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Abstract

A general method for constructing self-similar scalar fractal random fields is suggested based
on the assumption that the fields are generated by a broad distribution of punctual sources. The
method is illustrated by a problem of population biology, the evolution on a random fitness
landscape. A random fitness landscape is constructed based on the following hypotheses. The
landscape is defined by the dependence of a fitness variable ¢ on the state vector x of the
individuals: ¢ = ¢(x); the corresponding hypersurface has a large number of local maxima
characterized by a local probability law with variable parameters. These maxima are uniformly
randomly distributed throughout the state space of the individuals. From generation to
generation the heights and the shapes of these local maxima can change; this change is
described in terms of two probabilities p and « that an individual modification occurs and that
the process of variation as a whole stops, respectively. A general method for computing the
stochastic properties of the evolutionary landscape is suggested based on the use of
characteristic functionals. An explicit computation of the Fourier spectrum of the cumulants of
the evolutionary landscape is performed in a limit of the thermodynamic type for which the
number of maxima and the volume of the state space of the individuals tend to infinity but the
density of maxima remains constant. It is shown that, although a typical realization of the
evolutionary landscape is very rough, its average properties expressed by the Fourier spectrum
of its cumulants are smooth and characterized by scaling laws of the power law type. The
average landscape which is made up of the frozen contributions of the changes corresponding to
different generations is flat, a result which is consistent with the Kimura’s theory of molecular
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evolution. Some general implications of the suggested approach for the statistical physics of
systems with random ultrametric topology are also investigated.

PACS: 05.04. +j,02.50 — r;64.60 Ak;87.10 + ¢

1. Introduction

The study of transport processes in random media with static or dynamical
disorder is a problem of topical interest in condensed matter physics [1-4]. In this
context the concept of a random surface in real space or of a random hypersurface in
an abstract space naturally emerges. For instance a random surface in real space may
represent the border between two phases in a random medium. In other cases
a random hypersurface in an abstract space can be used for representing a force
potential in a random medium with static or dynamical disorder. Among the different
types of random surfaces the ones displaying stochastic self-similar features play
a central role in the physics of disordered systems. Such surfaces may display
geometrical or statistical scale invariant features characteristic for fractal systems.
Both the theoretical description and the experimental evaluation of the properties of
such fractal random surfaces are difficult problems [5]. In this field exactly solvable
models which are however complicated enough to be physically interesting are rare
and the enriching of the collection of such models is most welcome.

The purpose of the present article is to suggest a simple exactly solvable model of
a random self-similar surface which displays statistical-fractal features. Although
inspired by a biological model, Kimura’s theory of neutral molecular evolution [6-8],
this model can be used both for physical and biological applications. Qur procedure
for generating fractal random surfaces could be presented in an abstract way, without
reference to any application; however we prefer to present it in the biological context
which has inspired it in the first place.

Kimura’s theory of molecular evolution is. a- controversial topic of population
genetics. This theory assumes that at a molecular level most mutations are neutral and
that the fixation of most alleles of a gene within a population is purely a random effect.
Although certain data of molecular biology support this theory it is not unanimously
accepted by all scientists. One objection against Kimura’s theory is that it corresponds
to an almost flat fitness landscape which contradicts the observations supporting the
existence of a very rough landscape [9]. Another contradiction is that Kimura’s
theory predicts a uniform rate of substitution of nucleotides (or of the corresponding
aminoacids) during the evolution process whereas the observed substitution rate is
not always uniform [10, 11]. A possible explanation of these contradictions is that
what it is actually observed in only one realization of a random process whereas the
flatness of the fitness landscape or the uniformity of the rate of substitution have
a statistical nature and can be evaluated only by removing the random flutuations by
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means of an ensemble average. Such an explanation has been suggested in connection
with the nonuniformity of the rate of substitution of nucleotides [10, 11].

Our suggestion is that this explanation can be extended to the case of the fitness
landscape. We assume that the fitness landscape is random and is changing during the
evolution process. The modifications of the landscape occur generation by generation.
The random landscape which eventually emerges during the evolution process is
made up of the “frozen” contributions of the changes occuring for different genera-
tions; in the language used in condensed matter physics [1-4] this situation would
correspond to static disorder. These assumptions lead to a simple model for the
evolutionary landscape which is amenable to complete analytical treatment; the
results are of interest both for physics and biology.

The plan of the paper is as follows. In Section 2 we suggest a general approach for
constructing self-similar scalar random fields with statistical fractal features by using
the method of characteristic functionals. In Section 3 a Fourier analysis of the
cumulants of the scalar random field is performed and the main statistical fractal
features of the evolutionary landscape are investigated. In Sections 4 and 5 the
implications of the model are discussed in connection with the possible biological and
physical applications, respectively. Finally in Section 6 some open problems and
possibilities of generalization of the suggested approach are analyzed.

2. Characteristic functionals and scalar fractal fields

We assume that an individual is characterized by a d,-dimensional state vector
X =(Xy, ... ,Xg,) - (1)

which expresses the anatomical, biochemical, cytochemical and physiological state of
the organism. Qur purpose is to evaluate the fitness variable of a group of individuals
characterized by a given state vector. Usually the fitness variable is expressed by the
intrinsic rate of growth r(x) of a homogeneous group of individuals characterized by
the same state vector:

r=rx). (2)

We assume that a realization of the hypersurface = r(x) has a large number of
maxima of different sizes and shapes varying from very sharp and high to very wide
and low and that these maxima are randomly and uniformly distributed in a given
large region X of the x-space. Although the widths and heights of the local maxima are
different we assume that they are all generated by a multiple convolution of the same
probability density of the displacement vector Ax = x — x;:

o(Ax)dAx, _[ o(Ax)dAx =1, 3)
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where x; is the position vector of a local maximum, x is the current position vector of
a point on the landscape and Ax is the displacement vector of a current point on the
landscape from the position of a maximum.

We assume that each evolutionary change can be represented by a convolution of
the probability density ¢(Ax) with itself. If a local maximum is subject to n evolution-
ary changes then its contribution to the fitness landscape is proportional to

P8x)® .. ®p(Ax) = [p(A 1", @

Y
n times

where ® denotes the convolution product in the x-space, that is, given two arbitrary
functions of x, f(x) and g(x), we have

fx) @ glx) = ff (x)glx —x)dx". &)
Denoting by
Enlg), Yl =1, (6)

the probability that n evolutionary changes of a maximum take place in g generations,
at the gth generation the contribution of a maximum to the evolutionary landscape is
proportional to

0q(Ax) =Y ¢(nlq) [9(Ax) ® 17 ™

The value of the fitness landscape for a given position x is made up, up to a constant
proportionality factor, from the additive contributions of all the local maxima present
in the region X of the x-space. If there are N local maxima placed at positions
X1, ... ,Xy, respectively, for which the evolutionary changes have occurred for

q1, -.- ,qn generations, respectively, we have
r(x) = vé(x), ®)
where
N
d(x) = Y. @,lx —x) ®
=1

is a non-normalized fitness variable and v is a constant proportionality factor with
dimension

[v] = [x1] [x2] ... /[Time]. (10)

Since the local maxima are supposed to be uniformly and randomly distributed
within the domain Z, the probability

P)dx, j Pdx=1, (11)

z
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that the position of a maximum is between x and x + dx is simply given by
Px)dx = dx/V;, (12)

where

v, = fdx (13)
z

is the volume of the domain X. We emphasize that the assumption of statistical
independence of the positions of the different local maxima is introduced only in order
to simplify the computations; the theory can be easily extended to the more general
case when the positions of the maxima are correlated random variables described by
a stochastic point process (see Appendix A).

Similarly the total number N of local maxima enclosed within the domain X is
assumed to be a random variable selected from a certain probability distribution

B(N), YB(N)=1. (14)

In this paper we do not assume an explicit form for the probability B(N) of the
number N of maxima. The only assumption made is that we have a summary
knowledge of the nature of the fluctuations of the number of maxima. A similar
approach has been suggested by two of the present authors in a different biological
context, the propagation of space-dependent epidemics [12]. We define the character-
istic function of the probability B(N) as a discrete Fourier transform

G(b) = X exp(ib N)B(N), (15)
N
where b is the Fourier variable conjugate to the number N of local maxima. The

cumulants ({N™)) of the number of local maxima are given by a Taylor expansion of
the logarithm of the characteristic function G(b):

Gt = %, Lomcanmy, 6
m=1 :
that is
N = (=i oG Oyab. )

In terms of these cumulants we introduce the relative fluctuations of different orders
Cm=N™/KNI", m=23, .., (18)
where

KND> =<(N>, (19)
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is the first cumulant of the number of maxima which, according to the definitions
(16, 17) of the cumulants, is the same as the average value of the number of maxima.

If for large values of the average number of maxima (N) = {{(N)), the relative
fluctuations ¢,,, m = 2, 3, ... tend to zero

cmn—>0m=22, as{N)—-> w0, (20)

then the fluctuations of the number of maxima are non-intermittent; otherwise if as
{N) — oo therelative fluctuations of different orders do not decrease to zero but tend
towards constant values different from zero or diverge to infinity then the fluctuations
are intermittent. In this paper we assume the non-intermittency of the fluctuations of
the number of maxima without making any particular assumption concerning the
form of the probability B(N), of the characteristic function G(b) or the values of the
cumulants {{N™)>. This non-intermittency condition expresses in a quantitative way
the fact that the fluctuations of the number of maxima are small in the limit of large
domains X. Although not used explicitly in the case of biological application con-
sidered here, the study of intermittent fluctuations is of physical interest and it is
presented shortly in Appendix B.

Concerning the stochastic properties of the number n of evolutionary changes of
a maximum occurring in g generations we assume that for each generation there is
a constant probability p that a change may occur. By analogy with an approach used
in the theory of epidemic processes described by cellular automata [13], we can
evaluate the probability of occurrence of a change in g generations as

AMg=1-(1-p)r. 2D

Eq. (21) expresses the probability that a change occurs at least for one generation,
1 — p is the probability that no change occurs for a generation, (1 — p)? is the
probability that no change occurs in all g generations and the complementary
probability 1 — (1 — p)? gives A(g). The probability &(n|q) of occurrence of n changes
in q generations is completely determined by the probability A(g) of the occurrence of
a change in g generations; é(n|q) is given by a Pascal law determined by A(g):

¢mlg)=[1 - @] [M@) ' =0 —-pr[1 -1 -pfT". (22)

At gth generation the contribution of a maximum to the evolutionary landscape is
given by (see Eq. (7))
@Ax)=(1—pr ) [pAx)®I"[1 -1 —py]""". (23)

n=1

By introducing the Fourier transform of ¢,(Ax):

ok) = Jexp(ik-Ax) 0 (Ax)dAx, (24)
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where the overbar denotes the Fourier transformation and k is the wave vector
conjugate to the displacement vector Ax, we come to

_ (1 - p)*
_ 25
o) = T wlew) + 1 — o1 29
where
ok) = f exp(ik-Ax)p(Ax)dAx, (26)

is the Fourier transform of the probability density ¢(Ax). The contribution ¢,(Ar) to
the fitness landscape can be computed from Eq. (25) by means of an inverse Fourier
transformation

0g(Ax) = (2n) Jexp( —ik-Ax)

N _ (1 - py dk

[1 - o®)]1/e®) +(1 - p)*
The stochastic properties of the number g of generations for which a maximum is
subject to the process of evolutionary change can be evaluated by assuming that for
each generation there is a constant probability « that the process of evolutionary
change as a whole does not take place. The probability y(q) that the process of

evolutionary change as a whole acts over g generations is given by a Pascal law similar
to Eq. (22).

x(@) =a(l —a)*. (28)
By using a method borrowed from the theory of colored noise [14, 15] we describe

the stochastic properties of the evolutionary landscape by means of the characteristic
functional

Z[K@®)] = <exp (i f ¢(x)1<(x)dx)> : (29)

where K(x) is a suitable test function and the average ( --- ) is taken over all possible
values N and x, ... ,xy of the number and positions of the maxima as well as over all
the numbers of generations g, ...,qy during which the evolutionary changes take
place. By inserting Eq.(9) into Eq.(29) and expressing the average explicitly we obtain

ZIKW]= 3 Z Z j jB(N)x(ql)'--x(qmm)dx;

N=0gq,=

-« Plxy)dxyexp (i i Kx) @, x —xi)dx)

= {=~ [Z 2(9)
IV"[ (JK(x)(pq(x x)dx>—1]+1]} (30)

@7
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from which, by using the cumulant expansion (16) and expressing the cumulants
({N™>> in terms of the relative fluctuations c,,, m =2, 3, ... given by Eq. (18) we
come to

Z[K()] =exp{ 5 %e"'{vzln[vi 3 a(l — ayf Idx’

m=1 £q=0

X [exp [i ~fK(x)(p,,(x — x’)dxil — 1] + 1] }m} , (31)
where

e=(N)/Vsz, (32)

is the average volume density of maxima.

Now we introduce a limit of the thermodynamic type for which both the average
number of maxima {N) and the volume V; available in the x-space tend to infinity
but the average density of maxima remains constant,

Vi, {(N)—> o, &=<{N)/Vz=constant. (33)

For non-intermittent fluctuations obeying the condition (20) in the thermodynamic
limit (33), the expansion (31) for the charateristic functional of the evolutionary
landscape tends towards a universal form which is independent of the details of the
fluctuations of the number of maxima:

Z[K(x)] =exp {s i a(l —a) J.dx’ [exp (i JK(x)(pq(x - x’)dx) — l]} . (34
q=0

A similar universal law is derived for intermittent fluctuations in Appendix B.

3. Fourier analysis of evolutionary landscape

The universal limit law (34) for non-intermittent fluctuations contains all stochastic
information necessary for the characterization of the evolutionary landscape. By
expressing the characteristic functional Z[K(x)] in a cumulant expansion we get

ZIK@)] = exp {ﬁl%j o [CChr) - Bl Krs) - Kl dx,.},

(35)

and thus the cumulants of the non-normalized fitness function ¢(x) are given by the
functional derivatives

8" In Z[K(x)]

<<¢(x1) ¢(xm)>> = (_I)MSK(xl) SK(x )

(36)

K@) =0
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By inserting Eq.(34) into Eq.(36) and evaluating the functional derivatives of the
logarithm of the characteristic functional with respect to K(x;), ... , K(x,) we obtain

K

Lpxy) - lem)d) = 3 ol — a)“J(Pq(n —X) - (X —X)dX'. (37

q=0
Now we perform a Fourier analysis of the cuamulants of the fitness landscape. The
Fourier spectrum of the cumulant of the mth order is given by:

CBl) - Gl = [ | exp(i 3 xu-ku)<<¢(x1) - P> dxy - Aty

(38)

By inserting Eqs.(25) and (37) into Eq.(38) and using the Fourier representation of the
delta function,

5(k) = (2m) % j explix-K)dx, (39)
we get
L Pky) - Plkn)d) = (27T)d'5(§: ku) Snlks, - k), (40)
u=1
= - (1 - py )
Sulks o ko) = — ) __U- . 41
iy ooslim) =20 3, (1= )t [ ([1 R A (e “h

The structure of the Fourier spectrum of the cumulants outlines that the evolution-
ary landscape is statistically translationally invariant. Indeed, due to the delta func-
tion factor 6(Zk,) in Eq.(40) the inverse Fourier transform

KPxy) - Plxm))) = (211,')”1“" "' JCXP( —i i xu'ku)
u=1
x (P(ky) -+ Plkn)>) dky, ..., dk

=j J’a(i k.,)exp( iy x,,»k,,)
w=1 u=1
X Sikyy ... kp)ydky - d, (42)
obeys the condition
LPlxs) - xn)d) = (KB (x1 — Ax) -+ $xn ~ Ax)>), Ax = arbitrary,
(43)

which expresses the condition of statistical translational invariance with respect to an
arbitrary displacement vector Ax. Eq.(43) can be proven by expressing both its terms
as inverse Fourier transforms and noticing that

5 (z k,,) exp (i Ax.é k,,) =5 (z k,,) . (44)
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For investigating the possible self-similar features of the Fourier spectrum of the
cumulants we evaluate in Eq.(41) the sum over the number g of generations by means
of the Poisson summation formula [16]. We have

Smkys - km) =§ I:'[ <%)

. 1— ¢k,)|™?
R Y —ln(l jdyya U[ (k) ]

- Him—1 T1 1—‘ﬁ(k:«):|_1
ln(l— a2, Y H[y+ (k)

2nvlny
xcos< ni - 7))’ (45)
where
H = [In(1 — )]/[In(1 - p)], (46)

is a positive fractal exponent which characterizes the competition between the prob-
ability 1 — p that an individual change does not take place and the probability 1-a
that the process of changing as a whole takes place.

Eq.(45) displays some typical features of the solution of a renormalization group
equation {17, 18] and thus we expect it to generate a scaling law of the negative power
law type modulated by logarithmic oscillations of the wave vector. To avoid the
complications generated by the logarithmic oscillations we consider a special limit in
which the power law scaling is still present but the logarithmic oscillations disappear
[19]. We assume that

a, p\0, H = constant . 47
In this limit Eq.(45) becomes
1
Sk, ...,k,,,)=sdeyy"+W1 ﬁ (y+1—__w>_l. (48)
o u=1 q)(ku)

For simplicity we evaluate only the Fourier spectrum of the cumulants of first and
second order. For m = 1 we have

Si(k)=e, (49)

which corresponds to a completely flat average evolutionary landscape, as required by
Kimura’s theory of molecular evolution [6-8]:

Koy =2n)~* _[<<§5(k)>>CXP( —ix-k)dk=¢. (50)
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It is easy to check that this result is valid even for a, p # 0 when the logarithmic
oscillations are present.

For evaluating the spectrum of the cumulants of the second order we limit ourselves
to the case of unimodal and symmetric probability densities (A x) dA p for which the

average value (Ax) of the displacement vector is equal to the most probable value
Ax, =0:

(Ax)y = JAx<p(Ax) dAx=Ax,=0. (51)

Note that, if this property is initially valid, it is conserved during the evolution process
because the average value corresponding to a multiple convolution product of
probability densities is the sum of the individual average values. We distinguish two
cases.

(1) If the cumulants of the second order of the components of the displacement
vector exist and are finite

{{Ax,Ax,>> = {(Ax,Ax,) = finite (52)
then through a suitable linear transformation of the coordinate system in the x-state
space we can always make that the matrix [({(Ax,Ax, >>] is diagonal, i.e.,

LAx, Ay ) = KAXE DD Bun » (53)
and as | k| — O the Fourier transform of ¢(Ax), @(k), can be represented as

opk)~1— % Y. <CAX2>> k2, as |k| 0. (54)

(2) If the probability density of the displacement vector, ¢(A x), has a long tail of the
inverse power law type, then the cumulants ({AxZ2 ) diverge and Eq.(54) is replaced
by

pk)~1 -} cuk)’Y, 1>$>0, ¢,20, (55)
where B is a fractal exponent between zero and unity and c, are constants.

In both cases in the limit |k| — 0 we have

pk) = o — k), (56)

and thus we can represent the Fourier spectrum of the second cumulant of the
landscape in the form:

L Plk1) @ (k2)D) ~ 2ry-5(ky + k) S, (ky, — ky)
= Qu)*o(ky + k3) Sy (ky, ky) . (57)
We get

1

S,k k) = e H j dyy" 1 [y + (1 — GR/GR] >
0

=&+ eH[l —ok)—(H+1) (%)H B(H,1 —H, q'a(k)):l , (58)
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where

x

B(p,q,x)=fx"‘*(1—x)q—*dx, x>0, pgq>0, (59)

0

is the incomplete beta function.

Now we can compute the scaling laws for the Fourier spectrum in the limit of small
wave vectors |k, |, | k;| - 0. We obtain

(1) If (k) is given by Eq.(54) then

Kplky)Plka))) ~ (2m)* ed(ky + k)

nH(H +1)(1 H
x[l _W(Ez«lixf))(ku)z) ], |y, |kz| 0. (60)

(2) If p(k) is given by Eq.(55) then
K Pk1)pka)>> ~ (2m)ed(ky + k»)

g [1 _mHH+1)
sin(nH)

SH
(Zcu(klu)z) ] |&y], k2| = 0. (61)

‘We note that in both cases the Fourier spectrum for small wave vectors, which in
the x-space corresponds to large vectors, has a scaling behavior of the power law type
which expresses the self-similar features of the fluctuations of the evolutionary
landscape.

4. Biological implications

For outlining the differences between the average landscape, which is flat, and
a given realization, which is typically extremely rough, we evaluate the shape of
a maximum subject to the evolutionary changes for g generations. Up to a constant
proportionality factor such a maximum is represented by the probability density
©4(Ax) of the displacement vector given by Eq.(27) or by its Fourier transform ¢,(k)
given by Eq.(25), which plays the role of a characteristic function.

The cumulants of the components of the displacement vector at g-th generation can
be computed from the characteristic function @,(k) given by Eq.(25) by applying
a relationship similar to Egs.(17) or (36)

™,k = 0)
ok, ... 0k,

which can be derived by direct differentiation of Eq.(26). By applying Eq.(62) for
m = 2 and using the expression (25) for @,(k) after some calculus we get the following

Xy o X 22@) = (— D) (62)
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exact expressions for the cumulants of the second order of the components of the
displacement vector at gth generation:

<<Axu1 Axuz >>(Q) = '/”u,uz (1 - P)—q = "”uluz exP(‘I/‘]c) ’ (63)

where

M= [ M, = [KAX, A D], (64)

are the cumulants of the second order of the components of the displacement vector
attached to the initial probability density ¢(Ax) of the displacement vector at Oth
generation and

9. =1[—In(1 —p]>0, (65)

is a characteristic generation scale.

Eqs.(63) for the cumulants of the second order at the g-th generation are exact; they
hold for any probability density ¢(Ax) with finite cumulants. A similar exact expres-
sion for the height of a maximum cannot be derived. An approximate expression can
be derived by expanding the logarithm of the characteristic function §,(k) in a Taylor
series in the limit |k| — 0 and by keeping the first non-vanishing term

Ing, (k) = — 3k* Mk(1 —p)™? + O(kI*) as|k|-0. (66)

In this approximation the probability density ¢,(Ax) of the displacement vector at
g-th generation can be easily evaluated by means of an inverse Fourier transforma-
tion. By inserting Eq.(66) into Egs.(25)-(27) and by evaluating the integrals over k we
get a multivariate Gaussian probability density:

@g(Ax) = (2m)~ % (det.#)™'/* exp( — dsq/2q.)
xexp[ —3Ax* M~ Axexp(— q/q.)] - (67)

According to Eq.(67) a maximum subject to the evolutionary change for g genera-
tions has the shape of a (d; + 1)-dimensional Gaussian bell. The height of the bell is
decreasing exponentially with the number of generations

@g(0) = (2m) ™%/ (det M)~ exp( — dsq/2q.), (68)
with a rate of decrease equal to
d,/(29;) = —}d,In(1 —p). (69)

A horizontal section of the Gaussian bell is given by a d,-dimensional ellipsoid. The
magnitude order of the parameters of a typical ellipsoidal section can be determined
by diagonalizing the matrix {{Ax, Ax, >>(q). Note that, since according to Eq.(63)
they can be derived from each other by multiplication with a scalar, both matrices
{{Ax,Ax,>>(g) and . can be simultaneously diagonalized, resulting in

KAXY (@) = <KAxI> > expla/gc) - (70)
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According with a well known geometrical property the diagonal elements (70) give the
linear dimensions of the principal axes of the ellipsoid; it follows that the typical width
of the Gaussian bell increases exponentially with the number g of generations.

The above computations show that the evolutionary process leads to the flattening
and to the broadening of a maximum and that this process is exponentially fast. Since
the eventual evolutionary landscape is made up of the contributions of various
periods 4, g5, ... over which the change acts, a typical realization contains all kinds
of maxima from very high and narrow (g small) to very low and broad (g large). Note
that, according to Eq.(28) for x(g), the contribution of very large successions of
generations, which correspond to very large maxima, is exponentially rare and that
most maxima are the result of a small number of evolutionary changes (g small) and
are high and narrow. Even though very rare, the very low and broad maxima are
enough for generating the flattening of the average landscape.

The type of landscape considered in this paper may serve as a basis for the
reconciliation of the neutralist [6-8] and selectionist [20-22] views in population
genetics. The evolution process which has occurred on Earth is unique; it corresponds
to a single realization of a random process and, according to the ideas developed in
this paper, the corresponding landscape should be very rough. The roughness of the
landscape would lead to a selection pressure, which apparently would contradict the
neutralist theory. However, the contradiction is only apparent,because the selection
process is to a great extent spurious since the factors shaping the landscape are
completely random. Since the fitness enters the evolution equations for the population
in a multiplicative way (see Ref. [22] and Appendix C) we expect that the dynamics of
the process described by the present model is more complex than the dynamics
predicted by the pure selectionist or neutralist theories. The main difficulties related to
such a description for the evolution of population density are outlined in Appendix C.

5. Physical implications

Although the construction of a self-similar scalar random field presented in this
paper has been suggested by a problem of population genetics, it is also of interest in
various physical contexts. Our approach provides a very simple model of a self-similar
random surface for which a detailed analysis of the Fourier spectrum of the cumulants
is possible. From the physical point of view it gives a simple representation of a system
with static disorder which eventually emerges due to the independent modification of
the different parts of the system.

The structure of a typical realization of the landscape, which contains a very broad
distribution of maxima, closely resembles a structure with ultrametric topology
[23-25]; such structures with ultrametric topology are very important in the physics
of disordered systems. For outlining the connections between the model of landscape
suggested in this paper and an ultrametric structure, we use the Gaussian approxima-
tion (66) for the characteristic function @,(k) for the evaluation of the Fourier
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spectrum of the cumulants of the landscape. By inserting Eq.(66) into Eq.(41) for
Smikys ... ,kn)We come to

Su(k1s - km) = e i (1—ap
2=0

xexp[ — Rn(ky, ... .kw)(1 —p)77], (71)
Rk, ... k) =14 i k] MEK,. (72)
u=1

Note that Eqs.(71), (72) lead to a simple approximation of the Fourier spectrum as
| k| — 0. By evaluating the sum over the generation index g in Eq.(71) by means of the
Poisson summation technique and passing to the continuous limit (47) we obtain

Smky, ... ky) ~ e{exp[ — Rp(ky, -.. k)]
— [(Rmlky, ..., k)2 [1 — H, Rk, ... Jkw)} . (73)

from which we get the following expression for the Fourier spectrum:

Klky) - Plkn)>> ~ 2m)e{l — (1 — H)[Rnlks, ... ,km)]”}5(zku>,(74)

where

=4}

I"(a,x)='[t"'lexp(—t)dt, a>0, x>0, (75)

is the complementary incomplete gamma function and I'(a) = I'(a,0) is the complete
gamma function. Eq.(74) reproduces the same type of k-dependence for the cumulant
of the second order of the landscape, {{¢(k,)P(k,))), as the exact asymptotic
expression (60); the corresponding proportionality coefficients are however different.

From Eq.(71) the connection between our model of fractal landscape and the
conventional structures with an ultrametric topology [23-25] is clear. Eq.(71) has
a structure similar to a relaxation equation for a process with ultrametric topology,
where the function 2,,(k4, ... ,k,) is the analogue of dimensionless time. This type of
structure is generated by the random alteration of the initial landscape, which occurs
hierarchically, step by step, generation by generation, in perfect analogy with the
relaxation on ultrametric spaces, which occurs in a hierarchical way, level by level.
The evolutionary change of the landscape leads to a hierarchical structure of maxima,
which can be organized in an ultrametric topology formed of different levels. The
maxima subject to the same number of transformation steps have the same character-
istics and belong to the same level of the ultrametric structure.

Our model leads to an additional complication related to the fluctuations of the
number and positions of the maxima, features which are missing in the conventional
models with ultrametric topology reported in the literature [23-25]. The possible
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fractal structure of these fluctuations may lead to interesting interference phenomena
with the main ultrametric structure of the model. Such a possibility is considered in
Appendix B by assuming that the fluctuations of the number of maxima are intermit-
tent and characterized by a fractal exponent . The characteristic functional of the
landscape is (see Appendix B):

ZIK@)] = f,{s S 1@ fdx'[l ~exp (i (K@ - x')dx)] } .06
q=0

where the function #,(z) can be expressed in terms of the incomplete gamma function

»a, u) = ft“_l exp(—)dt, a>0, u>0. (77)
0
We have
Fn(@)=H[(1 + 1/5€)z]"* y[H#,0 + 1/#)z]. (78)

The fractal landscape corresponding to the characteristic functional (76) is much
rougher than the landscape corresponding to non-intermittent fluctuations. We note
that Eq.(76) is nonanalytic in the vicinity K(x) = 0 and then all functional derivatives
(36) are infinite and the cumulants of the landscape diverge. The effect due to the
intermittent nature of the fluctuations, which leads to the nonanalyticity of the
characteristic functional Z[K(x)], is much stronger than the effect of the main
ultrametric structure generated by the hierarchical modification of the maxima.

6. Discussion

The type of landscape introduced in this paper is a simple model for a system with
static disorder displaying self-similar features. The self-similarity is generated by the
competition between two opposite factors: the hierarchical modification of the maxi-
ma, characterized by the individual probability of occurrence p, and the possibility
that for each step(generation) the process of change stops, characterized by the overall
probability a. Due to the equilibration between these two opposite effects a broad
distribution of maxima eventually emerges, ranging from the very sharp and high ones
which are very frequent to the low and broad ones which are exponentially rare. This
broad distribution generates the lack of a characteristic length scale of the maxima
expressed in the power scaling laws of the Fourier spectrum. We point out a formal
analogy between this mechanism of generating power laws and a new type of
self-organized criticality with competition recently suggested by Kluiving et al. [26].

Further studies of the type of landscape introduced here are of interest both from
the biological and physical points of view. In connection with the possible biological
applications it is necessary to elaborate techniques for the study of the evolution
process itself occurring on the type of landscape considered here. The stochastic
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equations describing the evolution of a population on a fractal landscape, even in the
simplest case of monoecious asexual populations, are much more complicated than
the stochastic equations commonly used in population genetics. These equations
describe the evolution of a population under the influence of muitiplicative fractal
noise which may generate some unexpected features such as the lack of self-averaging,
breaking of ergodicity etc. Although these types of equations are of topical interest in
statistical physics [1-4] they have been barely used in population biology [27-29].

From the physical point of view further studies of the self-similar features of the
fluctuating landscapes are of interest, especially in the case of intermittent fluctuations
described by the non-analytic characteristic functional (76). Other direction of re-
search is related to possible applications, for instance the use of the landscape as
a simple model of a fractal surface, the analysis of light scattering on such a surface,
fitting the measured data for real surfaces [5] by adjusting the parameters of the
model, etc. Another possible application of the random landscape is the description of
the properties of a fluctuating medium.
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Appendix A

If the maxima of the evolutionary landscape are not independent then the stochas-
tic properties of their number N and positions x;, ... ,xy can be described by using the
theory of random point processes [30]. We introduce the grand canonical number-
position joint probability density

Qo, Onlxy, ..., xp)dxy, ... ,xN, (A1)

with the normalization condition

ad 1
R N sy csxy)dxy L odxy=1, A2
00 + ¥ [ [grontes o xndxs . dxy (A2

and the generating functional

21
A[W = — - 1 eon s
Wl =0o + % 1 [ [@vtes, .20

X Wixy) ... Wixy)dx, --- dxy, (A.3)
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where W(x) is a suitable test function. The expression (30) for the characteristic
functional Z(K(x)] becomes

Z(Kx)] = A[W(x) = i x(9) eXP<i IK(x')qu(x' —x)dx')]- (A4)

g=0
In particular if the maxima are independent we have
Qo = B(0), Qn(xy, ... ,xy) = N!B(N)P(x1) --- P(xn), (A.5)
and Eq.(A.4) reduces to Eq.(30) derived in Section 2.

Appendix B

For intermittent fluctuations a representation of the probability B(N) of the
number of maxima can be derived by applying a probabilistic version [31] of the
Shlesinger-Hughes stochastic renormalization procedure [32]. The method consists
in starting from an initial probability B(N) for the number of maxima characteristic
for non-intermittent fluctuations and in constructing from it a renormalized probabil-
ity B(N) for which the fluctuations are intermittent. A similar computation has been
performed in Ref.[12] in the context of the theory of epidemics. To save space we do
not present here the detailed computation for the determination of the renormalized
probability B(N). Here we give only the relationship between the characteristic
function of the renormalized probability

G(b)= Y exp(ibN)B(N), (B.1)
N=0
and the non-renormalized characteristic function G(b) of the probability B(N), given
by Eq.(15). We have [12]:

1
G(b) = .#fz’“de( —iln{l — z[1 —expB)]}), 1> # >0, (B.2)
0

where J is a second fractal exponent between zero and unity which characterizes the
intermittent behaviour of the fluctuations of the number of maxima.
In this case Eq.(30) for the characteristic functional Z[K(x)] remains valid with the
“difference that the characteristic function G(b) of the non-renormalized probability
density B(N) is replaced by the renormalized expression G(b) given by Eq.(B.2). We get:

1
Z[K(x)] =ffz*—leG{"iln{1 +z Zox(q)".‘:/—x,
0 a= z

x [cxp (i _[ K@, x — x’)dx) _ 1] } } . (B.3)
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We express the average renormalized number of maxima

(Fy=3 NE(N)= —i@%z—o), (B4)
N=0
in terms of the corresponding non-renormalized quantity
(N> = i NB(N) = —i%ﬂ (B.5)
N=0
We get
(MY =(NYH)H +1). (B.6)

For computing the universal law for the characteristic functional of the landscape
Z[K(x)] which emerges in the thermodynamic limit (33) we expand the non-renor-
malized characteristic function G(b) in the cumulant series (16) and express the non-
renormalized cumulants ({N™)> in terms of the non-renormalized relative fluctu-
ations ¢, given by Eqgs.(18) and in terms of the average renormalized density of
maxima

=<N‘>_ H (N>
Vy H#+1V;'

(B.7)

We obtain

@

Z[K®)] = ffz""“dzexp{ y —"; [e(l + 1/6)]™

(1]
x{V,;ln{l +z), x(q)J‘d—{
q=0 V[

[exp( f K@)o o — x’)dx) - 1] } }m } (B.3)

By passing in Eq.(B.8) to the thermodynamic limit (33) and using the non-intermit-
tency conditions (20) for the non-renormalized probability B(N) we get the universal
law (76) for the characteristic functional Z[K(x)].

Appendix C

In this appendix we present an attempt to reconcile the selectionist evolution
theories of the Fisher—Eigen type [20-22] with Kimura’s theory of neutral evolution
[6-8] for the simplest case of monoecious asexual populations. We assume the
validity of two simplifying assumptions. (1) The random evolutionary landscape is
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shaped in the initial stages of the evolutionary process; in the late stages of the
evolution process considered here the random evolutionary landscape is constant and
made up of the frozen contributions of the initial stages of the process. (2) The
population is enough large so that the sample fluctuations due to the finite population
size can be neglected; the only source of fluctuations is the random nature of
the evolutionary landscape. The evolution of the population can be expressed by
the selection equations of the Fischer-Eigen type [20,21] generalized by
Ebeling et al. [22]

0,p(x;1) = p(x; 1) [r(x) — <rix;0)>] + DV? p(x; 1), (C))
where
pl;t)dx (C2)

is the density of individuals with a state vector between x and x + dx, the diffusion
coefficient D describes the possible mutation processes, the function r(x) is the fitness
variable given by Eq.(8) and

r(x)p(x;t)dx
(rg )y =———— €3
jp(x; tHdx

is a weighted average of the fitness variable. It is easy to check that Eq.(C.1) with the
definition (C.3) for {r(x;?)> conserves the total number of individuals

N = f plx;t)dx = constant . (C4)

Apparently the evolution equation (C.1) for the population density is typical for
a selectionist theory; however, within the framework of our approach, since the
selection pressure is due only to the fluctuations of the landscape, which are purely
random, Eq.(C.1) can be also considered as a neutralist evolution equation.
Following Ebeling et al. [22] the solving of the nonlinear evolution equation (C.1)
can be reduced to a linear eigenfunction—eigenvalue problem of the Schrodinger type

DV*, +[E, — V(x)]¢, =0, (C5)
where the potential V(x) is given by
Vix)= —r@), (C.6)

and E, and y,(x) are the eigenvalues and the eigenfunctions of the Schroédinger
equation (C.5). The complete solution of Eq.(C.1) is [22]:

S eexp( = Eut) b te)
P =y e (— By

(C.7)
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where, at least in principle, the constants ¢, can be evaluated from the initial condition
for the population density. Note that, as the eigenvalues E, and the eigenfunctions
¥.(x) are functionals of the random landscape ¢(x), the solution (C.7) for p(x;t) is also
a functional of the landscape ¢(x):

px) = plx;t|p(x)] . (C3)

The stochastic properties of the population density p(x; t) can be expressed in terms
of a charcteristic functional

YYx; )] = <exp (ij“[p [x,t|¢x)] Y(x';t)dx dt’>> , (C9

where the average is taken over the space of functions ¢(x). The evaluation of the
characteristic functional #[ Y (x; )] is a very tough problem. Although the deriving of
a closed form for 4[Y (x;t)] seems to be impossible, if the depedence (C.8) is known
a perturbation expansion may be derived by expanding the functional p[x;¢|¢(x)] in
a functional Taylor series. By means of this approach the characteristic functional for
the population density ¥[Y(x;t)] can be expressed in terms of the characteristic
functional Z[K(x)] of the landscape.

The above method for describing the evolution of the population density holds only
in the late stages of the evolutionary process. The description of the evolution of the
population in the early stages of development is even more complicated. Since in this
period of time the process of landscape formation is still going on, the fitness variables
¢(x;t) and r(x;t) = vé(x;t), depend not only on the state vector x but also on time, the
sysem is with dynamical disorder and the characteristic functional of the landscape
becomes

Z[K@:0] = <exp (i J' J' b t) K(x: t)dxdt)> . (C.10)

For the evaluation of the dynamic characteristic functional Z[ K (x; t)] it is necessary
to know the stochastic properties of the time interval between two successive genera-
tions.

References

[1] J.W. Haus and K.W. Kehr, Phys. Rep. 150 (1987) 263, and references therein.

[2] J. Bouchaud and A. Georges, Phys. Rep. 195 (1990) 127, and references therein.

[3] M.B. Isichenko, Rev. Mod. Phys. 64 (1992) 961;
A. Bunde and S. Havlin, in: Fractals and Disordered Systems, eds. A. Bunde and S. Havlin (Springer,
Berlin, 1991) pp. 53,97.

[4] K. Furutsu, Random Media and Boundaries (Springer, Berlin, 1993).

[5] J.C. Russ, Fractal Surfaces (Plenum Press, New York, 1994), and references therein.

[6] M. Kimura, Nature 217 (1968) 624; J. Mol. Evol. 26 (1987) 24.

[7] M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, Cambridge, 1983).




364 M.O. Viad et al. [ Physica A 229 (1996) 343—-364

[8] J. Roughgarden, Theory of Population Genetics and Evolutionary Ecology (MacMillan, New York,
1979) pp. 81-97.
[91 M. Eigen, J. McCaskill and P. Schuster, J. Phys. Chem. 92 (1988) 6881.

[10] N. Takahata, Genetics 116 (1987) 169.

[11] N. Takahata, Proc. R. Soc. London B 243 (1991) 13; Theoretical Population Biology 39 (1991) 329.

[12] M.O. Viad and B. Schonfisch, submitted for publication (1996).

[13] B. Schonfisch, Physica D 88 (1995) 435; Cellular automata and differential equation models for
epidemics, preprint (Universitit Tiibingen, Tiibingen, 1995).

[14] H. Kleinert, Path Integrals in Quantum Mechanics Statistics and Polymer Science (World Scientific,
Singapore, 1990).

[15] M.O. Vlad, Astrophys. Space Sci. 218 (1994) 159;

M.O. Vlad, M.C. Mackey and J. Ross, Phys. Rev. E 50 (1994) 798;
M.O. Viad and M.C. Mackey J. Math. Phys. 36 (1995) 1834.

[16] E.C. Titchmarsch, Introduction to the Theory of Fourier Integrals 2nd Ed. (Clarendon, Oxford, 1948)
pp- 60-62.

[17] G.Parisi, Statistical Field Theory (Addison-Wesley, Redwood City, 1988).

[18] N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (Addison—Wesley,
Redwood City, 1992).

[19] M.O. Vlad, Phys. Rev. E 48 (1993) 3406.

[20] R.A. Fisher, The Genetical Theory of Natural Selection (Clarendon, Oxford, 1930), Dover reprint
(New York, 1958).

[21] M. Eigen, Naturwiss. 58 (1971) 465.

[22] W. Ebeling, A. Engel, B. Esser and R. Feistel, J. Stat. Phys. 37 (184) 369; W. Ebeling and
L. Schimansky-Geier, in: Noise in Nonlinear Dynamical Systems, Vol. 1, eds. F. Moss and
P.V.E. McClintock (Cambridge Univ. Press, Cambridge, 1989) pp. 279-306.

[23] G. Rammal, G. Toulouse and M.A. Virasoro, Rev. Mod. Phys 58 (1986) 765.

[24] A. Giacometti, A. Maritan and A. Stella, Int. J. Mod. Phys. 5 B (1991) 709; I. Ya Konderbilt and
F.F. Shender, Usp. Phys. Nauk 157 (1989) 267.

[25] M.O. Vlad, Phys. Scr. 47 (1993) 740; 49 (1994) 389; M.O. Vlad and M.C. Mackey, Phys. Scr. 50 (1994)
615; M.O. Vlad, Phys. Lett. A 189 (1994) 299.

[26] R. Kluiving, M. Georgoulis, N. Mylonas and L. Vlahos, accepted to Phys. Rev. E (1995).

[27] C. Armitano, L. Peliti and M. Saber, C.R. Acad. Sci. Paris I1I-307 (1988) 803; J. Molec. Evol. 29 (1990)
513.

[28] L. Demetrius, P. Schuster and K. Sigmund, Bull. Math. Biol. 4647 (1985) 239.

[29] B. Derrida and L. Peliti, Bull. Math. Biol. 53 (1991) 355.

[30] N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, 2nd Ed. (North-Holland,
Amsterdam, 1992) pp. 30-51.

[31] M.O. Vlad, J. Math. Phys. 35 (1994) 796.

[32] M.F. Shlesinger and B.D. Hughes, Physica A 109 (1981) 597.



