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Abstract. We consider a simple dynamiical system in three different ways, demonstrating that
dynamic entropy behaviour can be radically different depending on the perspective. Namely,
the Boltzmann-Gibbs entropy of the entire (invertible).system may be constant, increasing or
decreasing as a function of time. However, by taking a trace of an invertible dynamical system
we may either obtain a system in which the entropy is continuously decreasing or an exact
(ron-invertible) factor may be obtained which shows a global evolution of entropy to a unique
equilibrinm.

1. Introduction

For over a century the question of how microscopic reversibility could be reconciled with
macroscopic irreversibility has intrigued scientists and generated various attempts to solve
the apparent incompatibility of these two properties. The problem was recognized early
in the work of Boltzmann and Clausius who attempted to find a dynamical foundation for
thermodynamics. Their solution was the Stosszahlansatz (molecular-chaos postulate) which
even they recognized as being completely ad hoc.

In their work, and many subsequent attempts, the dynamical foundation for the
investigation of the problem was always taken to be Hamiltonian in form. Hamiltonian
systems are intrinsically invertible and, from a dynamic perspective, can be at most ergodic
or mixing. However, it is now known that another dynamic property—exactness—is both
necessary and sufficient for the entropy of a system to globally evolve to a unique state
of thermodynamic equilibrium [1,2]. Exaciness is a property that may only be found in
non-invertible systems, and thus Hamiltonian systems are automatlcally excluded as likely
dynamical candidates for a foundation of thermodynamics.

An alternative, which has received considerable attention, is coarse graining [1]—a
process whereby dynamic information is available with only a certain degree of precision.
Although a combination of coarse graining and invertible dynamics is capable of inducing
entropy evolution to an equilibrium state, it is incapable of singling out a unique direction
of time since this entropy evolution after coarse graining is independent of time reversal.
Furthermore, the entropy convergence rate after coarse graining is inversely proportional to
the measurement precision, which is in contradiction to all of our usual notions concerning

irreversibility.
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Here we adopt a completely novel approach to this old and important question. Using a
toy systern to illustrate our approach, we consider a two-dimensional system with invertible
dynamics operating in a finite phase space. The dynamics are parametrized by a single
number ¢,

We consider a map S, : W —» W, where W = [0, 1] x [0, 1], to examine the
different limiting behaviour of densities and entropy when different perspectives relative
to S, are adopted. Although we have chosen a quite specific form for §,, we believe our
considerations serve as a paradigm for interpreting the longstanding discrepancy between
entropy behaviour at the macroscopic level and dynamic properties at the microscopic level.

The specific discrete time map that we have chosen for study is given by

Se(x, ¥) = (To(x), Uelx, ¥)) ¢}
wherein the parametrized maps T, U, : [0, 1] — [0, 1] are given by
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respectively (see figure 1 right), where & and ¢ in (2) and (3) satisfy o, ¢ € (0, 1).
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Figure 1, Components of the map S, defined by (1): left, the map x4y = T;(x.); right, the
map Yo+t = Uz (xns Ya)

Since our goal in this paper is to study the dynamics of entropy evolution from different
perspectives, we focus our attention on the evolution of densities under the action of 3, and
the corresponding evolution of entropies.

The outline of this paper is as follows. In section 2 we introduce some basic concepts
and definitions, illustrating these with the properties of the familiar Baker transformation. In
section 3 we study the entropy behaviour of the full system S, as well as the behaviour of the
subsystems T and U,. We show that the entropy of the full system S, may increase, decrease
or remain copstant as a function of time. However, if we know only the dynamics of T, we
conclude that the entropy always approaches an equilibrinm entropy, while knowledge of U,
alone leads us to the conclusion that the eatropy is continuously decreasing. We conclude
with a discussion of the physical implications of these different ways of examining dynamics
and the consequences for entropy in section 4.
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2. Tools

Before turning to our central points, we first introduce some concepts, definitions, and resuits
that will be essential [1,2].

2.1. Dynamics, densities and density evolution

Consider a system operating in a phase space W. Ou this phase space the temporal evolution
“of our system is described by a dynamical law §; that maps points w in the phase space
W info new points, i.e. § : W — W, as time ¢ changes. In general, W may be 2 d-
dimensional phase space, either finite or not, and therefore w ‘is a d-dimensional vector.
Time, ¢, is discrete and integer valued, t € Z=1{...,-2,—1,0,1,2,...}. )
For example, we could consider a system w1th dynalmcs descnbed by the Baker
transformatlon

2x, 3 o0gxgt- » - -
Suaﬂ={( ) 0sisa %)
) (2x—1,5y+-2=) 7 < <1 7
which maps W = [0, 1]1x [0, 1] into itself. We will use the Baker transformation to illustrate
the concepts of this section, and lay the foundatlon for our investigations in subsequent
sections.

Two types of dynamics will be important in our considerations. First we introduce the
concept of a dynamical system {S;};cz on a phase space W, which is simply any group of
transformations §; : W — W satisfying: (i) Sp(w) = w; and (i) 5,(Sy(w)) = Sr{w)
for ¢,/ € Z. Dynamical systems are invertible since they may be run either forward or
backward in time. Other than Hamiltonian dynamics, a good example of an invertible
system is given by the Baker transformation since
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The second type of dynamics, that is important to distinguish, is that of semidynamical
systems {S;};eny, Which are any semigroup of transformations S, : W — W, ie. (i)
So(w) = w and (ii) S;(Sy{w)) = Spr(w) for t,#' € N = {0,1,2,...}. In contrast to
dynamica] systems, semidynamical systems are non-invertible and may not be run backward
in time in an unambiguous fashion. A good example is given if we consider only the x
component of the Baker transformation

7o) = 2x
(x) = 2% —1

which can be written in the alternate form 7(x) = 2x mod 1. The dynamics described by
(6) are often referred to as the dyadic map. It is obvious that T is non-invertible since for
any given value of T, there are two possible values of x that could have produced it.

The concept of a factor of a transformation can be understood with the aid of a diagram.

X — X
T
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Let W and X be two different phase spaces. If there is a transformation F : W — X such
that T; o F = F o §; (so the diagram commutes), then T is called a factor of S;. A trajectory
of the factor 7; is called a trace of the system S,,

Going back to our example of the Baker transformation, the transformation T for the x
component is a factor of the Baker transformation.

Since we are considering the temporal evolution of densities under the action of S,
we examine the way in which the dynamics alter densities. If f is an L! function
in the space W, i.e. if fw |f(w)[dw < oo, then f is a density if f € D where
D={felL':f >0/f) = 1} denotes the set of all densities. (As usual, || f}}
denotes the L! norm | f|| = fw | £ (w)| dw.) The examination of the evolution of densities
by system dynamics is equivalent to examining the behaviour of an infinite number of
trajectories. Given a density f then the f-measure tir(A) of the set 4 in the phase space
W is defined by pp(A) = [ 4 f(w)dw and f is called the density of the measure py. The
usual Lebesgue measure of a set A is denoted by g (A), and the density of the Lebesgue
measure is the wniform density, fi(w) = 1/u (W) for all points w in the phase space
W. We always write g (dw) = dw. Using the notion of an indicator function defined by
la(w) =1 if w € A and 14(w) = O otherwise, we can write the density of the Lebesgue
measure of a set A as fi(w) = 14(w)/uL (W),

Although it is clear from (4) how successive temporal points (x, ¥) € W are computed
to form the trajectory {x;, y:}ioy, We must introduce an analogous concept for how densities
evoive. Any linear operator P¢ : L! — L! thatsatisfies: () P/ > O; and (i) | P* (| = [ Fil
forallt € Zor Nand f >0, f € L! is called a Markov operator. If we restrict ourselves
to only considering densities f, then any operator P which when acting on & density again
yields a density is a Markov operator. Any density fi that satisfies P'f, = f, for all ¢ is
gaid to be a stationary density of the Markov operator P. In analogy with the definitions
of dynamical and semidynamical systems in the last section, we may introduce invertible
and non-invertible Markov operators. Given a Markov operator P¥, then FP? is an invertible
Markov operator if: (i) POf = f; and (i) P'(P*f) = P'* f for all t,¢' € Z. Clealy,
allowing t, ¢’ € Z is the origin of the invertibility. However, if property (ii) of an invertible
Markov operator is replaced by (ii"), P*(P¥ f) = P*+ f for all t,' € N, then P! is a
non-invertible Markov operator.,

A transformation §; is said to be measurable if S,"l(A) € W forall A € W. Furthermore,
given a density f, and associated measure j.,, 4 measurable transformation S; is non-singular
if . (5;1(A)) = O for all sets A such that p£,.(4) = 0. If S, is a non-singular transformation,
then the unique Markov operator P* : L! — L! defined by

fP'f(w)dw:f fw) dw
A 5y

is called the Frobenius-Perron operator corresponding to S. The Frobenius—Perron operator
P’ describes the evolution of densities under the action of a dynamics S. The equation
defining the Frobenius—Perron operator has a simple intuitive interpretation. Start with an
initial density f and integrate this over a set B that will evolve into the set A under the
action of the transformation S;. However, the set B is §;7'(4). This integrated quantity
must be equal, since 5; is non-singular, to the integral over the set 4 of the density obtained
after one application of §; to f. This final density is P’ f,

Given a density f and associated measure jir, then a measurable transformation S, is
said to be f-measure preserving if us(S; 1(A)) = s (A) for all sets A. Measure-preserving
transformations are necessarily non-singular. Since the concept of measure preservation is
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not only dependent on the transformation but also on the measure, we alternately say that the
measure jir is invariant with respect to the transformation S; if Sy is f measure preserving.
1t is easily shown that the Baker transformation preserves the Lebesgue measure on
W = [0, 1] x [0, 1] since an expansion in the x direction by a factor of two is always
compensated for by-the corresponding contraction factor of 1/2 in the y direction. The
Frobentus-Perron operator corresponding to the Baker transformation is given by

Fix, 2y) 0y <
)]
<y g

FGx2y—1) 3

e

Psf(x,y)= {

Clearly, Pslw(x,y} = lw(x,y) illustrating that the uniform density of the Lebesgue
measure py ([0, 1] x [0, 1]} is a stationary density of Ps.

2.2. Ergodicity, mixing and exacimess

We next turn to a consideration of the dynamical properties of maps § : W — W as
manifested through the behaviour of sequences of densities { P* f} where P is the Frobenius—
Perron operator corresponding to § with stationary density fi.

First, a non-singular transformation S; is said to be f. ergodic if {P!f} is Cesaro
convergent to f, for all densities f, i.e., if limyoo(1 /t)}: (P*f, g = {f., g). (Here,
the scalar product of two functions is denoted in the usual way: {f, g} f x f®gx)dx
where f € L! and g € L™.) Ergodicity is completely equivalent to the existence of a
unigue stationary density f,.. Secondly, let S; be an f, measure-preserving transformation
operating on a finite normalized space. Then S, is called f, mixing if”

Jim (P £, g) = (£, 8)

i.e. the sequence {P¥ £} is weakly convergent to the density £, for all imtial densities f.
Thirdly, if S; is an f, measure-preserving transformation operating on a normalized
phase space W, then 5; is said to be f, exact if

lim [P'f - £ =0  forall feD

i.e. {P*f} is strongly convergent to f, for all initial densities f. Exactness is completely
equivalent to limy.0o #+(S:(A)) =1 for all sets A of non-zero measure. It is important to
_ note that systems with invertible dynamics can never be exact. Exactness implies mixing
which, in turn, implies ergodicity. If a given dynamics is ergodic, mixing or exact ‘we will
also use the same adjective for the corresponding Frobenius—Perron operator. Intermediate
between mixing and exactness is a fourth type of dynamics known as a K automorphism,
but for all practical purposes we may take this as equivalent to mixing.

The Baker transformation (4) is not only ergodic, it is also mixing (actually, it is more
than mixing since it is a K-automorphism, but this will not concern us here). Because of
its invertibility, it cannot be exact. However, if we consider the factor T(x) of the Baker
system, it is well known that the dyadic map has a unlque stationary density fu(x) = 1j0.1;(x)
for 0 € x € 1 and, further, is exact.
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2.3. Entropy

A central consideration in this paper is the behaviour of the entropy of a density. We first
define the Boltzmann—Gibbs entropy of a density f by

H(f) = - fw Fw)log f(w)dw @®

in keeping with the introduction of entropy in the seminal work of Boltzmann and Gibbs.
The Boltzmann—Gibbs entropy of the Baker transformation is given by

12 pl
H(Psf) = — fo fo F(bx,23)log £ bz, 25) dx dy

Iopl
_fmfo FGx,2y —Dlog fix, 2y — Ddxdy. )

A change of variables on the right-hand side gives H(Psf) = H{(f), so H(P{f) = H(f)
for all times ¢, illustrating that the Boltzmann—Gibbs entropy of an invertible measure-
preserving system is always constant in time. Furthermore, since the Baker transformation
is ergodic we know that the stationary density fi.(x, ¥) = 1 is unique. It is straightforward
to show that A{Iw) = 0 so the Boltzmann—Gibbs entropy of the full Baker wansformation
will, in general, not be equal to the entropy of the stationary density.

Continuing with the Baker system, we suppose that although the dynamics (4) continue
to operate we are ignorant of the existence of the variable y and are only able to measure
values of the x variable (i.e. we are only able to examine a trace of S). Thus, through our
measurements we are monitoring the behaviour of the exact dyadic map (6) in complete
ignorance of the existence of the concomitant dynamics of y.

The entropic implications of the dynamic property of exactness are contained in the
following result, which also offers an interesting commentary about the second law of
thermodynamics.

Theorem {. Let P? be a Markov operator operating in a phase space W. Then the entropy
of P! f goes to its equilibrinm value H{f,} as ¢ = o

rl_i’llgaH(Prf)-—-H(f*) forall feD
if and only if P’ is f, exact.

Remark. Theorem 1 tells us that in only examining the trace of the factor T (given by
(6)) of the full dynamics (4), i.e. by only observing x, we will conclude that the entropy
of the observed system uniquely converges to the entropy of the stationary density! This
is clearly in contrast to our conclusions when we observed the entropy behaviour under the
action of the full dynamics §.

The proof of this theorem is simple given the notion of conditional entropy, and a
lemma.

If f and g are two densities such that supp f C supp g (supp f denotes the support of
), then the conditional entropy of the density f with respect to the density g is

He(flg) = — fw F(w)log [; ((m dw.

The conditional entropy, a generalization of the Boltzmann-Gibbs entropy, is always defined
and H.(f[|g) measures the deviation between the two densities f and g. The following
lemma deals with the global convergence properties of H..
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Lemma 2. (Mackey [1], theorem 7.7.) Let P’ be a Markov operator operating in a phase
space W with statlonary density f.. Then the conditional entropy of P’ f with respect to
J« goes to zero

Jim He(P'f|f)=0  forall feD
if and only if P* is f, exact.

- Proof of theorem [. The proof follows directly from lemma 2 and the definition of f,
exactness when we rewrite the conditional entropy of P* f with respect to £, in the form:

Ho(P' flf) = H(P' f) — H(f.) +fW[P’f(w) — fi(w)llog fi(w)dw. O

In a general framework, theorem 1 is remarkable for two reasons:

(i) It sets forth necessary and sufficient dynamzc criteria for ‘the second law of
thermodynamics; and

(ii) Since all exact systems are non-mveruble, and all microscopic dynamical equat:ons
of motion in physics are invertible, it highlights a clear problem that will be met in any
attempt to reconcile macroscopic thermodynamw behaviour with microscopic dynamics as
currently formulated.

Continuing this examiration of the entropy behaviour of exact transformations and the
question of factors, we close.this section with the following theorem,

Theorem 3. (Rochlin [3]) Every f,-exact transformation is the factor of a K-automorphism.

The transformation F involved in our discussion of factors and traces is precisely
what Prigogine and co-workers [4,5] refer to as a projection operator in their work
on the generation of irreversible behaviour from reversible dynamics. The Rochlin
theorem 3 serves as the analytic link in their work between K-automorphisms and exact
transformations.

Since K-automorphisms are invertible and measure preserving, their entropy is forever
fixed at its initial value f1). On the other hand, by theorem 1 we know that the entropy of an
exact transformation, which by theorem 3 is the factor of a K-automorphism, converges to
its equilibrium value irrespective of the initial density with which the system was prepared.

3. Three views of dynamics: three entropy behaviours

With the introductory and illustrative material of the previous section, we now turn to our
main subject—the investigation of the system (1)—(3), parametrized by ¢ € (0, 1). Thus the
full system S, is a combination of a tent-like map T. (equation (2)) as considered by Mori
and co-workers [6], and a slight generalization (UC, equation (3)) of the y portion of the
Baker transformation. . :
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3.1. Entropy of S,

Like the Baker transformation, the map S; is invertible and has an inverse given by

S, ) = (10)

—a
(1—(1—0)15,?_“) <yl

From this relation, it follows that the Frobenius—Perron operator Ps_corresponding to S, is

PScf(x’ J’) = (X(lc— C)f (1 i C(x - C), 'z';) l[c,ﬂ(x)l[o.d}(y)

l1—-¢
l—w

(1 —(1-o)x, 'Eg) e, 13(¥)- an

Although S, is invertible, it is not measure preserving, and thus the Boltzmann—Gibbs
entropy of Ps, F is, in general, not constant with respect to time. Indeed, a straightforward
calculation gives

1 1
H(Ps f) = — fo fo Ps, f(x, y)log Ps, f(x, y)dx dy

¢ ¢ . 1~
= 1 - [l | [ Fwran - [10g =

el -
oz]f, Ffx)dx (12)

where

1 1
H(f) = — fu [0 ., y)log £(x, y)dxdy

and

1
Foy = fo £, y)dy.

An examination of the coefficients

and log

c
Bl —0) 1—

in (12) shows that it is impossible for them to be simultaneously negative. There are two
possibilities:

(i) ¥ they have different signs, then the entropy H(Ps f) can be equal to, less than or
greater than H(f) depending on the values of the integrals over the reduced density f(x)
of the factor .

(ii) Alternatively, if both are positive (which occurs for ¢ < o < ¢/(1 = ¢)) then the
full dynamics S, are contracting and the entropy is decreasing, H(Ps f) < H(f).



The approach of entropy to equilibrium 1947

3.2. Entropy evolution of the factor T,

The Frobenius—Perron operator corresponding to 7, is given by [6]

(s

and it has a parametrized stationary density

Ps.f(x) = T2 — (- c)) HenG)+ (1 - f(Q—A—ax) (13)

. 1
Selx;0) = 1[0 (XD + 1((: 17(x) ce(0,1). (14)

The map T; is a factor of t_he full two dimensional dynamics 'Sc since the following
commutative relation holds

Fay) 25 Pfxy)
F F

f rg Pr f(x)

50
Pr f @ty = [ Pusene

by identifying the factor operator with Ff(x, y) = [ f(x, y)dy. This can be shown in a
straightforward fashion using the explicit expressions for Pz, and Ps,.
Furthermore, the map T, is f, exact where f. is the stationary density given in (14),
To prove this requires a minor digression. )
We first define a non-trivial lower bound function & € L! for a Markov operator P as
any function 2 > 0 with ||&])] > 0 such that lim,.o P f = k for all initial densities f
Then the following lemma is useful.

" Lemma 4. (Mackey [1], Theorem 7.6.) A Markov operator P is f, exact if and only if
there exists a non-trivial lower bound function # for P.

We can use this result to prove the exactness of the Mori map. Namely
Theorem 5. The Mori map (2) is f, exact for.all ¢ € (0, 1).

Proof. Pick an arbitrary set A C [0, 1] with non-zero Lebesgue measure 1 (A) > 0. Note
that for every two iterations of the Mori map, we have an expansion of the measure by a
factor of at least 1/c so in a finite number of steps .

1 i
(-E) p#L(A) = pL(S%(4) > 1

and for all t‘> to(f), where

log (1/(11(a)))
log (1/c))

- we have that-supp Pr. f = [0, 11.
Now letk = I, 1](x) inf, [limy o oo Pr F{x)]). By our above arguments # is a non-trivial
lower bound function for Pr, and T is F. exact. ‘ O

w(f) =
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As a consequence of the exactness of the factor 7, of S, we know from theorem 1 that
the entropy H (P f) will approach its equilibrium value of

Ho)=H(f,)=log(l+c)+ —_{_——log(l —c) (15)

ast — oaQ.

Comparison of this result with theorem 3 offers an interesting parallel. Namely, in
our situation we have a non-measure-preserving invertible map S instead of the Baker
transformation which is a measure-preserving K automorphism. Nevertheless, in the
situation we consider here taking a trace (of S} to give an exact factor (7T;) gives rise
to a system whose entropy approaches the equilibrium value.

We will see in the next section that this global approach of H (P:r £) to the entropy of
S« 15 accompanied by corresponding changes in the entropy of PU f.

3.3. Entropy evolution and U,

We next examine the temporal evolution of densities under the action of U, and the
corresponding entropy. We do this for two different cases.

(i) In the first, we consider a situation in which the evolution of x can be described
exactly, i.e. by a trajectory which is given by the iteration of the map T; of equation (2).
Then the evolution of y is described in terms of a density f(y) which evolves under the
influence of the trajectory x(z).

(if) In the second, the evolution of both variables (x and y) is described by a density
f(x, ¥) as in section 3.1, but then by integration over x a reduced or traced density f(y)
is considered.

3.4. Case (i)
In this cage, the density f translates to Pu,f according to
l f (Z) 0gx<e¢
Py f) = v o (16)
—_— f ( a) e<x< L

Notice that the expression for Py, f is like a Frobenius-Perron operator, yet different for
each time step because of its dependence on x. Since from equation (16) the action of
Py_ is always contracting with & € (0, 1), we know that the entropy H (P{,c f‘) is a strictly
decreasing function of increasing time. Since T, is fi exact, the evolution of y under the
action of U, can be alternatively interpreted as due to the action of a random map [7].

As this behaviour is totally independent of the trajectory {x,};2, we should expect that
it will also hold for an ensemble of trajectories described by the combined density f(x, ¥).
This expectation is confirmed by the following calculation, correspondmg to the second
case listed above.

3.5. Case (1)

Consider a density f(x, y) of the combined system whose evolution is governed by the
Frobenius—Perron operator (11) of section 3.1. Then a ‘traced” density f(y) is defined by

. 1
ﬂw=£fmwm.
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Furthermore,

Pofor= [ Puitnts =1ea0) [ s (Fe-0.) &

y—w
f(l—(l—c)x,m) dx
= 1o ®) f () st s [ 7 f (5 22%) on

We will first prove that the weak inequality H(Py, £ < H(f) holds, and then show that,
on average, the stronger relation H{Py, A<H ( i) holds on every second iteration.
To show that the weak inequality H(Py, £ < H( f) is always valid, note that the
entropy of Py, F can be written

s [l 2]
L el oo

[ reoalels [ reelfor

(L] el el

¢ 1
Ao = fo Feyd  amd  HO)= f £y dx

If we define

s0 f = fi + fa, then

A cy) fz(y) } ,

H(Py,f) = - fo { fiz g A2

. .
__ /0 {p1(y)10g 2O, pyyie gpz(y)f(y)} Fody

+ fa(y)log

1 o
_ 1 O }
fo [p e Foy T gpz(y)f(y) Forey

~where pi(y) = fi(y)/f(y), fori=1,2and y & supp f with f() #0,s0 p+pr = 1.
Using the relation

prloga+ prlogh < log(pia + pab)
we have immediately

H(Py, f) < H(f).
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In point of fact, we can sharpen this relation between successive entropies considerably,
since in general H(Py, f) < H(f) whenever p loga + pylogh < log(pia + pab). The
only cases for which p;loga + pylogh =log(pra+ pab) are: () pr=0or p2 = 0; or
(ii) # = b. We consider each in turn.

(i) If p1(y) =0 then

1
0= - [ Ao A0V —log = < H.
The same conclusion helds in the event that pa(y) = 0; or if p1(y) =0 for y € 4
and pa(y) = 0 for ¥y &€ A; with Ay, A» C[0,1] and A4, U A = suppf Thus again
H(Py F) < H(P.
(i)} From the above considerations it is obvious that a necessary condition for the equality
H(Py fH=H()toholdisa =5 or

1z 1 -

- = for all y.

—AO) =72 hO)  forally

Consider the phase space of S., consisting of the unit square, divided into four regions as
illustrated in figure 2. A straightforward consideration of the map (1) shows that under the
action of S, the flows between these four regions is given by

AN

Since there is no input to rcglon Tit follows that, in general (after transients), H (Py, =

H(f) if and only if supp f» is contained in region IV. Because of the flows between the
four reglons, it may be the case that on one iteration H(Py, £ = H(A, but for the next
H (PU H<H (Py, £). Thus we conclude that, on an average encompassing two or more

iterations, the entropy H(Py f F} is strictly decreasing.

Y
1
I v
o .
[ I
0 C 1 —x

Fipure 2. Four regions of the phase space W.
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4. Conclasions

In this paper we have considered a simple system in three different ways, demonstrating
that dynamic entropy behaviour can be radically different depending on the perspective.
Namely, the entropy of the entire (invertible) system §; may be constant, increasing or
decreasing as a function of time. However, by taking a trace of an invertible dynamical
system we may either obtain a system (U,) in which the entropy is continuously decreasing,
or an exact (non-invertible} factor (7,) may be obtained which shows a global evolution of
entropy to a unique equilibrivm.

Even though the system we consider is extremely simple, the fact that it is capable of
displaying such a wide range of behaviour normally associated with much more complicated
systems leads us to speculate whether it offers an important paradigm for extending our
understanding of equilibrium and non-equilibrium thermodynamic behaviour.
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