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We study the stability of linear stochastic differential delay equations in the 
presence of additive or multiplieative white and colored noise. Using a 
stochastic analog of the second Liapunov method, sumeient conditions for mean 
square and stochastic stability are derived. 
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1. INTRODUCTION 

Differential delay equations have been used to describe the dynamics of 
laser systems (Hopf et  aL, 1982; Ikeda and Matsumoto, 1987), liquid crys- 
tals (Zhang et  aL, 1988), physiological control systems (Glass and Mackey, 
1988; Mackey and Milton, 1989; Milton et  al., 1990), dynamical diseases 
(Glass and Mackey, 1979; Mackey and an der Heiden, 1982; Mackey and 
Glass, 1977; Maekey and Milton, 1987; Milton and Mackey, 1989), and 
artificial neural network models (Marcus and Westervelt, 1989, 1990) 
and to explain the oscillations observed in agricultural commodity prices 
(B61air and Mackey, 1989; Maekey, 1989). Often, though most certainly 
not always, these differential delay equation models are of the form 

dr(t) 
= -- 7x ( t )  + F ( x ( t  -- ~)) (1.1) 

dt 

with some initial function for x specified on an interval t ~ [ - r, 0] .  In this 
formulation one can think of a state variable x that is "destroyed" at a con- 
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stant rate ~ and produced at a rate F that depends on the value of the state 
variable x a time z in the past. If the function F is monotone increasing, 
it corresponds to a positive feedback situation, while if it is monotone 
decreasing we say that it mimics negative feedback. There is a further inter- 
mediate situation ("mixed" feedback) in which F is monotone increasing 
over some portion of its domain and decreasing over the remainder (an der 
Heiden and Mackey, 1982). 

To be concrete, consider (1.1) with a specific analytic form for the 
feedback function F, namely, 

dx(t) x " ( t - z )  
dt = - ? x ( t ) +  ~ 1 + xn( t -~)  (1.2) 

When O---re<n, Eq. (1.2) would correspond to a situation with negative 
delayed feedback; with 0 < m < n  we have mixed feedback; and when 
0 < m--n  we have positive feedback. Little is known about the analytic 
solution properties in these three cases, though a great deal is known based 
on numerical computations. 

In addition to their obvious importance in applications, differential 
delay equations have also become the focus of intense study in the applied 
mathematics literature since their numerical solutions may exhibit 
behaviors ranging from globally stable steady states through stable limit 
cycle behavior and, finally, culminating in "chaos" as single parameters are 
varied. Further, it is now well-known that there may be an eventual multi- 
stability in the limiting solution behavior as the initial function is varied 
(Crabbet  al., 1993; Lesson et al., 1993; Rey and Mackey, 1992, 1993). 

The real world is never as simple as implied by Eq. (1.1) or (1.2), for 
it is usually the ease that processes are perturbed by noise in one sense or 
another. Thus, when a measurement is made and irregular behavior is 
observed, it is not necessarily clear if the result is a signature of chaos or 
an indication of the effects of externally imposed noise (Longtin and 
Milton, 1988). 

Noise could enter the system (1.1) in one of two generic ways. In the 
first, we might have the situation in which the dynamics are continuously 
and additively perturbed by some noise source so the true dynamics are no 
longer described by (1.1) but rather by 

ax(t) 
dt = - ?x(t)  + F ( x ( t -  ~)) + a~(t)  (1.3) 

where ~(t) is some "random" process yet to be specified and defined. This 
situation is commonly called additive noise for obvious reasons. In the 
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second, we might conceive of a situation in which there is a fluctuation on 
one of the parameters of (1.1) so the actual dynamics are described by 

dx(t) 
art = -]~x(t)+ F(x(t-x))+G(x(t),x(t-T))~(t) (1.4) 

This case is often called multiplicative or parametric noise. 
Though ultimately we would like to understand the global stability 

properties of (1.3) and (1.4) in their full nonlinear form, given the fact that 
we do not, at the present time, understand the global properties of (1.1) in 
the absence of noise, this seems an unrealistic goal. What is not unrealistic, 
however, is to understand the local stability properties of Eqs. (1.3) and 
(1.4) when they are linearized in the neighborhoods of their steady state(s). 
That is the goal of this paper. Specifically, we study the stability behavior 
of the solution of the linear differential delay equation 

dx( t ) 
= ax( t )  + bx( t  - ~) + #(x(t)) ~(t) (1.5) 

dt 

under the influence of perturbations by external whise noise (either additive 
or multiplicative) or additive colored noise fluctuations. Equation (1.5) is 
to be Viewed as the linearized version of a nonlinear stochastic differential 
delay equation in the neighborhood of one of the steady states. 

In Section 2, we first present some general mathematical preliminaries 
that define basic concepts of solutions of stochastic differential delay equa- 
tions like (1.3) and (1.4) and their stability in a probabilistic sense. In that 
section we also offer a brief commentary about the techniques we use to 
prove sufficient conditions for two types of stochastic stability. Section 3 
considers the stability properties of a linearized system under the influence 
Of additive and multiplicative white noise. Section 4 continues our 
investigation by first examining the role of additive colored noise on the 
stability of ordinary differential equations, then extending these considera- 
tions to the effects of additive colored noise on differential delay equations. 
The paper concludes with a brief discussion in Section 5 in which we con- 
trast the approach used here (examining the stability of trajectories) with 
one in which the stability of ensembles is explored through an examination 
of the evolution of densities via the Fokker-Planck equation. 

2. MATHEMATICAL PRELIMINARIES 

We denote by ~(t) a stationary Gaussian white noise process with 
E{~(t)} = 0  and covariance function E{~(t)~(s)} = 6 ( t - s ) ,  where 6 is the 
Dirac delta function, and E denotes the mathematical expectation. Colored 
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noise processes will be denoted by r/(t) and described in Section 4. Using 
the theory of stochastic differential equations we will understand that for- 
maUy white noise ~(t) is the derivative of the Wiener process w(t) (Arnold, 
1974). 

Our central interest is the stability of the trivial (x -- 0) solution of the 
stochastic differential delay equation 

dx(t) = f ( t ,  x,) dt + g(t, x,) dw(t), t >1 0 (2.1) 

where x, = x( t + 0), - z  <~ 0 <<. O, x( t ) E ~1. The initial condition for (2.1) is 

x(O)--#(o), -T~o<<.o (2.2) 

where # is an arbitrary continuous deterministic function. In (2.1), 
w( t )e~P  is a standard Wiener process defined on the probability space 
(/2,/7, P). The Wiener process w(t) has independent stationary Gaussian 
increments with w(O) = O, E{w(t)  - w(s)} = 0, and E{w(t)  w(s)} = rain(t, s). 
The sample trajectories of w(t) are continuous, are nowhere differentiable, 
and have infinite variation on any finite time interval. The upper limit of 
Wiener process samples approaches + oo with probability 1 for t ~ oo, 
while the lower limit is -oo .  

A stochastic process x(t) is called a solution of the stochastic differen- 
tial equation (2.1) when it satisfies, with probability 1, the integral equation 

x(t) = x(O) + f ( s ,  x,) ds + g(s, xs) dw(s) 

where the second integral is Itr's stochastic integral (Gihman and 
Skorohod, 1972; Hasminskii, 1968). 

We introduce the following definitions of stability for stochastic 
differential delay equations (Kolmanovskii and Nosov, 1986). 

Def'mition 2.1. The trivial solution of (2.1) is called mean square 
stable if, for any e > 0, there exists 6(8) > 0 such that for any initial function 
~b(0) the inequality 

sup 1~(0)12 < ~(8) 
- ~ ; 0 ~ 0  

implies E{Ix(t, ~b)l 2 } < e for t >10 and exponentially mean square stable if, 
for any positive constants cl and c2, 

E{lx(t,q~)12}<~cl sup [q~(O)12exp(-c2t), t>~O 
--T~8~O 
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Definition 2.2. The trivial solution of Eq. (2.1) is stochastically stable 
if, for any e t > 0  and e2>0, there exists a 6 > 0  such that for t > 0  the 
solution x(t, (~) satisfies the inequality 

Prob{sup Ix(t, ~)1 ~ s, } ~ 1 - ~2 ~ r  sup I~(0)1 ~ 6 
t~O - - ~ 0 ~ 0  

It follows from the Chebyshev inequality that mean square stability 
implies stochastic stability (Arnold, 1974). 

To prove sufficient stability for equations like (2.1) with delays we use 
a stochastic analog of Liapunov's second method. This well-known 
method, developed by Liapunov (1967) for ordinary differential systems, is 
based on the following idea. A positive definite function v(x) or v(t, x) is 
selected which plays the role of a generalized distance from the origin 
(x = 0) to a point x. If along trajectories of the equation this function is 
noninereasing (dv/dt <~ 0), then the trivial solution x = 0 is stable. 

This method was generalized to stochastic differential equations 
without delays by Hasminskii (1968), Kushner (1967), and Gihman and 
Skorohod (1972). A Liapunov function v(t, x) for a stochastic differential 
equation has to be positive definite everywhere on [0, oo)xR ~ and be 
twice continuously differentiable with respect to x and once continuously 
differentiable with respect to t. Retarded stochastic differential equations 
were considered by El'sgol'ts and Norkin (1973), Kolmanovskii and Nosov 
(1986), and Tsar'kov (1989), where the method of Liapunov-Krasovskii 
functionals was applied to study stability. Mohammed (1984) has also 
considered stochastic differential delay equations. 

For stochastic differential delay equations it is possible to develop 
Liapunov's second method in terms of stochastic Liapunov functions 
jointly with an approach initially proposed by Razumikhin (1956, 1960) for 
deterministic differential delay equations and clarified by Hale (1977). 
Namely, if a solution of a differential delay equation begins in a ball and 
is to leave this ball at some time t, then Ix(t+O)l <Ix(t)[ for all 
0r I ' -z ,  01. This method was also applied by Nechaeva and Khusainov 
(1990, 1992a-e) to derive mean square stability conditions for matrix 
stochastic differential delay equations. 

Using this idea we will prove stability conditions for stochastic delay 
differential equations by contradiction. We will consider the solution of the 
appropriate equation with a deterministic initial function (2.2) satisfying 

sup Ix(0)l <61 (2.3) 
- - ~ 0 ~ 0  

and assume that the solution is not stable. This, in turn, means that there 
must exist some moment of time t = T>  z which is a first exit time of the 

865/6/3-4 



400 Mackey and Nechaeva 

solution from the stability domain with radius p i> 61 about the origin. 
From this it follows that, except for a subset of probability zero, trajec- 
tories satisfy 

Ix(T-~)1 < Ix(Z)l =p (2.4) 

SO 

E{Ix(T-  x)l 2 } <E{Ix(Y)l'} =p2 (2.5) 

when [x(0)12 .< 62. Calculating the stochastic differential of a Liapunov 
function v(x(T)), we then show that under some conditions the assumption 
that at t = T the solution leaves the stability domain leads to a contra- 
diction. In this way sufficient stability conditions are derived. 

3. WHITE NOISE 

3.1. Additive White Noise 

Consider the scalar linear stochastic differential delay equation with 
additive white noise term 

dx(t)= 1'ax(t)+bx(t-z)] dt+adw(t), t>~O (3.1) 

where z > 0 is a constant delay, with initial function satisfying (2.3). Using 
the stochastic analog of Liapunov's second method and choosing a 
Liapunov function of the form v(x)= Ixl 2 (or alternately v(x)= Ixl'), we 
derive a sufficient condition for mean square (stochastic) stability of the 
solutions of (3.1) which is independent of (depends on) the magnitude of z. 

Theorem 3.1. I f  

o 2 1 
a < - I b l  2 Ix(O)l 2 (3.2) 

then the solution x(t) of (3.1) is mean square stable, while for 

a < - [bl (3.3) 

the solution x(t) of (3.1) is stochastically stable. 

Proof. Consider the solution x(t) of (3.1) with initial function given 
by (2.3). To prove condition (3.2) we pick a Liapunov function v(x)= Ixl 2. 
By It6 differential rule the stochastic differential of v(x(t)) is 

dv(x(t)) = I'2 Ix(t)l (ax(t) + bx(t - z)) + o 2] dt + 2 Ix(t)l o dw(t) 
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Integrating this relation from zero to t, taking the mathematical expecta- 
tion of both parts, using the properties of the stochastic integral, and then 
differentiating with respect to t, we obtain 

dE{v(x(t))} <e{2a Ix(t)12 + 2b Ix(t)l x ( t -  T) + 0. 2 } 

<~E{2a Ix(t)12+2 Ibl Ix(t)l Ix( / -z ) l  +0.2} (3.4) 

Now assume that x(t) is not mean square stable, which implies that 
there is some time t = T such that (2.5) holds. From (3.4) and (2.5) we then 
obtain for t ffi T 

d E{v(x(t))} < 2 ( a +  Ibl) E{lx(t)l 2} (3.5) +0.2 

Solving the differential inequality (3.5) gives 

[ 0.2 1 0.2 E{v(x(t))} < E{v(x(O))}+2(a~lbl) e2(a+lbl)t--2(a+lbl) (3.6) 

Note that if a +  Ibl < 0 holds, then e 2(a+ taD,< 1. Furthermore, assume that 

0.2 
E{v(x(O))} + 2(a + Ibl) > 0 (3.7) 

Then (3.6) and (3.7) together imply that 

e{ v(x( t) ) } < e{ v(x(O ) ) } (3.8) 

and since v(x) = Ix[ 2, (3.8) becomes 

E{ Ix(t)l 2} < Ix(0)l 2 

Thus we conclude that 

E{ Ix(T)l 2 } < Ix(0)12 < ~ (3.9) 

which is clearly in contradiction with (2.5). Thus, with condition (3.7) and 
a +  [b] <0,  the assumption that there exists a first exit time T from the 
stability domain is not valid. Consequently, we have proved mean square 
stability of x(t) in the sense of Definition 2.1 with t f f i t f f i~  2. Rewriting 
(3.7) gives the final form (3.2), which completes the proof of the first 
statement of the theorem. 
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To prove the stochastic stability condition (3.3) we use a Liapunov 
function v(x)= Ixl;  with r > 0. This leads to the expression 

1 Ix(t)l,_2} dt E{v(x(t)) }= E [r Ix(t)[ " - I  tax(t)+ 

< E { r v ( x ) . ~ [ ( a + l b l ) l x ( t ) 1 2 + l a 2 ( r - l Q }  (3.10, 

for t = T given by (2.4). If we choose 0 < r < 1 and a + Ibl < 0, then from 
the Chebyshev inequality, stochastic stability for the solution of (3.1) for an 
arbitrary delay z > 0 follows from (3.10). [] 

Using the same type of argument when (3.2) or (3.3) do not hold, we 
can obtain sufficient stability conditions involving the magnitude of T. 

Theorem 3.2. I f  (3.2) does not hold, then the solution x(t) o f  (3.1) is 
mean square stable for 

I a+b+~ 
r < ~ ' : ~ -  ( l a l+ lb l )  Ibl I 

(3.11) 

when 

r 2 

a + b < - 2 I[)l'x'0"i (3.12) 

I f  (3.3) is not valid, then the solution x(t) of  (3.1) is stochastically stable 
for  

a + b  
z<z~w~= (lal+lbl) Ibl (3.13) 

with 

a + b < 0 (3.14) 

Proof. We rewrite (3.1) as 

dx(t) = (ax(t) + bx(t) - [bx(t) - bx( t - z)])  dt + e dw(t) (3.15) 

Pick a Liapunov function v(x)=[xl 2, and again assume that x(t) with 
initial function (2.3) is not mean square stable so (2.5) is valid. The 
stochastic differential of v(x(t)), where x(t) is a solution of (3.15), is then 



Noise and Stability in Differential Delay Equations 403 

d 
-dr E{v(x(t)) } = E{2 Ix(t)l [x(t)(a + b) - b[x(t) - x ( t -  z)] ] + a 2 } 

{ <~E 2 (a+b) tx ( t )12 -2bx ( t )  [ax(s)+bx(s-~)'] ds 

< 1"2(a + b ) +  2 Ibl (lal + Ibl)x] E{lx(t)l 2} +a 2 

for t = T. Let 

2 ( a + b ) + 2  Ibl (lal + Ibl)~ <0,  (3.16) 

set - k  = 2(a + b) + 2 [hi ([a[ + Ibl )z < 0, and solve the inequality 

d E{v(x(t))} < -kE{v(x(t))} + a 2 

to obtain 

E{v(x(t))} <IE{v(x(O))}-~---k l e-k' +a--= ~ 

Consequently, if 

then 

E{v(x(O))} - - ~ >  0 (3.17) 

E{lx(t)l 2 } < ix(0)l~ < ~2 (3.18) 

for t--7". The contradiction between (3.18) and (2.5) leads to the conclu- 
sion that (3.16) and (3.17) are sufficient for the mean square stability of the 
solution x(t) of (3.1). Condition (3.11) follows from (3.17). For  z positive 
(3.12) must be satisfied. Thus the proof of the first statement of the theorem 
is complete. 

To prove the stochastic stability conditions (3.13), (3.14), we take a 
Liapunov function v(x)= Ix[', r > 0 ,  and assume, as before, that t - T > r  
is the first exit time of x(t) from the stability domain so (2.4) and (2.5) are 
valid. Then we obtain, for t--  T, 
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ddt E{ v(x(t) ) } = E {r Ix(t)l '-I (ax(t) + bx(t) - [bx(t) - bx(t - z)]) 

1 ix(t)l,_2} + ~ oZr(r- 1) 

<~E {rlx(t)l'-' ( (a+b)x(t)-b ft_ [ax(s)+bx(s-x)]) 

1" 2 ix(t)l,-2} +~o r(r- 1) 

<E{E(a+b)+ Ibl (lal + Ibt)x'l r Ix(t)l" 

1 ix(t)l,_Z} + ~ o2r(r- 1) 

The last expression can be rewritten as 

d E{v(x(t))} <E {(a+b+ lbl (lal + lbl)~ + l o 2 ( r - 1 ) ' ~ ) r v ( x ( t ) )  } 

(3.19) 
where t = T. If 

a+b+ Ibl ( a + b ) z < 0  (3.20) 

and we choose 0 < r < I, then the stochastic stability of x(t) follows from 
(3.19) by using Chebysbev's inequality. Inequality (3.20) implies (3.13) and 
(3.14). [ ]  

Remark 1. The comparison of these results with the stability 
conditions for stochastic ordinary differential equations and deterministic 
differential delay equations is instructive. 

Setting o = 0  Eq. (3.1) reduces to the deterministic delay differential 
equation 

dx ffi ax(t) + bx(t- ~) (3.21) 

for which it is known (Ersgorts, 1966; Glass and Mackey, 1988; Hale, 
1977) that its trivial solution is stable if and only if either a < - Ibl, or 

cos-'(-a/b) 
~<~Ho~------ ~ , a + b < 0  
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These criteria are shown graphically by the dashed line in both parts of 
Fig. 1, and the region of stability of the differential delay equation (3.21) 
is indicated by the darkened regions of the (a, b) plane. The combined 
sufficient conditions for the mean square stability of the trivial solution of 
(3.1), as given in (3.2) and (3.11), are shown in Fig. IA, and those for 
stochastic stability, as defined by (3.3) and (3.13), in Fig. lB. In both 
portions of the figure, we have used a solid line to indicate the stability 
boundary, and darker shading to indicate the section of the (a, b) plane for 
which we have sufficient conditions for stability. 

A simple visual inspection of this figure indicates that with respect to 
mean square stability, depending on the parameters, additive white noise m a y  

lead to a destabilization o f  a differential delay equation. However, in the 
case of stochastic stability, from the coincidence of the condition (3.3) with 
the identical requirement for stability of the differential delay equation 
(3.21), it appears that with respect to stochastic stability, additive white noise 
does not alter the behavior of  differential delay equations. 

If we put:b = 0 in Eq. (3.1) we obtain the stochastic ordinary differen- 
tial equation 

dx(t) = ax(t) dt + 0- dw(t) (3.22) 

for which there is mean square stability of solutions when 

0 -2 1 

a < -- -~- �9 ix(0)[------ ~ (3.23) 

and stochastic stability if 

a < 0 (3.24) 

holds. When b =0  the stability conditions (3.2) and (3.3) reduce to (3.23) 
and (3.24), respectively. 

Clearly, if b > 0 [for example, in a locally positive feedback situation 
in equation (1.2)] then introducing a delay of any magnitude is potentially 
destabilizing for the solutions of the stochastic ordinary differential 
Eq. (3.22). 

However, from (3.12) it is also clear that if b is negative [e.g., locally 
negative feedback in (1.2)] and we add a delay term to (3.22) with 
satisfying (3.11), then the solution of the resulting equation may be made 
exponentially mean square stable for a <  -(0-2/2 [x(O)[2)-b, which 
implies a stabilization (in the sense of mean square stability) by intro- 
ducing a time lag. A similar result holds for stochastic stability. If b < 0, 
then introducing a delay term in (3.22) with T satisfying (3.13), we obtain 



406 

b 

Mackey and Nechaeva 

a 

I/'c, -l/~) 

Fig. 1A. Mean square stability domain of (3.1). 

h 

l ~ , - l ~ )  

Fig. lB. Stochastic stability domain of (3.1). 
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stochastic stability for a < - b ,  which corresponds to a stabilization with 
respect to (3.24). Consequently, although introducing an arbitrarily large 
delay in the stochastic equation will ultimately destabilize the solution, a 
delay satisfying the criteria of  Theorem 3.2 can play a role of  stabilizing 
factor in a locally negative feedback situation. Introducing a delay into a 
stochastic equation in a locally positive feedback situation is always poten- 
tially destabilizing. �9 

3.2. Multiplicative (Parametric) White Noise 

In this section we consider the stability properties of stochastic 
differential delay equation 

dx(t) = lax(t) + b x ( t -  ~)] dt + ax(t) dw(t) (3.25) 

with parametric white noise and an initial function given by (2.3). Using 
the same stochastic Liapunov function method, we will derive sufficient 
stability conditions for the trivial solution of Eq. (3.25). 

Theorem 3.3. I f  

a < - Ibl - �89 (3.26) 

then the trivial solution of  (3.25) is exponentially mean square stable. I f  

a <  - I b l  + �89 2 (3.27) 

then it is stochastically stable. 

Proof. Choosing a Liapunov function v (x )=  [xl 2 and assuming that 
x = 0 is not mean square stable, i.e., (2.5) holds, we have 

d 
dt E{v(x(t))} < e{2a Ix(t)l 2 + 2 Ibl Ix(t)l Ix(t - x)l + o'2x2(t)} 

<E{lx(t)12}(2a+2 Ibl + a  2) 

at some time t = T. If 2a + 2 Ibl + tr 2 < 0, then 

d/ r{v(x( t ) )}  < - c/r{ Ix(t)l ~ } 

with c = - (2a + 2 Ibt + a2), t = T. From the last inequality we have 

/r{ Ix(Z)l }2 < ix(0)12 e-C,< ~ 
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which contradicts (2.5). Consequently when (3.26) holds, there is no time 
at which x(t) exits from the stability domain, and thus condition (3.26) is 
sufficient for the exponential mean square stability of the trivial solution 
of (3.25). 

To prove (3.27) we take v(x)= Ixl" with r>0 .  Using the same 
reasoning as before, if there is an exit time from the stability domain we 
obtain the following estimate: 

+ { -~ E{v(x(t))} <E ar Ix(t)lr + r Ibl Ix(t)l r - l  Ix( t -*) l  

+la2 lx(t)l" r (r -1)}  

<E {(a+ lbl +Io2(r -1 ) ) r  lx(t)l "} 

for t = 7'. If 

a+lb l  + �89 1 )<0  (3.28) 

then by the Chebyshev inequality it follows that the trivial solution of 
(3.25) is stochastically stable. From (3.28) it follows that 

2a 2 Ibl 
0 < r < l  

o 2 O 2 

From the positivity of r we find a < (0"2/2) - [bl, which is condition (3.27). 
[] 

Theorem 3.4. If the coefficients of Eq. (3.25) do not satisfy condition 
(3.26), then when a + b < - (o2/2)  the trivial solution is exponentially mean 
square stable for 

, { 
x < x ~ * - -  (lal+lbl)lbl a+b+-~  (3.29) 

Alternately, if (3.27) does not hold, then when a+ b < o2/2 the trivial 
solution is stochastically stable for 

, { 
z<T~w*-  (lal+lbl)lb[ a + b - ~  (3.30) 

Proof. To prove (3.29) we use Liapunov function v(x)--Ixl 2. 
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Assuming as above that x = 0 with an initial function satisfying (2.3) is not 
mean square stable, i.e., (2.5) is valid, we find from It6's rule that 

d E{v(x(t))} ~2(a + b) Ix(t)l 
f 

< E 2 

- 2/, Ix(t)l lax(s) + bx(s -- lr)] as + 0.2 

<E{E2(a+b)+2 Ibl (lat + Ibl)x +0"23 Ix(t)l 2} 

for t = T. Set 

-C=2(a+b)+2 Ibl (lal + lb l )x+a2<0  (3.31) 

Then from the inequality 

~t E{v(x(r))} < - Ce{v(x(I"))} 

where C > 0, it follows that there is a contradiction with the assumption 
that t = T is an exit time from the stability domain, and exponential mean 
square stability for the trivial solution of (3.25) follows. Inequality (3.31) 
implies (3.29). The first part of the proof is complete. 

To prove the stochastic stability condition (3.30), consider the 
stochastic differential of v(x(t)) with the Liapunov function v(x)= Ixl'. Let 
(2.4) hold for the solution of (3.25) with initial function satisfying (2.3). 
Using It6's rule we obtain 

d E{v(x(t))} = E {r Ix(t)l ' -  1 ((a + b) x ( t ) -  b[x( t ) -  x ( t -  x)]) 

1 2 2 +~a x (t) r ( r -  1) Ix(t)l ' -2}  

= E {r Ix(t)l" (a + b) - r Ix(t)l'- ' 

• b ~!_, lax(s) + bx(s- ~)] as 

1 2 Ix(t)l'} +~a r (r -  1) 
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Using (2.4) gives 

~ E{v(x(t))} <r a + b +  Ibl (lal + )b l )x+  0-2(r- 1) E{Ix(t)l'} 

for t = T. If 

a + b +  Ibl (lal + lbl)T < �89 - r )  (3.32) 

then we can choose r such that 

0 < r < l  
2 ( a + b ) + 2  [bl ([a[ + Ib])z 

0-2 

and satisfy the condition 

d 
-~ E{v(x(t)) } < -- CE{v(x(t)) }, C > 0  

for t = T, which implies stochastic asymptotic stability of the trivial solu- 
tion of (3.25) by using Chebyshev inequality. The condition (3.30) follows 
from (3.32). [] 

Remark 2. As in Fig. 1, in Fig. 2 we plot the boundary of the 
stability region for the differential delay equation (3.21) by a dashed line 
and indicate the stability region of the (a, b) plane by the darkened area. 

If we set b = 0, so (3.25) reduces to the ordinary stochastic differential 
equation with multiplicative white noise) 

dx(t) = ax(t) dt + 0-x(t) dw(t) (3.33) 

and (3.26) and (3.27) yield well-known conditions for exponential mean 
square stability (Arnold, 1974) 

0-2 

2 

and stochastic stability (Arnold, 1974; Hasminskii, 1968) 

0-2 
a <  m 

2 

of the trivial solution of the stochastic ordinary differential equation. 
In Fig. 2A we have plotted the stability boundary for exponential 
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a 
l/x, -l/x) 

Fig. 2A. Domain of exponential mean square stability of (3.25). 

Fig. 2B. Domain of stochastic stability of (3.25). 
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mean square stability [Eqs. (3.26) and (3.29)] as a solid line and indicated 
the stability domain by darker shading A visual inspection of that figure 
makes it clear that, with respect to mean square stability, multiplicative 
white noise may lead to a destabilization of  a differential delay equation, and 
addition of  delayed effects may either stabilize or destabilize a stochastic 
system with multiplicative white noise. 

Figure 2B shows the stability domain for stochastic stability, bounded 
by the conditions (3.27) and (3.30), drawn as solid lines. In this case it is 
clear that multiplicative white noise always leads to a stabilization of  the 
trivial solution of  the differential delay equation (3.21), and the addition of 
a delay may either stabilize or destabilize a stochastic system with multi- 
plicative whRe noise. 

We can understand this delay-induced stabilization of a stochastic 
system by choosing b negative and adding in (3.33) a delay term with 
satisfying (3.29). Then we have exponential mean square stability for 
a < - ( ~ r 2 / 2 ) - b .  Similarly, with b < 0  and ~ given by (3.30), we have 
stochastic stability for a < (tr2/2) - b. Consequently, with b < 0 it is possible 
to stabilize a system by introducing a time delay satisfying the conditions 
of Theorem 3.4. Conclusions similar to these, obtained using the 
Liapunov-Krasovskii functionals, were found by El'sgol'ts and Norkin 
(1973) and Kolmanovskii and Nosov (1986). �9 

4. ADDITIVE COLORED NOISE 

Before considering the effects of additive colored noise in differential 
delay equations, we first treat the effect in ordinary differential equations 
since the results we present seen to be new. 

4.1. Ordinary Differential Equations with Additive Colored Noise 

This section presents sufficient stability conditions for an ordinary 
differential equation with additive colored noise. 

Consider a stochastic process x(t) which satisfies the equation 

dx(t) = ax(t) dt + ~(t) dt, t >t 0, x(0) ffi x o (4.1) 

where x ( t ) e ~ ' ,  tl(t) is a colored noise term modeled by the Ornstein- 
Uhlenbeck process (Arnold, 1974) which satisfies the Langevin equation 

~ ( t )  
dt - ~rt(t)+o~(t) 
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where ~t>0 and a > 0  are constants, and ~(t) is a scalar white noise 
process. The corresponding stochastic differential equation 

dtl(t) = - Oal(t) dt + tr dw(t), t > 0, r/(0) = r/0 (4.2) 

is linear in the narrow sense, is autonomous, and has a unique solution 
(Arnold, 1974), 

rl(t) = tloe-~t + a e -~tt-s) dw(s) 

where w(t) is a Wiener process, and the stochastic integral is interpreted in 
the sense of It6. It is known that the Omstein-Uhlenbeck process is 
stationary, its correlation function is exponentially decreasing, i.e., 

E{ r/(t ) r/(s) } = e-"  I,-,la2/2ct 

where tr z is the intensity of white noise process ~(t), and E{r  
E{~( t )~(s )}=tS( t - s )  as before. The stochastic system (4.1), (4.2) with 
colored noise is equivalent to the pair of processes (x(t), ~l(t)) given by Eqs. 
(4.1) and (4.2). Although the first component x(t) considered separately is 
not a Markov process, the pair (x(t), ri(t)) is Markovian. 

Write Eqs. (4.1) and (4.2) in the vector form 

(x ( t )~= l'~(x(t)~ 
d X,r/(/)] ( ;  d t + ( : ) d w ( , )  

-o t /k t l ( t ) /  

Introducing the notation 

x(t) 
y ( t )=( t l ( t )  ) ,  A = ( 0  -l~t)' c=(0tr) (4.3) 

we obtain an equation describing the dynamics of the system under the 
influence of additive colored noise: 

dy(t) = Ay(t) dt + c dw(t), t > 0 (4.4) 

We assume the initial conditions to be deterministic, so the equalities 

E{ Ily(0)ll } = Ily(0)ll 

E{ Ily(0)ll 2 } = Ily(0)ll 2 < 

hold, where II-II denotes the Euclidean vector norm. 
The goal of this section is to obtain sufficient stability conditions for 
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the solution y(t)  of (4.4) under the assumption that the deterministic 
system 

dY(d: = A y( t ) (4.5) 

is asymptotically stable, i.e., 0t > 0 and a < 0. As an obvious extension of 
Definition 2.1 we have the following. 

Def'mition 4.1. The solution y(t)  of Eq. (4.4) is mean square stable if, 
for every 8 > 0, there exists 6(8) > 0 such that for t > 0 E{ I[y(t)H 2 } < 8 holds 
for Ily(0)ll a < ~. 

We state the following stability conditions for the stochastic process 
y(t). 

Theorem 4.1. Let the entries in matrix A given by (4.3) satisfy the 
conditions ~t > O, a < O, �9 ~ - a. I f  

o 2 < 2r Ily(0)ll 2 (4.6) 

where - r = m a x { - ~ t ,  a}, then the solution y(t)  o f  (4.4) is mean square 
stable. 

Proof. We investigate the asymptotic behavior of the solution of 
(4.4), which is 

y(t)  = eAty(O) + Io eA(t- s)c dw(s) (4.7) 

under the assumption that (4.5) is stable, i.e., 0~>0, a < 0  with a # - a .  
Using the integral representation (4.7) of the solution, we obtain 
E{ Ily(t)ll2}: 

E{ ll y(t)ll~} = E { leA'y(O) + fs eA('-*)c dw(s) l ~} 

= E { lleA*y(O)ll2 + ~ lleaC'-*'cll2 ds} 

Let 21(A) < 0, i = 1, 2 be the eigenvalues of A and set - r  = max(2~(A )) < 0, 
i=  1, 2. Then IleAIt ~ e - ' ,  so 

E{ lly(t)lla} <~E {Jly(0),l 2 e-2" + ,,cJ,~ ~: e - 2 " ( t - s '  ds} 

= lly(0)ll ~ e-2"+ 1-- IIc[I 2 (1 - e  -2") (4.8) 
2r 
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The first term of this expression tends to zero as t ~ oo and the second 
tends to (1/2r)Ilcll 2. Rewrite (4.8) in the form 

1 
E{ II y(t)l[ 2 } ~< (lly(0)[I 2 _ 1  i[cl[2 ) e_2. + ~r Ilcjl2 (4.9) 

so if the inequality 

I 
II y(0)ll 2 - ~  Ilcll 2 > 0 (4.10) 

holds, then we obtain from (4.9) 

E{ Ily(t)ll 2 } ~ II y(O)ll 2 

and the solution y(t) of (4.4) is mean square stable in the sense of 
Definition 4.1 with s = & Equation (4.10) takes the final form (4.6). [] 

Remark 3. Condition (4.6) can be rewritten in a rather interesting 
fashion when it is realized that the characteristic relaxation time for the 
system is given by 

1 
tsy s -~ - -  -- a 

while the correlation time for the colored noise is given by 

1 
tOO r ~ 

Then (4.6) for mean square stability becomes 

0-2 

min ~ 1 '  t-~} > 2 Ijy(0)ll 2 
( t s y s  

If tcor -'} 0 (approximating the white noise case), then this relation reduces 
to the condition (3.23). However, once t , .  < t,o~, then the mean square 
stability relation takes the especially simple form: 

tcorO2 < 2 Ily(0)ll 2 

indicating a reciprocal relation between the noise correlation time t~r and 
the square of the noise amplitude o 2. �9 

~ss/q3-s 
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In examining the stability of stochastic differential delay equations 
with colored noise, the techniques used in proving the previous result with 
the explicit solution are not applicable. Rather, another approach to derive 
sufficient conditions for mean square stability for a system with colored 
noise must be employed, and this is the stochastic analog of Liapunov's 
second method, which does not require knowledge of the solution. This 
method may also be used to obtain sufficient stability conditions for 
the ordinary stochastic differential Eq. (4.4), and we illustrate this before 
turning our consideration to differential delay equations. 

Thus, we choose a quadratic Liapunov function 

v(y) = yrHy (4.11) 

where H is symmetric positive definite matrix and T indicates the transpose 
of a matrix. Since the matrix ,4 is stable by assumption, then there exist 
positive definite matrices C and H which satisfy the Liapunov equation 

A r H +  H A =  - C  (4.12) 

Theorem 4.2. 
~>O, a<O. If  

Let the matrix A defined by (4.3) satisfy the conditions: 

~2 ~< ~.m~(C) :.~(H) II y(0)ll 2 (4.13) 

where H and C satisfy (4.12), then the solution y(t) of  (4.4) is mean square 
stable. 

Proof. Applying It6's rule (Arnold, 1974; Gihman and Skorohod, 
1972), we have 

dv(y(t)) = [2yr(t) HAy(t) + �89 c r. H).  2] dt + 2yr(t)c dw(t) 

where Tr denotes a trace of a matrix. Integrating from zero to t, taking the 
mathematical expectation of both parts, using the properties of the 
stochastic integral, and finally, differentiating with respect to t gives 

d 
E{v(y(t)) } = E{ yr(t)[ HA + A rH] y(t) + crHc} 

With Eq. (4.12) this becomes 

d 
"dt E{v(y(t)) } = E{ - yr(t) Cy(t) + crHc} 
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Further, from the Raleigh ratio (Horn and Johnson, 1986), 

).rain(D) Ilyll 2 ~< (Dy, y) <~ Amax(D ) 117115 (4.14) 

where 2rain(D), ~.max(D) are the minimal and maximal eigenvalues of some 
positive definite symmetric matrix D, and IlYll is the Euclidean norm of 
vector y, we obtain 

d E{v(y(t)).} <~ - 2=i.(C) E{ II y(t)ll 2 } + 2=~,(H) Ilcll 2 (4.15) 

From (4.14) we can obtain the estimate 

1 -E{ly(t)l 2} <<. E{v(y(t))} (4.16) 
2max(H) 

Combining (4.15) and (4.16) gives 

d 2min(C) "T E{v(y(t))} <~ E{v(y(t))} + 2max(H)Ilcll 2 
2max(H) at  

(4.17) 

Set 

x = - -  m = 2 m x ( H ) I l c l l  2 
~m~,(n)' 

so (4.17) becomes 

d 
~ E{v(y(t)) } <~ -xE{v(y(t)) } + m (4.18) 

Using an integrating factor to integrate the differential inequality (4.18) 
~ves  

•t m e _ ~ t  ) E{v(y(t))} <.e- E{v(y(O))} +--(1 - 
Ir 

or, more explicitly, 

E{v(y(t))} <~ e- [~.r tE{v(y(O)) } 

2~,(H) (l_e_[~8(c)/~,~(n)lt) 
+ Ilcll2 ).mi.(C-----'~ x 
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and finally, 

t a . , . ~ c ~ . ~ ,  FE{v(y(o)) } _ ,tL,,(H)l g{v(y(t))} <~ e -  - Ilcll~ 2=i.(C) ] 
L .  

+ Ilcll ~mm(C) 

If 

holds so 

z{o(y(0))} - Ilcll 2 ~ > u  

lVlackey snd Nechaeva 

(4.19) 

2~.~(C) E{v(y(0))} (4.20) Ilcll2 < ,~ , , (H)  

then it follows from (4.19) that 

E{v(y(t))} <~ E{v(y(O))} (4.21) 

Because the Liapunov function v(y) is a quadratic form and the matrix H 
is positive definite, we obtain from (4.21) 

2=~(H) < 6 (4.22) E{Ily(t)It2} <~ Ily(0)II2 2.,~,(H) 2,,i.(n) 

Therefore it follows from (4.2d23) that the solution y(t) of (4.4) is mean 
square stable in the sense of Definition 4.1 with ~(e) = (2=i~(H)/Xmax(H))e, 
if (4.20) holds. Using the estimate 

2m~,(H) Ily(0)ll ~ ~< yr(O) Hy(O) = o(y(0)) 

condition (4.20) takes the final form (4.13). E] 

Remark 4. We see that the estimate (4.13) is expressed by the eigen- 
values of positive definite matrices C and H satisfying Liapunov's equation 
(4.12). The problem of finding maximal value of the noise amplitude o 2 
under which the stability is preserved leads to the optimization problem 



Noise and Stability in Differential Delay Equations 

where 

2rain( - - A r H  - H A )  2rain(H) , ( /- t)  - 

with L =  {H: H = H r > O } ,  so L is equivalent to 

L =  { n :  > o} 

419 

An analogous problem has been considered by Bychkov et al. (1992). �9 

4.2. Differential Delay Equations with Additive Colored Noise 

These Liapunov-type techniques can also be used to obtain sufficient 
stability conditions for delay differential equations with additive colored 
noise like 

dx(t)  = I'ax(t) + bx(t  - ~)'1 dt + rl(t ) dt, 

drl(t) = - ~rl(t) dt + a dw(t), 

x(O)=4(o), -~<~0<~0 
(4.23) 

~(0)=% (4.24) 

where x ( t ) e ~  t, r/(t) is an Ornstein-Uhlenbeck process defined above, 
z > 0 is a constant delay, $ is continuous deterministic function. We will 
study stability properties of the solution x( t )  of the differential delay 
equation (4.23) perturbed by colored noise t/(t) by considering the pair 
(x(t) ,  ~l(t)), and denote this two-component process by y(t). Using the 
same notation as in (4.3) and further defining 

we can reduce the system (4.23), (4.24) to 

dy(t) = lAy ( t )  + By( t  - ~)] dt + c dw(t) (4.25) 

By a solution of (4.25), we mean the stochastic process y( t )  defined by the 
integral equation 

y( t )  = y(O) + lAy ( s )  + B y ( s -  ~)] ds + c dw(s) 

where the last integral is a stochastic It6 integral. To define an initial func- 
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tion y(O)=(~(O), -T<~O<~O for (4.25), we will consider formally that 
t/(0) = t/o. We assume that y(O) satisfies 

sup Ily(0)ll <~ (4.26) 
- - ~ 0 ~ 0  

where li'll denotes Euclidean vector norm. We will prove a mean square 
stability condition for the solution of (4.25) with initial function (4.26) 
using the stochastic analog of Liapunov's direct method. The definition of 
mean square stability for the solution y(t)  of (4.25) is analogous to that in 
Definition 3.1 with norm II-II instead of l.I. 

We assume that unperturbed system with z = 0, i.e., the deterministic 
system without delay, 

dy(t) = (A + B) y(t)  dt (4.27) 

is asymptotically stable, and use a Liapunov function v(y) defined by 
(4.11) in conjunction with a symmetric positive definite matrix H which 
satisfies the Liapunov equation 

(A + B) r H +  H(A + B) = - C (4.28) 

Theorem 4.3. Let H and C be positive definite matrices satisfying 
the Liapunoo equation (4.28), the matrix A + B be stable, and assume the 
condition 

2max(H)~ > 0 (4.29) 
2mi,(C)-2 IIHBll 1 -t ~,min(n),] 

is satisfied. Then i f  

tr 2 ~ < 2m'n(H) [2mi , (C)-2  'IHBII (1 + Ama.(a)'~q 
2~ax(H ) 2~in(H)/J Ily(0)[12 (4.30) 

the solution y(t)  o f  (4.25) is mean square stable. 

Proof. Assume that y(t)  is not mean square stable so T>  z is the first 
exit time of the process y( t )  from the stability domain of radius 8 > t~ about 
the origin, i.e., 

E{ I I y ( T -  ~)ll 2 } < E{ It y(T)ll 2 } = 8 (4.31) 

From the stochastic differential of v(y(t)),  t = T, and techniques similar to 
those used in the proof of Theorem 3.1 and Theorem 4.2, we obtain 

d E{v(y( t ) )}  = g{yr(t)[H(A + B) + (A + B) r H] y(t)  -- 2yr(t)  HBy( t )  
dt 

+ 2yr(t)  HBy(t  -- z) + crHc} 
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From (4.28) and the Raleigh ratio (4.14) 

dE{v(y(t))}<<.- [2.i.(C)-2 IIHBII (1-~ 2m'x(H)~l 2=i.(H)J_] E{ Ily(t)l[ 2 } 

+ lm~(n) Ilcll = (4.32) 

From (4.14) and (4.32) we have the estimate 

1 " [2=, .(C)-2 IIHBII (1 +~'max(H)'~] d E{v(y(t))} 2m,~(ff) ~ } J  E{v(y(t))} 

+ 2m~(H) Ilcll 2 

Solving the last inequality we obtain 

E{v(x(t))} <.e-kt(E{v(y(O))}-k)+ k (4.33) 

where 

and 

If 

holds so 

m=2~,,x(H) Ilcll 2 

1 I ( Jt'raax(H)'~] k=~.m.=(H) ~m~.(C)-2 IIHBII 1 + ~ / j  

m E{o(y(O))}-~>O 

E{v(y(O))} [2mi,(C)-2 IIHBII (1 + ~,//2m~(H)Y] 
Iic112< ~.~(H) 

then (4.33) yields 

E{v(y(t)) } ~< E{o(y(O))} 

Again applying the Raleigh ratio we have 

E{ II Y(/)II ~ } ~ II y(0)ll 2 Ama,,(n) 
2mi.(H ) < 8 

2m.x(H) 

(4.34) 
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for t ffi T. Setting 6=  (;~maa(H)/lmax(H))8 , we conclude from the contra- 
diction between the last inequality and (4.31) that there is no exit time 
from the stability domain under condition (4.34). Thus, (4.34) ensures 
mean square stability for the solution y(t) of (4.25). Condition (4.34) takes 
the final form (4.30). From the positivity of Ilcll = the restriction (4.29) 
follows. [3 

Remark 5. An optimization problem analogous to that in Remark 4 
can be stated in this case. @ 

Now we will prove mean square stability conditions that depend 
on the delay �9 > 0, assuming that the solution of unperturbed ordinary 
differential system (4.30) is asymptotically stable. 

Theorem 4.4. Let H and C be positive definite matrices satisfying the 
Liapunov equation (4.28). I f  the inequality 

a2 ~< 2mi.(C) 2mi.(H) 11 y(0)ll 2 (4.35) 
~t~,(U) 

holds, then the solution y(t) of  (4.25) is mean square stable for 

{ 1 2, .~.(C) - 
< Zm,, = 2 IIHB[I ([IAII + [IBII) Ily(0)[I 2 2mi,(H)J 

(4.36) 

Proof. Once again consider Eq. (4.25) and pick a stochastic 
Liapunov function v(y)= yrHy. Rewrite (4.25) in the form 

dy(t) = lAy(t) + By(t) - [By(t) - B y ( t -  z)]] dt + c dw(t) 

Let T>~ be the first exit time of the solution y(t) from the stability 
domain, i.e., (4.31) holds. Applying It6's rule and making some transforma- 
tions, we find for the stochastic differential of v(y(T)) 

-~tE{v(y(t))} = E  2yr(t) H[(A + B) y(t) 

- ~ - ,  l i l y ( s )  + B y ( s -  ~ ) ]  ds ]  + c r t t c  

~ E{ y~'(t)[H(A + B) + (A + B)~" H] y(t) 

+ 2 IIHBII (IIAII + IIBII)~ Ily(t)ll 2 } + c rHc 
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Using (4.28) and (4.14), we can further write 

d 
~E{v (y ( t ) ) }  <. - 12mi,(C)- 2 IIHBII (IIAII + IIBII)CI E Uy(t)ll 2 

-t- 2max(n ) Ilcl[ e (4.37) 

Let 

A~i.~(C) - 2 IIHBII (IIA II + Ilnl})~ > 0 

Then from (4.37) we have 

~ E{v(y(t)) } ~ -- kE{v(y(t))  } + m 

with t = T and 

k =  
1 

l,Ami,(C)-211HBIl(llall+llnll)x] >0, m=A~,~(n)  llcll 2 

As in the proof of Theorem 4.3 we can show mean square stability for the 
solution y(t), if 

a2<E{v(y(O))}I'kmin(C)-211HBII(IIA]I+]IBI[)~] 
(4.38) 

holds. Inequality (4.36) follows from (4.38), and from the requirement that 
be positive we obtain (4.35). [] 

5. CONCLUSIONS 

Here we have examined the effects of additive and multiplicative white 
noise, and additive colored noise, on the stability of the trivial solution of 
linear differential delay equations by examining the solution trajectory 
behavior. For stochastic ordinary differential equations, one can examine 
solution stability and bifurcations by using the Fokker-Planck equation for 
the evolution of densities (Arnold et al., 1978; Horsthemke and Lcfever, 
1984; Knobloch and Wiesenfeld, 1983; Lasota and Mackcy, 1994; Mackey 
et aL, 1990). However, there is no analog to the Fokker-Planck equation 
for stochastic equations with a retarded argument l-though some steps have 
been' made in deriving an evolution equation for densities in differential 
delay equations unperturbed by noise (see Losson and Mackey, 1992)], 
and only numerical results are available concerning the influence of colored 
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noise on the density behavior of stochastic differential delay equations 
(Longtin et  al., 1990; Longtin, 1991). 

As in other work, the results of this paper highlight the difficulties of 
studying colored noise effects in comparison to white noise. Using the 
stochastic analog of Liapunov's second method has allowed us to 
investigate analytically the effects of additive colored noise in both delayed 
and nondelayed systems. However, as is apparent from our results of Sec- 
tion 4, these techniques do not easily extend to the case of multiplicative 
colored noise. 
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