(~}. 

The thermodynamic state of S{~} is associated with a phase space density function #2, j~} : X ~ 
R, which gives the probability that the system is at a given state x E X. When j~} changes abruptly 
as a result of changing the parameters {a}, so does the thermodynamic state of S{~} and the system 
undergoes a phase transition. The problem of identifying phase transitions is therefore reduced to that 
of finding the loci in parameter space where ./~} changes abruptly. Such an abrupt change necessarily 
occurs when the number of sets on which J~} is nonzero changes (the union of these sets is called 
the support of f{~} ). In the tent map example discussed below, the analytic criteria given for phase 
transitions are criteria for abrupt changes in the support of J~) .  

There are fundamental differences between the approach discussed here, and the usual discussion of 
the thermodynamics of dissipative dynamical systems. The most important is that the thermodynamic 
formalism introduced by Bowen [2], Ruelle [29], Sinai [30] and others (cf. [1] for a discussion of 
this formalism), which is the inspiration behind the existing studies of the thermodynamics of coupled 
map systems [ 3,11-13 ], makes use of symbols used to represent single trajectories, so that ensemble 
statistics on such systems are constructed as they would be for generalized interacting spin systems. 
The existence of such symbolic representations for the original dynamical system, and consequently 
the link with interacting lattice gas systems, is not the underlying premise here. 

Let us now turn to some definitions necessary to formalize our presentation. 

#l Note that  the system is symmetric under  the transformation e ~ (1 - e), S(x )  ~ S(y )  so that we only consider the 
region of  parameter space 0 < e < 1/2. 

#2 Actually, the thermodynamic state of S{~} is equivalent to a measure space, and the measure space can be associated 
with phase space densities when certain conditions, which are met by the systems discussed in this work, are satisfied. 
For details, the interested reader is referred to [22]. 
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1.2. Definitions 

We first define what is meant by a phase space density, and then define the operator PT induced 
by a transformation T : X ~ , X which acts on these densities. Let the set of  nonnegative elements of 
L l be denoted 

L 1 = { f  E L 1 " f ( x )  >_ 0 almost everywhere} 

and the set of  densities by 

D =  { f ~ L l + : [ [ f [ [  = 1 } ,  

where [[. [[ denotes the L 1 norm: 

[[f[[ = / [f (x)[ dx = / f (x) dx 
X x 

for densities. 
The Perron-Frobenius operator PT : D ~ , D is induced by measurable transformations T of the 

phase space X that are nonsingular. For any f G D, the Perron-Frobenius operator is defined by 

/ P r f l ~ ( d x )  = f f g ( d x ) ,  (5) 
A T - |  (A) " 

where A c X (and the measure g is related to its density function f by the relation f A f ( x ) d x  = 
# (A)).  If  the transformation T is the two-dimensional mapping • defined above and operating on 
[0, 1 ] x [0, 1 ], the generalization of (5) is 

0 2 
- oxoy f f f (u, v ) dv du. (6) 

• -~([0 ,xlx  [0,y]) 

The operator 7~r is called asymptotically periodic if  there exist finitely many distinct functions 
gl ..... ga ELl+ with disjoint supports (i.e. gi(x)g j (x)  = 0 for all x if i ~ j ) ,  a permutation a of  the 
set { 1 ..... r} and positive continuous linear functionals 21 ..... 2r on Ll+ such that 

I (  r ) l ira 7~ f -  i~=12i(f)gi = 0 (7) 

and 

7~Tgi = g~(i), i = 1 ..... r, 

and asymptotically stable if  it satisfies these conditions with r = 1. 
In other words, the phase space density f of  an AP system at any (large) time is a linear combination 

of  "basis states" (denoted gi above) with disjoint supports, and at every time step the coefficients 
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(2i) of  this linear combination are permuted by a. Therefore, the density evolution in such systems is 
periodic, with a period (< r! ) determined by the control parameters, but with the exact cycle depending 
on the initial preparation since the ,~ i 'S  a r e  functions of the initial density. A direct consequence of 
asymptotic periodicity is that the thermodynamic equilibrium of the system consists in a sequence of 
metastable states which are visited periodically. This is reflected in the behavior of the Boltzmann- 
Gibbs entropy. 

The Boltzmann-Gibbs entropy ,S of f E D is defined by 

S ( f )  = - f f t u ) l o g ( f ( u ) )  du, 
X 

(8) 

where f is the phase space density associated with a dynamical system operating in a phase space X. 
When the system is in thermodynamic equilibrium, the Boltzmann-Gibbs entropy is usually thought 
of as being stationary at a local maximum (the internal energy being in a local minimum).  The 
phase space density describing this equilibrium is a fixed point of  the operator giving the evolution of 
densities (i.e. the Perron-Frobenius operator for discrete time maps, the Liouville (or Fokker-Planck) 
operator for deterministic (or stochastic) ODE's, etc .... ). In contrast to the situation in which extensive 
quantities can be determined from the density of the invariant measure, the (most probable) state 
of  thermodynamic equilibrium for an asymptotically periodic map is, as discussed above a collection 
of  metastable states which are visited in alternation. Thus, the Boltzmann-Gibbs entropy in this 
metastable equilibrium oscillates periodically for almost all initial preparations: 

lim S ( f  t ' )  = lira 8(ft'+~)c==~e~x(i) = i ( i =  1,...,r) and c~J(i) y£c~C(i), j < x .  (9) 
t * " * ~  t * " * ~  

To see this, note that gi = gj a.e. ¢~ i = j since two different gi's have disjoint supports. In addition, 
recall that Pgi = g~ci) (with i = 1 .... , r  and a a permutation of the set {1, ..., r} ), and therefore 
f t *  _ ~rft* ¢¢, a,~(i) = i. AS a consequence, from (7), f q  = ft~+u a.e. ¢~ u = 0 or a~(i )  = i. 
Furthermore it is easy to show that if  f (x)  = g(x)  a.e., S ( f )  = S(g)  and hence 

lim ,5( f  t) = lira S ( f  t+v) ¢=~ f t  = ft+~, 
t ---* c¢ t -..* ov 

with either u = 0 or u such that a v (i) = i which proves (9). 
This cycling behavior of ,S is numerically illustrated in section 3.2 for the hat map, but is also 

observed in the sigmoidal map and the quadratic map. 

2. Statistical cycling in the coupled maps 

We now turn to a study of  coupling induced statistical cycling in three systems. The first of  these is 
obtained as the singular perturbation limit of  a first order differential delay equation (DDE). 

2.1. Delayed feedback control loops and one-dimensional maps 

In this section we first quickly review the connection between continuous time models of  delayed 
feedback control loops framed as DDE's and one-dimensional maps. We then discuss situations where 
coupling induced statistical cycling is observed in the two-dimensional system. 
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The DDE's considered are of  the form 

dx 
dt = - ( x ( t ) + F ( x ( t - 1 ) ) ,  ~ e R  +, t_>0, (10) 

with initial function x (t) - q (t) for t ~ [ - 1 , 0  ] (the delay is, without loss of  generality, rescaled to 
1 ). Dividing by ~ and taking the limit ~ -~ oc, F / (  ~ S, one obtains from the DDE the difference 
equation 

x( t )  = S ( x ( t - 1 )  ), t_>O, 

with x (t) - ~ (t), t ~ [ -  1,0). Confining our attention to integer values of  time instead of a contin- 
uum, one obtains the one-dimensional map 

Xn+l = S ( x n ) ,  n E N ,  

with x0 given. The procedure outlined here is known as a singular perturbation of the map, and it 
has been extensively studied by Ivanov and ~arkovskii [ 15 ], who have been able to show that certain 
dynamical properties of the map can be extended to the infinite dimensional continuous time DDE. 
We follow this procedure to obtain the nonlinearity (2) from a DDE known in the literature as the 
Mackey-Glass equation, proposed as an attempt to model oscillations in neutrophil counts observed 
in certain cases of  chronic myelogenous leukemia [26 ]: 

dx - ( x ( t )  + ~ tx ( t -  1) (11) 
dt = 1 + x n ( t - 1 ) "  

Performing the singular perturbation procedure on ( 11 ) and setting a = lim¢_.~ a / (  yields the non- 
linearity (2). 

2.2. The sigmoidal map 

Fig. I displays two projections of the phase space density on the x - y plane which numerically 
illustrates the phenomenon we conjecture to bc coupling-induced asymptotic periodicity. 

The behavior displayed in fig. I can bc summarized as follows: there are regions in the parameter 
space of system (l) with S given by (3) in which the individual maps are (numerically seen to be) 
statistically stable when they are decoupled (fig. la). When the coupling is turned on (8 > 0), phase 
space densities cycle periodically, and they arc supported on disjoint subsets of the phase space (as 
shown in fig. Ib). Points belonging to one subset arc mapped into another at the next time step and so 
on. The period of the cycle depends on the parameters a, n and e, while the details of the asymptotic 
cycle (i.e. the fraction of points belonging to various subsets) depend on the initial distribution of 
ix, y) pairs (the support of the initial density). This behavior should be interpreted in light of our 
discussion on asymptotically periodic Perron-Frobcnius operators (cf. section I. I ). We conjecture 
that fig. I illustrates coupling induced asymptotic periodicity of the Perron-Frobenius operator of 
• . If the coupling e is increased further, the sets B and I) of fig. I "break-up" (i.e. give rise to 
disconnected subsets) and the period of the density cycles increases. The dependence of this period 
on 8 is complicated. 

Before examining the analytically tractable tent map, wc show that similar behavior is observed 
in coupled quadratic maps. This is interesting since it suggests that the behavior presented above is 
probably generic in maps with a locally quadratic maximum. 
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Fig. 1. Two-dimensional projection of  the phase space density for the map (1) with nonlinearity (3) with a = 1.65 and 
n = 8 in both panels. Time t = 6000, the figure was made with 3500 points and the initial density was supported uniformly 
on [0 : 1] x [0 : 1 ]. (a) e = 0.05 and each map "fills" a simply connected subset of  R +. The maps are conjectured to be 
asymptotically stable. (b)  e = 0.05 and for all initial ( x , y )  E B, we numerically observe that O ( x , y )  E ~ and points in 
arc mapped into B. This is an example of  coupling induced statistical cycling. 

2. 3. The quadratic map  

The quadratic map is one of  the most studied systems in the nonlinear dynamics literature• Here, 
we only review those aspects of  its behavior connected with the presence of  phase transitions. The 
main motivation for including this system in our discussion is that it reproduces most of  the behavior 
displayed by the biologically motivated map of  the previous example, while being much simpler 
analytically. The quadratic map is defined in (4) and its Perron-Frobenius operator 7aq is 

P q f ( x ) -  x /1 -4x /a  f + 2V- a ] + f 2 - 2 V -  a ]J" (12) 

When a = 4, the Perron-Frobenius operator is asymptotically stable, and the density of  the invariant 
measure is 

f*(x)  -  x/x(1 -x)  

This is the only value of  a for which the invariant density is known, although the existence of  absolutely 
continuous invariant measures has been proven for a belonging to sets of  positive Lebesgue measure 
[ 17 ]. There is, in addition, a spectrum of  values labeled an, n = 1,2 ..... where so-called banded chaos 
has been reported numerically [23]. At these values, the behavior of the iterates of  the map is very 
similar to those of  the hat map when it is asymptotically periodic: the phase space densities oscillate 
periodically in time. At the value a = an, the period of  the density cycle is 2 n. The recipe for finding 
the art's is given in [10]. A proof of  the asymptotic periodicity of  ~'q at these values is not available 
yet, but the numerics clearly indicate that the so called "banded chaos" behavior in the quadratic map 
is in fact asymptotic periodicity [28 ]. 

The behavior shown in fig. 2 is the same as that found in the sigmoidal map. It is presented here to 
highlight the fact that coupling induced statistical cycling is probably a generic property of  maps with 
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Fig. 2. Projection of  the phase space density on the (x, y)  plane for system (1) with the quadratic nonlinearity (4). In both 
panels, a = 3.8, t ime is t = 6000, the figure is made with 5000 pairs and the initial density was supported uniformly on 
[0 : 1 ] x [0 : 1 ]. In (a) the maps are deeoupled: e = 0; numerical simulations indicate that  the system is asymptotically 
stable. (b) e = 0.06; the points in set B are mapped into set ~D and vice versa at every time step. This is clearly very similar 
to the behavior discussed in connection with the previous figure and is conjectured to reflect the underlying asyrnptotie 
periodicity of  the Perron-Frobenius  operator. 

a quadratic maximum. In fact, it also observed in a simpler system, the generalized tent map, which 
is topologically conjugate to the quadratic map when a = 2, and which is analytically tractable. 

3. Analytic investigation of two coupled tent maps 

The one-dimensional semidynamical system known as the tent map (or hat map): 

aXn, i fxn E [0, 1/21, 
Xn+l = [ a ( 1 - X n ) ,  i f x ,  e [1/2,1],  (13) 

where a e (1,2 ] has been extensively studied during the past decade, in part because the Perron- 
Frobenius equation can be solved explicitly at different values of  the parameter a [ 31,28 ]. The results 
which concern us here deal with the existence of critical values of the parameter a at which the 
thermodynamic state of  (13) qualitatively changes. The Perron-Frobenius equation for the hat map 
(13) is 

[y (x) + f x)], 7~hf (X)  = a (14) 

where f (x)  is a phase space density for the system. Depending on the value of the parameter a, 7~h can 
be proven to be either asymptotically stable or asymptotically periodic. To summarize its properties: 

(i) a = 2. In this case ~'h is asymptotically stable and the invariant density is the uniform density 
on the phase space [0, 1 ]. [It is easy to check that 1 [0,1 ] (x)  satisfies (14) ]. 

(ii) a e (x/2, 2). 7~h is asymptotically stable, and the invariant density is supported on a simply 
connected subset of  [0, 1 ]. 

(iii) a E (21/2n+1 , 2 I/2" ), n ---- 1 ..... 7~h is asymptotically periodic, and the period of  the density cycle 
is 2 n. The activity is supported on the union of 2 n disjoint subsets Jl, ..., J2,, each Jz' being the support 
of  one of  the gi's defined in section 1.1. 
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Fig. 3. Phase portrait oftbe map (1) with nonlinearity (2). In the upper regions labeled 1, 2 and 4 the map is one-dimensional 
and respectively ~ y m p t o t i ~ y  stable (AS), asymptotically periodic with period 2 (AP-2) and period 4 (AP..4) (see figs. 
4a,5a). In region O) (1) is AS but now both ~tl and 22 are > 1 (see fig. 4b). In region ~ • is AP-2, but x and y are out of 
phase (see fig. 2e and the text for details). In region (~) the map is AP-2, and x and y are either in phase or out of  phase 
(see fig. 6a and the text for details). In regions ~ and ~) the map is AP-4. Details concerning these regions are described 
in the section entitled AP-4 (see fig. 7). In regions ~) and ~), the dynamics are not a trivial two-dimensional generalization 
of  one-dimensional asymptotic periodicity, but rather coupling induced. 

We want to investigate to what extent this structure of the dynamics of the hat map survives diffusive 
coupling. To that effect, the phase diagram in (a, e )-space is discussed in section 3.1. 

3.1. The phase diagram 

The phase diagram of the two-dimensional system (1) with nonlinearity (2) naturally separates 
into two major regions: in the first, which corresponds in fig. 3 to those areas labeled with noncircled 
numbers, the behavior of tb is effectively one-dimensional since the flow is contracted along one of 
the eigendirections. In the second, which encompasses the areas of fig. 3 labeled with circled numbers, 
the behavior is truly two-dimensional, since both eigendirections are unstable. The eigenvalues of the 
Jacobian of ( 1 ) with (2) satisfy the characteristic equation 

[ ( 1 - e ) a - 2 ]  2 - a  2 = 0 ,  (15) 

which has 2 solutions 

)ll ~ a, 

22 = a ( 1  - 2e). (16) 

When 8 E ( (a - 1 )/2a, (a + I )/2a), the dynamics are one-dimensional since in this case [21[ > I and 
122[ < I. The behavior of ( I ) matches exactly that of a single map and the upper portion of the phase 
diagram (fig. 3) describes the dynamics of (I). 
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Fig. 4. Act ivi ty  o f  the  m a p  4) on  the  un i t  square. In (a) ,  a = 1.6 and  e = 0.35 (system is in  region 1),  hence x = y 
eventually.  In (b) ,  a = 1.7, e = 0.1 so the  parameters  are such tha t  the  m a p  is in region (!). The  vert ices o f  the  r h o m b o i d  
are V0 ..... I,~ given in (17) .  Both  (a)  and  (b)  were ob ta ined  numerical ly,  using an  ensemble  o f  8 × 103 init ial  condi t ions  
init ial ly un i formly  d is t r ibu ted  on  [0, 1 ] x [0, 1 ]. 

We therefore focus on the regions such that 22 > 1. These regions are below the critical line ec = 
(a - 1 )/2a in fig. 3. The solid lines on fig. 3 bound regions in which the number of  supports for the 
invariant density are fixed. We now describe each of  these regions in detail. 

3. I. 1. Asymptotic stability 
Regions in which 4) is AS are labeled with a Q) and a ' T '  in fig. 3. In the region 1, the dynamics 

are one-dimensional since one of  the eigendirections is contracting (i.e. 1221 < 1 ) and the other is 
expanding (21 > 1 ). In this region, 4) is asymptotically stable, and x = y: the behavior is that of  a 
single asymptotically stable hat map. Fig. 4a displays the y vs x plot for 8 x 103  points after 50 time 
steps. Initially, these points were uniformly distributed on [0 : 1 ] x [0 : 1 ]. The boundary between 
1 and • is the line ec = (a - 1 )/2a. The boundary between 1 and 2 is the value a = v ~  (as in the 
one dimensional map). In the area labeled O), the map is also AS, but now it is no longer effectively 
one-dimensional. The plot y vs x is given in fig. 4b, with the same initial conditions as in fig. 4a, but 
different e. The coordinates of  the vertices of  the rhomboid are 

vo = (o, o), 

Vl= 1 - e + ~  ( 2 - a ) , 2 e ( 2 - a )  , 

½ =  (1,1),  

V3= ( 2 e ( 2 - a ) , ( l - e  + 1-~e) ( 2 - a ) ) .  (17) 

3.1.2. Asymptotic periodicity: AP-2 
This behavior is observed in the three regions labeled 2, ~ and ~). In 2, the behavior is again one- 

dimensional. The activity on [0, 1 ] × [0, 1 ] is plotted in fig. 5a, and is supported on two disjoint 
subsets of  the diagonal x = y. The boundaries of  this region are the value a = v/2, the value a = 21/4 
and the line e¢  = ( a  - I )/2a. 
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Region~) 
The boundaries of region @ are the line ec = (a - 1 )/2a, the value a = v~  and the line separating 

it from region ~), which will be discussed in section 3.1.3. For parameter values in @, the behavior 
is statistically periodic with period 2: all points belonging to set A (in fig. 5b) at time t* map into 
points belonging to e at time t* + 1 and vice versa. This "flipping" behavior between two sets with 
disjoint supports, characteristic of  asymptotic periodicity, is also observed for sets B and 9.  Every point 
belonging initially to the unit square is asymptotically attracted to one of these four sets. Furthermore, 
the images of  a point belong to A U C or/3 U 9,  but do not flip between these. Schematically 

• . . ,  , A ,  ~C, ,A~ , . - .  
• . . m  ~/3, ,?~i , /3 ,  , . . .  

The behavior observed in region ® is easily understood by noting that for such values of a the hat map 
is itself AP-2. The period 2 flipping described above therefore arises from the underlying asymptotic 
periodicity of the hat map. In other words, if  e were 0, one would obtain a picture rather close to that 
illustrated by fig. 5b (in fact, in that case, a y vsx plot yields four square projection sets instead of the 
four rhomboids of  fig. 5b). Cycle (.ACA) can be called the in phase cycle, and the other, (/3DB), out of 
phase. We will see later that the out of  phase cycles can be stable in regions of  parameter space where 
the in phase cycle is not. This is the origin of the coupling induced statistical periodicity observed in 
regions ~ and ~). The activity observed in fig. 5b is sensitive to the initial distribution of points in 
the sense that if all initial points were included in the preimage of.A, all points would "flip" from set 
A to set C and back. Thus, the proportion of points which at time t* are in set .A depends in a sensitive 
way on the initial preparation. It is straightforward to derive analytic expressions for the edges of  the 
four sets. For clarity, only the out of  phase cycle is considered, and the expression for the coordinates 
of  the edges of  sets 13 and D are given in Appendix A (see also fig. 6b). 

The region ~) 
We now turn to the description of a novel type of dynamics, which is not a trivial two-dimensional 

generalization of  the asymptotic periodicity well studied in 1-d maps. In region ~) the activity of the 
pair (x, y)  can be described as asymptotic periodicity (although again this is an observation which does 
not stem from an investigation of  the spectral decomposition of the 2-d Perron-Frobenius operator). 
The supports of  the 2-d density on [0:1 ]2 are disjoint as demonstrated in fig. 6a. These supports are 
symmetrical with respect to the x = y line, and every point belonging to one support at time t* belongs 
to the other at time t* + 1 and vice versa. These supports form the out of phase cycle/3DB discussed 
previously, the in phase cycle .ACA now being unstable. Coordinates of  the vertices of set/3 displayed 
in fig. 6b are given in Appendix A. 

These vertices of  B map onto the boundary of the set /) .  When e = (a - 1 )/2a, the critical value 
for which 22 = 1, the points fl0 through 157 (and all the points in B) collapse onto the single point 
with coordinates 

( a 2 + l )  ( a - l ) )  

hT-  + - - - W -  " 

(Similarly, the points in ~D collapse onto its mirror image with respect to the x = y axis, and the 
activity on [0, 1 ] × [0, 1 ] is then concentrated on the diagonal, as illustrated in fig. 5a. ) 

The condition on the parameters a and e such that the set/3 maps into/~ and vice versa is obtained 
by performing a two-dimensional version of  the calculation which yields the value a = x/2 separating 
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Fig. 5. Two-dimensional projection of the phase space density for two coupled tent maps at t ime t = 6000. The figure was 
made with 5000 points. In (a), a = 1.38 and e = 0.35 (so (a ,e )  is in region 2). All points on the left of the gap at t ime t* 
are mapped into points on the right of the gap at t ime t* + 1 and vice versa. In (b) a ffi 1.38 and e = 0.05 (again (a,e) 
is in region (~). All points in .4 at t ime t* map into points belonging to C at t ime t* + 1 and vice versa. This flipping also 
occurs for sets B and ~D (see text for details). 

AP-2 and AP-4 in the one-dimensional hat map, given for example in [31,28 ]. The point whose image 
under  • is the closest to the diagonal x = y is l/1 (see fig. 6b). We call this image l/~. Its image under 
~ ,  l/2 = O2(l/l) ,  lies within set B when the map is in region ~), i.e. when B~ , D ~ ~ B. When the 
map is in region 0 ,  f12 does not lie within set B but above the line segment [l/s, f16] (fig. 6 should prove 
useful to follow this geometrical digression). In other words, points which are in B do not necessarily 
return to B after two iterations under  ®. Instead, they "f'fli up" the rhomboid displayed in fig. 4b. At 
the boundary between O and ~), l/~ crosses the line segment [l/s, ]/6]. Mathematically, this gives the 
following relation: 

o2(l /1)y  = l/~', 

or, explicitly, 

[ a ( 2 e -  1) + 1 ] { a 3 [ 4 e ( e -  1) + 1] + a212e(1 - 2e)] - 2a[(1 - 2e) + 1]} = 0. (18) 

Eq. (18) can be solved for a as a function of  e analytically since it is a fourth order polynomial in a. 
We do not give the solution, but note that when e = 0, the four solutions ac, l,...,4 are 

ac, l = O, ac, 2 = 1, ac,3, 4 = -I-v~.  

The root ac,3 - v ~  corresponds to the condition given by Provatas and Mackey for the one-dimensional 
case [28]. In addition, when a e [ 1,2] all the roots are real. Two of  these are irrelevant since they 
correspond to e ~ [0, 1 ] and the other two demarcate the region ~) of  fig. 3. Note that one of  the roots 
coincides with the previously obtained condition ec = (a - 1 ) / 2 a  since 

1 
ac,2 = 1 - 2e (19) 
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Fig. 6. Two-dimensional projection of  the phase space density for two coupled tent maps at time t = 6000. The  figure was 
obtained with 5000 points .  (a) a = 1.45 and  e = 0.075 so the system is in region ¢~), with initial conditions uniformly 
distributed on [0, 1] x [0, 1]. (b)  The lines link the vertices given in eq. (A.1) ,  Append ix  A, plotted for a = 1.45 and 
e = 0.075 supe r imposed  with the data of  panel (a) .  

is a solution of  ( 18 ) for all a and e. 
The behavior illustrated in fig. 6 can be described as coupling induced statistical cycling since the 

individual maps are asymptotically stable when (a, e) E @. We conjecture that it reflects the asymp- 
totic periodicity of  the Perron-Frobenius operator for this system. A "period 4 version" of  this phe- 
nomenon is observed numerically in @, and is discussed in section 3.1.3. 

3.1.3. Asymptotic periodicity: period 4 
As in the one-dimensional case, there is period 4 statistical cycling in the coupled map system. The 

behavior in region ® is illustrated in fig. 7. 
It is possible to give an analytic expression for the boundary separating regions ® and @. There are 

many different equivalent ways to obtain this expression, but each of  these involves determining the 
conditions on a and s such that points belonging to an element of  a cycle (an "element" being one 
of  the four disjoint sets forming a cycle) return to that element after 4 iterations under @. One point 
whose trajectory yields the desired critical condition has coordinates 

s ( a -  1) 4 s [ 1 - a ( 1 - s 2 ) ] - 2 + a  
fl~C=a(1 s) 1 - s  ' 

f l ~ _  a -  1 (20) 
a 

Following the images of  this point under @, it can be shown geometrically that the condition analogous 
to (17) is given by 

( ~ 3 ( f 1 8 ) x  = <~8(f18)Y , ( 2 1 )  

which explicitly yields 

a(2s - 1 ) [a(2s - 1 ) + 1 ] {a 7 [16/~ 4 + 12s2(1 - 2e) - 2e] 

+ a S [ - 8 s 2 ( 1 - s )  + 2s] + a 4 1 4 e ( 1 - s ) -  1] + 2} = O. (22) 
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Fig. 7. Two-dimensional projection of the phase space density for two coupled tent maps. a = 1.17 and e = 0.05 (i.e. the 
system is in region (~). The 16 disjoint supports shown in panel a) can be grouped into the four separate cycles of period 
4 shown in the bottom panels. Points belonging to one cycle remain in this cycle. All points of the unit square eventually 
settle onto one of the cycles. The top panel was produced with 5000 pairs initially uniformly distributed in [0, 1 ] x [0, 1 ], 
and shows a snapshot of the activity at time t = 200. To obtain each of the four bottom panels, the initial points were 
uniformly distributed in a set belonging to one cycle, and each panel is the superimposition of four snapshots taken at four 
consecutive time steps t = 200 ..... 203. 

The above is a ninth order polynomial in a. One of its roots is, as for condition (17), 

1 
ac,2 = 1 - 2e" (23) 

It is not possible to give the expression for the other roots but we note that at e = 0, (22) becomes a 
sixth order polynomial with roots 

ac, l,3 = 4-21/4, ac,4,5 = 4-i21/4, ac,5 = 1,  ac,6 = O. 

The root 21/4  corresponds to the condition given in [28] for the one-dimensional transition between 
period 2 and period 4 asymptotic periodicity. The boundary between regions O and ~ ,  plotted in fig. 
3, is the analytic curve ac,1 (e), determined from (22), for c ~ [0, 1/4]. 

In region ~), the in phase cycle (cycle 3 of fig. 7) disappears: this is analogous to the disappearance 
of the sets A and C (displayed in fig. 5) in region ~). The "period 8 version" of this phenomenon, as 
well as the boundary between period 4 and period 8 statistical cycling is discussed in Appendix B. 

3.1.4. Asymptot ic  periodicity of higher period 
We conclude the investigation of the phase diagram of the map • (fig. 3), by noting that one can 

numerically observe higher order bifurcations which correspond to the transitions from AP-8 to AP-16, 
and by conjecturing that transitions from asymptotic periodicity of period 2 n to asymptotic periodicity 
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Fig.  8. Three types of  asymptotic behavior of  the Boltzmann-Gibbs entropy. (a) The map ~ is in region (i): a = 1.85, 
e = 0.1. ( b )  The map • is in region (~): a = 1.45, e = 0 .075.  (c )  The map • is in region @: a = 1.16, e = 0.05.  In  a l l  
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of  period 2 n + ] can probably be observed for all n. In other words, numerical studies strongly suggest 
that the one-dimensional picture given in [28] essentially survives diffusive coupling, in the sense 
that there is a period doubling of  the density cycles as the slope of  the tent map is lowered from 2 to 
1, but that it is modified by the appearance of  coupling induced regions in which the behavior is not 
a straightforward generalization of  the one-dimensional behavior (two of which, labeled ~) and ~)) 
are shown in fig. 3. 

3.2. On the evolution of statistical quantifiers 

In this section, the evolution of  the Boltzmann-Gibbs entropy for the hat map is discussed in 
the various regions of  parameter space. The purpose of this discussion is to illustrate the oscillatory 
behavior of  statistical quantifiers, usually computed with the invariant density, when the underlying 
system is asymptotically periodic #3. 

The cycling displayed in fig. 8 is observed after transients were appropriately discarded: if  the 
entropy behavior is seen to be the same for 10 4 time steps, then it is assumed that the asymptotic 
regime has been reached. In fig. 8a, the level reached by the entropy after about 10 iterations (for this 
particular initial condition) was the level at which the entropy was found after 10 4 iterations. The 
asymptotic cycling o r s  in figs. 8b and 8c, reflects the fact that the Boltzmann-Gibbs entropy is not the 
quantity to which the second law of  thermodynamics applies for most asymptotically periodic system 

#3 The two coupled tent maps are not rigorously proven to be asymptotically periodic, but the analytical evidence provided 
in this paper strongly indicates that they are. 
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(or, more generally, for most dynamical systems). For a detailed discussion of the thermodynamics 
of asymptotically periodic systems, see [25 ]. 

4. Summary and conjectures 

In this paper, we have numerically observed that for the sigmoidal map, and the quadratic map, 
the diffusive coupling of two chaotic but statistically stable elements can yield a system which shows 
periodic cycling of phase space densities, which we call "coupling induced statistical cycling". We 
conjecture that this behavior is a generic property of maps with a quadratic maximum. 

We have constructed the analytic phase diagram for two diffusively coupled tent maps, which shows 
that the one-dimensional bifurcation structure of the Frobenius-Perron operator essentially survives 
diffusive coupling, modulo the appearance of regions in parameter space in which the behavior is not a 
straightforward two-dimensional generalization of the one-dimensional behavior. We conjecture that 
the two-dimensional Perron-Frobenius operator is asymptotically periodic when the one dimensional 
operator is, but that there are regions in parameter space in which the one-dimensional systems have 
asymptotic periods differing from the coupled system. 

Finally, preliminary numerical results indicate that the statistical behavior discussed here is com- 
monly observed in large (i.e. with more than l02 elements) lattices of diffusively coupled maps, 
whether the local dynamics be given by the piecewise linear tent map, or the smooth maps of section 
2. There seem to be nontrivial correlations between the appearance of macroscopic large scale patterns 
in these lattices and statistical cycling. Such connections are presently under investigations, and will 
be reported elsewhere. In particular, it is possible to explain phase transitions in large lattices in terms 
of abrupt changes in the spectral properties of the Perron-Frobenius operator. The techniques used 
in this paper to describe asymptotic periodicity are not easily extendable to larger systems, because 
the geometrical insight is rapidly lost as the number of maps coupled together increases. However, the 
present results confirm the possiblity that asymptotic periodicity can be coupling-induced in simple 
maps, and as such have led to the use of general results from ergodic theory in higher dimensions 
[9 ] to describe asymptotic periodicity (and phase transitions) in large lattices [24]; the proper un- 
derstanding of statistical cycling in large CML's is greatly facilitated by the present discussion of this 
behavior in the simplest possible CML. 
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Appendix A 

The coordinates of the edges of the set/3 of figs. 5b and 6 are 
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( I - 2 e + 2 e  2) 
f l~  - -  e - I  ' 

fl~ = 2 e ,  

a ( - 1 - a - 4 a 2 e + 4 e 2 a 2 + 4 a e + a 2 - 4 e 2 a )  ( 1 - 2 e + 2  e 2 ) 
= , - 1  , 

f l : = - 2 e a  ( - 1 - a - 4 a 2 e  + 4e2a2 + 4ae + a2-482a) ,  

f l~  = - 4 a e - 2 + a q 4 e 2 a +  4e-2e2  
e -1  

f i x  - -  2+3ae-2e2a-4e-a-Se4a3-2e2a2-I.a2e-l .2s2-a%-12a4e3+1283a3-6a3e2 
3 - - - -  e -1  ' 

_ a3e+8a4e4+6a4e 2 
e--1 

fl~ = a - 2ae - a 2 + 2 a 2 8  - a 3 + 6aae - 1 2 a 3 e  2 - 6 a 4 e  + 1 2 a 4 8  2 - 8 a 4 e  3 + 8e3a 3 + a 4 + 2e, 

f l~  = -- 3ae+2-a-2e2a-4e+2e2-4e2a2+a2e+4e3a  2 
e - I  

fl~ = 2 a e - a - 4 a 2 e  + a 2 + 4e2a 2 + 2e, 

fl~c ~ a ( -  1 - 5ae + 882a + 4a2e -4a2e 2 + 5e + a - a 2 -  8e 2 - 483a + a 4 + 16a4e 4 --24a3e 2 + 24a4e 2 ) 
e-1  

+ a(32e3a3+4e3+Sa3e--32a4e3-16e4a3-a3--Sa4e) 
8--1 

fl~ = a ( - 1  -4ae  + 4e2a + 4e + a -  4e2), 

#~c = --  ( 2 e - l ) ( 2 e 2 a Z - 2 e 2 a + a e - a 2 e - 1 )  
8--1 

f l:= ( - l  - 4 a e  + 4e2a + 4e + a - 4 e 2 ) a ,  

f l~  = -- 1 - 2 e +  2e2-ae+ 2e2a-4e2a2-I-a2e+4e3a2 
e - I  

#~ = 2 a e - a - 4 a 2 e  + a 2 + 4e2a 2 + 2e. (A.I) 

These coordinates are obtained by forward iterations of the four comers of the unit square under 
the action of the map ~.  

Appendix B 

There is a region in parameter space in which the behavior is the period 8 analogue of that already 
described in regions O and t~: the attractor on the unit square is a collection of 56 disjoint sets, 
forming 7 independent cycles of period 8 each #4. The boundary between region ~ and region 0) is 
given by the following criterion: 

#4 Since the behavior  is per iod 8, one would expect 8 independent  cycles yielding 64 disjoint  supports,  but  one o f  these, 
the in phase cycle is not  observed,  an observat ion already in the per iod 2 and per iod 4 regimes. 
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(B.1) tX)13(fl8)x __-- (I)9(fl8) x. 

Mathematically, the condition is 

[a 2 ( 2 e -  1) + 1] [ a ( 2 e -  1) + 1] [a it (256e 8 -  896e 7 + 1408t 6 -  1280e 5 + 736e 4 

-280e  3 + 72e 2 -  12e + 1) + a8(-6486 + 16Of 5 - 176e 4 + 104e 3 -  32e 2 + 4e) 

-I-a3(883 - 12e 2 + 8 e -  2) - 2 e ]  = 0. (B.2) 

It is possible to factor the above polynomial into an eighth degree polynomial in e and two monomials, 
so that two of  the roots can be written explicitly: 

1 1 
ac, l -- 1 - 2e' ac,2 --  v/-f--S- ~ .  (B.3) 

The boundary drawn in fig. 1 between regions ® and ~) shows amax (e) where amax is the largest of  
the 12 other roots. When the coupling e = 0, the 14 roots of  the polynomial are: 

r o o t s ' +  1, 1, 0, 0, 0,-t-21/8 , 2 1 / 8 ( 2 2 1 / 2 + i ½ 2 1 / 2 ) ,  2 1 / 8 ( - - 2 2 1 / 2 + i 1 2 1 / 2 ) ,  +i21/8 . 

The root 2 l/s corresponds to the condition given in [28 ] for the transition from period 4 to period 8 
AP in the one-dimensional map. 
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