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Abstract. Here we consider the dynamics of a population of cells that are 
capable of simultaneous proliferation and maturation. The equations describ- 
ing the cellular population numbers are first order partial differential equa- 
tions (transport equations) in which there is an explicit temporal retardation 
as well as a nonlocal dependence in the maturation variable due to cell 
replication. The behavior of this system may be considered along the charac- 
teristics, and a global stability condition is proved. 
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1 Introduction 

Due to the existence of biological age and/or maturation variables within 
replicating cells, models for these processes naturally fall into the category of 
age structured population models (Metz and Diekmann 1986, Lasota et al. 1991) 
with dynamics determined by the solutions of partial differential equations. 
Sometimes, depending on the boundary conditions, these formulations reduce 
to differential delay equations (Mackey 1978, 1979, Mackey and Milton 1990). 

In this note we consider the dynamics of replicating cellular populations 
based on a generalization of the Go model of Burns and Tannock (1970) and 
the equivalent model of Smith and Martin (1973). In Sect. 2 we consider 
a population of cells in which both cellular replication and maturation take 
place hand in hand, and show that the physiology naturally leads to a descrip- 
tion of cell dynamics in terms of coupled first order nonlinear partial differen- 
tial equations with both temporal retardation and nonlocal maturational 
effects appearing explicitly. These equations are a generalization of those that 
have been considered previously both in the absence (Mackey 1978, 1979) and 
presence of maturation (Rey and Mackey 1992, 1993). 
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In Sect. 3 we give a method of solving the equations derived in Sect. 2, and 
use this to establish the existence of solutions. In this section we also analyze 
the behavior of the solutions when the death coefficients do not depend on 
maturation. Section 4 gives the statement and proof of a global stability result 
for the model derived in Sect. 2. Relation to other work on similar models is 
considered in Sect. 5. 

2 Cell population dynamics 

The assumption that cellular maturation proceeds simultaneously with cellu- 
lar replication has been shown to be sufficient to explain existing cell kinetic 
data for erythroid and neutrophilic precursors in several mammals (Mackey 
and D6rmer 1981, 1982). Thus, we consider a population of cells capable of 
both proliferation and maturation. We assume, in line with the current 
wisdom of cell kineticists, that these cells may be either actively proliferating 
or in a resting (Go) phase. 

The proliferating phase 

Actively proliferating cells are those actually in cycle that are committed 
to the replication of their DNA and the ultimate passage through mitosis 
and cytokinesis with the eventual production of two daughter cells. The 
position of one of these cells within the cell cycle is denoted by a (cell age), 
which is assumed to range from a = 0 (the point of commitment) to a = ~ (the 
point of cytokinesis). The maturation variable is labeled by m which ranges 
from m = 0 to m = mp < or.  (For concreteness one could think of erythroid 
precursor cells and associate the maturation variable with the intracellular 
hemoglobin concentration which is maintained at cytokinesis. However we 
note that our formulation is not restricted to this very specific identification 
of the maturation variable with a conserved quantity.) We assume that 
proliferating cells age with unitary velocity so (da/dt) = 1, that cells in this 
phase may be lost randomly at an age independent rate 7(m), and cells of both 
types mature with a velocity V(m). We assume that V : [0, mv] ---' [0, oe ) is 
a continuously differentiable function such that V(0)= 0, V ( m ) >  0 for 
m ~ (0, mr) and V(mp) = O. 

If we denote the number of actively proliferating cells at time t, maturation 
level m, and age a by p(t, m, a), then the conservation equation for p(t, m, a) is 
simply 

t?p t?p ~?[V(m)p] 
~t + ~a + t?m - 7(re)p, (1) 

and we specify an initial condition 

p(O, m, a) = F(m, a) for (m, a) ~ [0, mr] x [0, ~] , 
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where F is assumed to be continuous. The total number of proliferating cells 
at a given time and maturation level is defined in a natural way by 

P(t,m) = i t p( t ,m,a)da . 
3o 

The resting phase 

Immediately after cytokinesis, both daughter cells are assumed to enter the 
resting Go phase. The cellular age in this population ranges from a = 0, when 
cells enter, to a = ~ .  We assume that if the maturation of the mother cell at 
cytokinesis is m, then the maturation of a daughter cell at birth is g(m), where 
g is a strictly increasing continuous function such that g(m) < m. We denote 
the number of cells in this stage by n(t, m, a), so the total number of cells in the 
resting stage is given by 

m) = jo~ n(t, m, a)da N(t,  

while the total number of resting phase cells at all maturation level is 

fo N(t) = N(t,  m)dm . 

Again under the assumption that cells age with unitary velocity and that 
they may exit from the resting stage either: 

(1) by being lost at a random age-independent rate 6(m) or; 
(2) by re-entering the proliferating stage at a rate fi(N, m) that is a decreas- 

ing function of N (in agreement with the existing data on the regulation of cell 
kinetics), 

then the conservation equation for n(t, m, a) is given by 

an an a[ V(m)n] 
& + ~aa + ~?m - [6(m) + f i (N ,m) ]n ,  (2) 

with an initial condition 

n(0, m, a) = #(m, a) for (m, a) e [0, me] x [0, oo )7 (3) 

We always assume that fi and/~ are continuous. 

and lim #(m, a) = 0 . 
a - * o o  

Boundary conditions 

In completing the formulation of this problem there are two natural boundary 
conditions derived from the biology. The first of these is 

n(t,m,O) = 2p(t,h(m),r)h'(m) for m < g(mv) , (4) 
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where h - g -  1, and simply relates the equality of the cellular efflux following 
cytokinesis to the input flux of the resting compartment. We will assume that 
h is a continuously differentiable function. We also assume, for technical 
reasons, that h(m) = me for m >mN = g(mv). The second boundary condition is 

g oo 
p(t,m,O) = J o  f l (N( t ) ,m)n( t ,m,a)da = f l (N ( t ) ,m)N( t ,m) .  (5) 

relating the etttux from the resting population to the proliferative population 
influx. 

Equations f o r  P and N 

Let nsm be the solution of the equation 

dTc s m 

ds = V (n,m) , 

with initial condition nora = m. From the assumption on the maturation 
velocity V it follows that nsm ~ (0, mF) for every s and m ~ (0, me). Moreover, 
nsO = 0 and n~mF = me for every s. Introduce the functions (o, 0, and q with 
the following definitions: 

v(~_~m) { ;m ~(Y) d ] 
¢p(rn, s) = V ( m ~  exp_ - J~ ~ m ~  Y; 

V(n_~m) { ('m 6(y) d ] 
O(m,s) = V ( m ~  exp_ - L ~,~V(-~ Yf 

q ( t , s , m ) = e x p { - f ] ~ f l ( N ( r + t ) , n r m ) d r } .  

Then the general solution of (1) is given by 

fp (O,n_ tm,  a - t ) q ) ( m , t )  O < t  < a  
p(t ,m,a)  = [p ( t  - a ,n_am, O)q)(m,a) a <= t . 

(6) 

Further, the general solution of (2) is 

~n(O,n tm, a -- t)O(m,t) 0 <= t < a 
n(t ,m,a) = ( n ( t  -- a ,n_am,  O)O(m,a)tl(t,a,m) a <= t . 

If the initial conditions satisfy 

14m, O) = 2r(h(m),  z)h'(m) 

and 

r (m ,  O) =/~(_g(O), m)N(O, m ) ,  
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then from the boundary conditions (4) and (5) it follows that both p and n are 
continuous functions. Moreover, since lim,_~ o0 #(m, a) = 0 by (3), it follows that 

n(t, m, oo ) - lim n(t, m, a) = O.  
a--* oo 

Integrating (1) and (2) over the age variable a gives 

and 

aP a [ V ( m ) P ]  
+ -- ?(m)P -- {p ( t ,m ,  3) -- p ( t ,m,O)}  (7) 

8t ~m 

3 N  #IV(re)N] 
0t + am - [b(m) + f l ( N , m ) ] N  + n ( t , m , O ) ,  (8) 

respectively. Furthermore, p(t,  m, O) = N( t ,  m) f i (N( t ) ,  m) and from (6) we have 
that 

fr(~_,m,3 - t)q~(m,t) 0 <- t < 
p ( t , m , z ) = ,  - - (9) 

[ f l (n , ( t ) ,~z_~m)N, ( t ,m)q~(m,z )  z <= t , 

where/~dt) -= ]V(t - 3) and N d t  , m) = N d t  - z, r k , m ) .  Using (9) and (5) in (7) 
we arrive at the conclusion that the dynamics of P(t ,  m) is governed by the 
delayed first order partial differential equations 

OP O [ V ( m ) P ]  _ ?(m)P + Nf i ( l~ ,m)  
8t + 8m 

~ F ( n _ , m ,  3 - t)~o(m,t) 0 < t < z 

( N ,  f l (N~,n_~m)q~(m,z)  z <= t , (10) 

Since by (4) n(t, m, 0) = 2p(t, h(m), 3)h'(m), (9) implies that (8) for N becomes 

where 

ON ~?[V(m)N] 
+ - [6(m) + fi(N, m)] N 

& Om 

~2h ' (m)F(~_~h(m) , z  - t)q~(h(m),t) 0 < t < r (11) 
+ [2h ' (m)N~f l (N~,n_~h(m))~o(h(m) ,z )  r < t , 

N~(t ,m)  = N ( t  - z, rc ~h(m)) = N d t ,  h(m)). 

Equations (10) and (11) are the final relations describing the cellular dynamics. 
Notice that the solution of (11) is independent of the behavior of the solution 
of (10), but the converse is not true. 

Equations (10) and (11) are interesting since they contain an explicit 
retardation in the temporal term (t - z), and a nonlocal dependence (re_ ~m) in 
the maturation variable. Moreover, the right-hand side of (11) depends 
globally on N because it contains the terms 57 and bT~. Other models of 
cellular replication (Diekmann et al. 1984; Gyllenberg and Heijmans 1987, 
Lasota and Mackey 1984) have displayed the same features. 
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3 A general method of attack 

Existence of solutions 

In the rest of this paper we assume that 6, fl, V', F and N(0, m) are bounded 
continuous functions. Equation (11) can be rewritten in the form 

ON ON ~ 2h'(m)F(~_th(m),z - t)~o(h(m),t) 0 < t < r 
0-7 + V(m)ffmm = G(m,N)N + ~ 2h,(m)N~ fl(~,rt_~h(m))qg(h(m), r ) z < t , 

(12) 

where 

G(m,~) = - Ea(m) + 13(2,m) + V'(m)].  

We solve (12) by the method of steps: first for t e [0, z], and then successively 
for t e [z, 2~] . . . .  For  t e [0, z) (12) takes the form 

oN 
0-7 + V(m) = G(m, Nr)N + f(t,m) , (13) 

where f is a given continuous bounded function. To determine N we solve 
equation (13) along the characteristics. We obtain 

N(t,m)= f ( r ,  7rr-t m) exp (G(zcs_tm, N(s)ds ) dr 

+ N(O, rc-tm)exp(flG(rcs-tm, IV(s))ds ) • 

Let ~': C [0, z] -+ C [0, z] be the operator defined by 

.~N(t) = foV f l  f(r, nr-tm)exp(f[ G(n~-,m,N(s))ds)drdm 

+foFN(O,n-~m)exp(flG(rts-,m,N(s))cls)dm. 

Further, let L1,La, L3, and L4 be constants such that tG(m,x)[ <L1, 
If(t, m)[ < g2, IN(0,m)[ _-< L3 and I~(m,x)l < g4. 

We first show that the operator ~ is contractive in the Banach space 
C[0,z]  with the norm tlFIP =max0<,_<~ e-X'lF(t)], where 2 > 0  is some 
constant To see this, note that by the definition of the norm J[ • II, 

[El(s) - -  f 2 ( s ) [  ~ eX~llfl -- F2 [l for s e  [0, z] . 
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F r o m  this it follows that  for every r e [-0, t] we have 

e x p ( ;  G(rcs_tm, F l ( s ) ) d s ) - e x p ( ~  G(rc,_tm, F2(s))ds) 

=< e L~(t-') G(~s_,m, Fl(s))ds - G(rcs_tm, f 2(s))ds 

f f; < e L~ L41F1 (s) - f2(s) lds < e L'' L4e ~" II F1 - F2 II ds 

This implies that  

(fo fo f? ) I~F~( t )  - ~@Fz(t)l =< 2 -1L4eL'~e~' l lFx - F2 II Lzdrdm + L3dm 

< ) -  1 L4eL,~e,~,mv(L2. c + L3 ) II F1 - F2 II . 

Consequent ly  

[I ~@F1 - ~ F 2  [I ~ 2 -  1 L,~eL~me(L2r + L3 ) H F1 - F2 I[ . 

If  we choose 2 sufficiently large, then the last inequali ty implies that  ~ is 
a contract ion.  F r o m  the Banach  theorem it follows that  there exists a unique 
function N such that  ~b7 = AT. Consequently,  if N(0, m) is given, then equa-  
t ion (12) has exactly one solution N(t, m) for t ~ I-0, r].  For  t e [z, 2r],  (12) can 
again be writ ten in the form (13) because N ~ and N~ are determined by the 
values of N for t < z. In the same way for t ~ [0, z] we can prove  the existence 
and uniqueness of  the solutions of (12) for t e [z, 2z]. By the me thod  of steps 
we can solve (12) for every t > 0. 

A differential-delay equation for iV(t) 

N o w  we assume that  6, ~ and ¢/do not  depend on m. In tegra t ing (11) over  the 
ma tu ra t ion  variable we obtain  

~ ' ( t )  = - (~ + / ~ ( ~ ( t ) ) ) ~ ( t )  + p ( ~ ( t  - ~)) 

f? x 2h'(m) ~o(h(m), z)N(t  - z, ~_ ~h(m)) dm 

for t > r. F r o m  the definition of the function (o we obta in  

~7' ( t )  = - (,~ + 3 ( N ( t ) ) ) ~ ( t )  
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Observe  that  since 

O ( f ; ~ m  1 ) 1 8 
8s -~--~dy - V(Tc~m)es (~m)= 1 , 

we obta in  

~ ( ~ d y  = s (14) 

for m ~ (0, my) and  every s. Thus  it follows that  

N'( t )  = - (6 + f l (N(t)) )N(t)  + 2e -~ f l (N~)N~  t > ~ .  (15) 

Equa t ion  (15) has appeared  in models  describing cellular replicat ion wi thout  
ma tu ra t i on  (Mackey  1978, 1979, Mackey  and Mil ton 1990). Proper t ies  of  the 
solutions of (15) depend on the function/3 and  constants  6, 7, z. We  will assume 
that fl'(x) < 0 for x > 0 and/?(x) --* 0 as x ~ or .  This assumption corresponds to 
the reasonable  biological  s i tuat ion in which the rate  of  entry  into the prolif- 
erat ing stage is a decreasing funct ion of the total  n u m b e r  of  resting phase  cells. 

We will only investigate posit ive solutions of  (15), and we first p rove  that  
the solutions are bounded  above.  In  fact we show a s t ronger  proper ty:  there 
exists a finite Xl such tha t  for every solut ion of (15) we have 

lim sup ~7(t) < Xl • (16) 
t ~ o 0  

To show this, let c = 2e ~ and let Xo be a posit ive cons tant  such that  
cfl(y) < 6 for y > Xo and xl  = c•(O)xo/6. Then 

max  e f l ( y ) y < 6 x  f o r x > x x .  (17) 
O ~ y < x  

This follows from the fact, that  for y < Xo we have c~(y)y < c~(O)xo < 6x1 < 3x 
and for y ~ [Xo, x] we have cB(y)y < 6y < 6x. Let r = l i m s u p , ~  N(t). We claim 
that r < oo. Suppose, on the contrary, that r = oo. Then there exists to > z such 
that N(to) > N(t) for t 6 [to - z, to] and N(to) > Xx. But then from (17) it follows 
tha t  

~ 7 ' ( t o )  = - (3 + / ? ( ~ ( t o ) ) ) ~ ( t o )  + e/~(~7(to - ~ ) )~ ( to  - ~) < 0 ,  

which is impossible.  Since r < ~ ,  there exists a sequence t, --* ~ such that  
- - t  N(t , )  --* r, N (t,) -~ 0 and N( t ,  - ~) ~ s as n ~ oo, where s is a cons tant  such 

that  s < r. F r o m  (15) it follows tha t  (6 + ~(r))r = cB(s)s a n d  consequent ly  
6r < c~(s)s. This and (17) imply that  r < x l .  

The  asympto t i c  behav ior  of  the solutions of  (15) can be divided into three 
types: 

(1) A trivial (N -- 0) stable solution; 
(2) A non-tr ivial  (N > 0) stable solution; and 
(3) N o  stable s ta t ionary  solutions. 

Type 1. If 6 > (2e ~ - 1)fl(0), then the trivial solut ion of (15) is globally 
asymptot ica l ly  stable. 
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To prove this we construct  a L iapunov  function (see Hale 1977, 
Chap.  5 for details). Let 2 ( x ) = ( 6  +fl(x))x, A(x)=S~2(y)dy and let 
a L iapunov  function V : C [ - z, 0] ~ R be given by 

v(0) = A(0(0/)+ I fo 22(0(01)d0 (18/ 
d -  z 

It is easy to check that 

12(0) - 22(0(0)) + 2e-~2(0(0))0(  z)fl(0( z)) + !  = - - 2 2 2 ( 0 ( 0 ) )  - ½ 2 2 ( 0 (  - ~)) 

= - I [2 (0(0) )  - 2 e - ~ 0 (  - z)/~(0( - z))] 2 

- 1122(0 ( - z)) - 4 e - 2 ~ 0 2  ( - z)/32(0( - z))] 

< - 1 [ (6  + /~(0(  - z))) 2 - 4e-27~/~2(0( - z))] 02( - z) 

< - ½ 6 1 6  - (2e - ~ -  1)/~(0 ( -  z ) ) ] 0 2 ( -  z) .  

Since/J is a decreasing function, there exists e > 0 such that  

~ 7 ( ¢ )  _-< - ~ 0 2 (  - ~ ) .  

F r o m  the last inequality it follows that  every solution is convergent  to 0. In 
this case, the total number  of  cells decreases to zero asymptotical ly and the 
popula t ion  will die out. 

Type 2. If  
6 < (2e - ~  -- 1)/~(0) (19) 

then there exists a non-trivial s tat ionary solution of (15) bT(t) - No, where No 
satisfies the equat ion 3 = (2e -~* - 1)/~(No). We check when this solution is 
asymptotical ly stable. 

In order  to do this, note that  the linearization of (15) about  No gives 

N'(t) = - (6  + fl(No) + Nofl'(No))N(t) + 2e- ~(fl(No) + Nofi ' (No))N(t-  z).  (20) 

Let a = 6 + fl(No) + Nofl'(No) and b = - 2e-~(f l (No)  + Nofl'(No)). Fur- 
ther, let O(x) = - x c o t  xz for x e (0, re/z) and ~ be the inverse function to 0. It 
is well known  that  (20) is asymptotical ly stable if and only if a > - 1/z and 

- a < b < ~(a)/(sin z~(a)) (see [6] Chap. 5). 
The condit ion - a  < b follows immediately from the inequality 

fi'(No) < 0. This implies that  if (19) holds, a > - 1/z and b < ~(a)/(sin r~(a)), 
then _N(t) -= No is an asymptotical ly stable solution of (15). Moreover ,  each 
solution which converges to No is exponentially convergent,  i.e. there exist 
two constants  L > 0 and e > 0 such that  I_N(t) - No] < Le-  ~t. The asymptot ic  
behavior  of the function N(t, m) in this case will be analyzed in the next 
subsection. 

Type 3. If  (19) holds, a < - 1/~ or  b > ((a)/(sinz((a)) then the asymptot ic  
behavior  of the solutions (15) can be complicated: periodic solutions, non- 
trivial attractors,  chaotic  solutions (see e.g. Walther  1991 for more  details and 
references). 
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Remark 1. For  some feedback functions fl we can prove that  a non-zero 
s ta t ionary solution No of  (15) is globally asymptotical ly stable. For  example, if 
fl(x) = fl/(e + x) and (19) holds, then (15) is globally asymptot ical ly  stable. 

To show this, let x(t) = N(t)  - No. Then (15) takes the form 

where 
x'(t) = - f ( x ( t ) )  + q(x(t  - ~)) , 

f ( x )  = (6 + fl(x + No)) (x  + No) - (6 + f l (No))No 

q(x) = 2 e - ~ f i ( x  + No)(X + No) -- 2 e - ~ f l ( N o ) N o  • 

N o w  let F(x)  = ~of (y)dy  and consider the L iapunov  function 

f2(c~(O))dO . 
3 -  

It is easy to check that  

l)'(~b) = - 2f2(~b(0)) + 2f(q~(0))q(~b( - ~)) +f2(q~(0)) - f2(qS(  - ~)) 

= -- [f(~b(0)) - q(q~( - ~))]2 _f2(q~( _ ~)) + q2(~b( _ ~)) 

=< _ [/2(q~( _ ~)) _ q2(~b( _ ~))] . (21) 

Since the function fl is strictly decreasing, we havef (x)  < q(x) for x ~ ( - No, 0) 
a n d f ( x )  > q(x) for x > 0. Moreover ,  f rom the definition of fl it follows that  
( f +  q)(0) = 0 and ( f +  q)'(x) > 0 for x > - No. Consequently,  f2(x)  > q2(x) 
for x ~ 0 and x > - No. F r o m  inequality (21) it follows that  (15) is globally 
asymptot ical ly  stable on the set of positive solutions. This method,  combined 
with inequality (16), can be used to prove global asymptot ic  stability for 
a large class of feedback functions fl, but  each case requires special treatment.  

Linear form o f  (12) 

As in the previous subsection we assume that  8, 7 and fi do not  depend on m. 
Substituting N(t ,  m) = N( t )M( t ,  m) in (11) and using (15) we obtain 

a M  a [ V ( m ) M ]  
a t  + am c(t)[  -- M(t ,m)  + k ' (m)M( t  - ~,k(m))] for t >= ~,  (22) 

where 

c ( t )  = 
2e-7~IV(t -- r) f l(N(t  -- ~)) 

N( t )  , k(m) = zc_~h(m) . (23) 

The solutions of (22) have the following properties: 1. If  M ( t , m ) >  0 for 
t s [to - r, to] and m e [0, mr], then M(t, m) > 0 for t > to and m e [0, mr]. This 
can be checked by the method  of  steps. If  M(t,  m) > 0 for t s [to - r, to], then 

OM aEV(m)M]  
a t  + am >= - c ( t ) M ( t , m )  f o r t ~ [ t o , t o + ~ ] .  
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Let p(t) = M(t,  rctm), then 

p'(t) > - [V'(~ztm) + c(t)]p(t) . 

Since p ( t o ) > 0 ,  from the above differential inequality it follows that 
p(t) > 0 for t > to, and consequently M(t,  m) > 0 for t e [-to, to + r]; 2. If 
~o ~ M(t ,  m)dm = 1 for t e [to - r, to], then ~o ~ M(t, m)dm = 1 for t > to. This 
follows from integrating (22) over the maturation variable to obtain. 

~I(t) = - c(t)M(t)  + c( t )M(t  - "c) , 

where ~ t ( t ) =  ~oFm(t, m)dm. Since M ( t ) =  1 for t e [ t o -  Z, to], we have 
M(t) = 1 for t > to. 

Let D 1 be the subset of L (0, my) consisting of all densities, i.e. the functi6ns 
f such that f > 0 and ~o'~f(x)dx = 1. Since m ( t , . )  ~ D for each t, we will 
investigate the solutions of (22) only in the set of densities by comparing the 
solutions of (22) with the solutions of the linear equation: 

OF ~?[V(m)V] 
-+ - cF(t,m) + ck'(m)F(t -- z,k(m)). (24) 

& ~m 

Proposition 1. Let  M and Z be solutions of(22) and (24), respectively. Assume 
that m( t ,  m) = F(t, m) and m( t ,  • ) ~ D for  t ~ [to - z, to]. Then 

f; [m(t ,m)  - F(t ,m)[dm < 2 l c ( s ) -  clds for  t > to • (25) 
0 

Proof  Let Z(t,  m) = m( t ,  m) - F(t, m) and e(t) = c(t) - c. Subtracting (24) 
from (22) we obtain 

t?Z e[-V(m)Z] 
+ - cZ( t ,m)  + f ( t , m ) ,  (26) 

& ~m 
where 

f ( t ,  m) = ck ' (m)Z(t  - z, k(m)) - e(t)M(t,  m) + e( t)k ' (m)M(t  - z, k(m)) . 

Let T > to. Then integrating (26) along the characteristics we obtain 

. . . . . .  V(~_sm) -cs . ('~ V(~r ~m) e,r_~) f (  r + T,~r sm) dr Z(s  + ~ , m ) = z t l ,  n _ s m ) ~ f f - e  +Jo._ V(m) J" 

(27) 

Let z(t) = ~o ~ IZ(t, m)l elm. Taking the absolute value of (27) and integrating 
over the maturation variable yields 

; (f; ) z(s + T)  < e - ~ z ( T )  + e ~('-s) [f(r + T ,m) ldm dr 

< e-~Sz(T)  + f2 e~('-~) [cz(r + T -- z) + 2]e(r + T)]] dr 

( ; ) / ?  < e - ~  z ( T )  + ce~z(r + T - v)dr + 2le(r)Ldr. (28) 
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Now, we can check the validity of inequality (25) by induction. Let 
t, = to + zn. Then for t ~ [to, ta ] inequality (25) follows immediately from (28) 
with T = to. Assume that (25) holds for t e [to, t,]. Then from (28), with 
T = t,, and from (25) for t ~ [t ,_ 1, t , ]  it follows that 

z(s + t,) < e -cs 1 + e e C ' d r  12e(r)ldr + ]2e(r)ldr 
o J t n  

f 
t n + s  

= 12~(r)ldr 
,1in 

for s ~ [0, z], which completes the proof. []  

Remark 2. The solutions of (22) and (24) can be considered as functions from 
[0, ~ )  to D and instead of F(t, m) we can write F(t)(m) to underline that 
F(t) ~ D. Proposition 1 can sometimes be used to deduce the asymptotic 
behavior of the solutions of (12) from the properties of the solutions of (24). 

To see how, assume 6, ~ and /3 do not depend on m and assume that 
condition (19) holds. If the non-zero stationary solution No of (15) is asymp- 
totically stable, then there exists p > 0 such that every solution /V of (15) 
satisfying the condition IN(t) - No l < p for t ~ [0, z] converges exponentially 
to No. This implies that the function c(t) converges exponentially to 
c = 6 +/~(No), i.e. there exist constants e and L > 0 such that Ic(t) - cl < Le -`t 
for t > 0. If (24) is asymptotically stable, i.e. there exists f *  s D such that every 
solution of (24) converges to f *  in Ll(0, mv) as t--* oe, then from 
Proposition 1 it follows that (22) is asymptotically stable. This implies that if 

• N(t ,m) is a solution of (12) such that l~7(t)-  Nol < p for t e  [0, t] ,  then 
N(t, .) converges to No f*  in LI(O, mF). In particular, if No is a globally 
asymptotically stable solution of (15), then every positive solution of (12) 
converges to No f *  in LI(0, me). 

4 Stability 

In this section we give a sufficient condition for asymptotic stability for (24). 
As in the previous section, we denote by D the subset of L 1 (0, me) consisting of 
all densities. We will investigate the solutions F of (24) such that F(t) ~ D for 
t > 0 [recall that F(t)(m) = F(t, m)]. 

The main result of this paper is the following. 

Theorem 1. Assume that V'(0) > 0, clog k'(0) < V'(0), k'(m) > O for m ~ [0, mF) 
and mN= g(mF) < rap. Then there exists f *  ~ D such that for every solution 
of (24) we have 

lim II F(t) - f *  II = o ,  (29) 
t ~ o o  

where I1" I1 is the norm in LI(0, mr). 

From Theorem 1 it follows that if (15) has a non-zero globally asymp- 
totically stable solution No, clog g'(0) > - (1 + cz)V'(O) and g(mv) =mN < mF, 
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then every posit ive solution N ( t , . )  of(12) converges to No f *  in L 1 (0, mr)  (see 
R e m a r k  2 of the previous section). 

We split the p roof  of Theo rem 1 into lemmas,  but  before start ing we show 
that  instead of (24) we can consider a simple one. Let y(x) be the solut ion of 
the differential equat ion 

c y ' ( x ) x  -= V ( y ( x ) )  , y(1) --= m u . 

Then  the function u(t, x) = y'(x)F(t,  y(x)) satisfies the equat ion  

~u O(cxu) 
+ - -  - cu(t,x) + cq'(x)u(t - r ,q (x ) ) ,  (30) 

c~t Ox 

where q(x) = y -  l(k(y(x))) for x < 1 and, formally q'(x) = 0 and q(x) = oo for 
x > 1. It  is easy to check that  q '  [0, 1) --, [0, oo ) is a cont inuously  differenti- 
able function such that  q ( 0 ) = 0  and q ' ( 0 ) =  k'(O) c/v'~°) < e , q ' ( x ) > 0  for 
x ~,[0, 1). Since T( t ) ( x )=  y ' (x) f (y(x) )  is a linear isometr ic  t rans format ion  
f rom D onto  the set of  densities of  L 1 (0, oo ), it is sufficient to prove  Theo rem 
1 for (30). F r o m  now on we denote  by D the subset of  L~(0, oo ) consisting of 
all densities, i.e. the f u n c t i o n s f s u c h  t h a t f  ~> 0 and ~ f ( x ) d x  = 1. It  is easy to 
check that  every solution of (30) satisfies the integral equat ion  

u(t,x) = e - Z c t u ( O , e - C t x )  4- f [  ce-2CSq'(e-~Sx)u(t -- z -- s,q(e-CSx))ds . (31) 

The  thread of the p roof  that  (30) is asymptot ica l ly  stable is as follows. First we 
check that  for any two solutions u and a of (30) we have IE u(t) - ~(t)II ~ 0 as 
t ~ oo. Then we show that  there exists a s ta t ionary  solution of (30) (i.e. 
a solution which does not  depend on t). F r o m  both  facts it follows that  
[I u(t) - u0 II ~ 0 as t --, oo. In order prove that  (30) has a s tat ionary solution, we 
show that  a solution of (30) is also an invar iant  density of a M a r k o v  opera to r  
~ .  Then  we p rove  that  there exists an invar iant  density under  the opera to r  ~ .  
In fact, we show a s t ronger  p roper ty  than  the existence of an invar iant  density. 
Namely ,  we prove  that  the opera to r  ~ is asymptot ica l ly  stable. 

L e m m a  1. There exist a > 0 and b > 2a such that for every solution of  (30), 
there is a time to = to(u) for which 

f [  u(t,x) > for t > to • (32) dx 1 

Proof. Since q'(O) < e, there must  be an e > 0 and r e (0, 1) for which 

( q ' ( 0 ) + e )  r < l  + r .  

Deno te  by Do the (dense) subset  of D consisting of bounded  functions f such 
that  ~ x - r f ( x ) d x  < oo and l i m x _ ~ x f ( x )  = 0. Let u be a solut ion of(30) such 
that  u(t) ~ Do for t e [ - z, 0]. Then f rom (31) it follows that  u(t) ~ Do for t > 0. 
The  function G(t) = ~ x - r  u(t, x)dx satisfies the equat ion  

G'(t) = - c(1 + r)G(t) + t °° cx r q'(x)u(t - z ,q (x) )dx  . (33) 
J o  
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Let p > 0 be a constant such that q-l(x) ~ x/(q'(O) -I- 8) for x e [0, p]. Then 

f f  c x - r q ' ( x ) u ( t - ' c , q ( x ) ) d x = f f  c(q l ( x ) ) - r u ( t - v , x ) d x  

<= f~ c(q'(O) + e)rx-~u(t - z ,x)dx + c(q-l(p)) -r . 

From (33) it follows that 

G'(t) < -- MG(t)  + K G ( t -  z) + B ,  

where M = c(1 + r), K = c(q'(O) + ~)r and B = c(q- l (p))  -~. Let (~(t) be the 
solution of the differential delay equatio n 

G'(t) = - MG(t)  + g G ( t  - r) + B ,  (34) 

such that G(t) = G(t) for t e [ - z, 0]. It is easy to check by the method of steps 
that G(t)> G(t) for t > 0 .  Since M > K ,  the stationary solution 

- B/ (M - K)  of (34) is globally asymptotically stable. Consequently 

lim sup G(t) <__ B/(M -- K ) .  
t ~ o 0  

From this it follows that there exists a > 0 independent of u such that 

u( t ,x )dx  < ~ (35) 

for t > to(u). Now, let U(t, x) = ~ u(t, y)dy. Then for x > 1 the function U 
satisfies the equation 

~U 0U 
- -  + c x  - c U  . (36) 
gt Ox 

For  t > f log x and x _>_ 1, the solution of (36) is given by 

) U ( t , x ) = - U  t - -  logx, 1 . x c 
1 log b. Inequality (32) follows from this If b > 4 ,  then U ( t , b ) < ¼  for t > 7  

and (35). Since the set Do is dense in D, condition (32) holds for every solution 
of (30). [] 

Lemma 2. There exists a non-negative function ~c e LI(O, oo ) with 1[ ~c [1 > 0 
such that u(t, x) >= tc(x) for every solution u of(30) and sufficiently large t. 

Proof. For  x > 1, the function u satisfies the equation 

~u O(cxu) 
+ - -  -- cu(t, x ) .  (37) 

& 0x 
1 For  t > 7 log x and x > 1, the solution of (37) is given by 

u(t,X)= X 2u ( t - ! l ogx ,  l ) .  (38) 
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From (31) to (38), for sufficiently large t we have 

u(t, 1) > f l  ce 2CSq'(e-CS)u(t - z - s ,q(e-CS))ds 

fq  ( ) (  ~1 q ( , ) d  > xq'  x u  t - z +  ogx,  x x 
: i(1) 

fl c' ) >-_ u l t  - r - log(q(x ) / x ) , l  d x .  (39) 
-~(1) 

1 Let 0 = ~ + 7 log(q(x)/x) .  Then 

dO xq ' (x )  -- q(x) 

tx  , cxq(x)  

Observe that  there exists Xo e (0, 1) such that  q(xo) ,i = xoq'(xo) .  [If this were 
not the case, then q(x) would be a linear function in the interval (0, 1), which 
contradicts the fact that  q(x) --+ ~ as x --+ 1.] Let 0o = ~ + ~ log(q(xo)/Xo).  
Then from inequality (39) it follows that  there is an ~ > 0 and ~ > 0 for which 

u(t, 1) > f[  ~u(t - Oo s~ 1)ds 

when t is sufficiently large. From this inequality it follows that  

u(t,1)>-_~"fl...flu(t-nOo-Sl . . . . .  s , , l ) d s l . . . d s ,  

for sufficiently large t. Inductively, it is easy to verify that 

i/£'~n 1 ['2e(n- 1)/3 

u(t, 1) => cd~5) /j.._ t)/3 u ( t -  nOo - s, 1 ) d s .  (40) 

According to Lemma 1, for every t >= to(U) there exists z e [a, b - a] such that  

ff 
+a a 

u(t, x) dz > 4(b - a)" 

From the inequality 

Ou c~(cxu) > _ cu(t,  x)  
& + ax  

it follows that 
u(t + s, eCSx) >= e 2CSu(t,x) for s > 0 .  

As a consequence, 

~= u t +  logr, x d x > = 4 r ( b _ a )  f o r r > l .  
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Le t  A = [b, b2a-1]. T h e n  for  r = b/a we have  [rz, r(z + a) ]  c A a n d  thus  

u t +  l o g r ,  x d x > K - 4 b ( b _ a  ). 

Thi s  impl i e s  t h a t  

f u(t,x)dx >= > tl(u) = to(U) + llog(b/a).  (41) K for  t 
c 

F r o m  (38) we have  

w h e r e  A' = [ X l o g b ,  ~ log(b  2 a - l ) ] .  H o w e v e r ,  f r o m  (41) we a lso  o b t a i n  

f u( t - -z ,  1 ) d z > b K  f o r t > t l ( u )  (42) 
, c 

Le t  ]A'] be  the  l eng th  of  the  i n t e r v a l  A' a n d  let  n be  an  in t ege r  such  t h a t  
e(n - 1)/3 > IA'[.  T h e n  f r o m  (40) a n d  (42) 

u(t, 1) > e - ~ - ~ , 5 )  for  t > t2 (u ) .  (43) 

F r o m  (38) a n d  (43) it  m u s t  be  the  case  t h a t  the re  exis ts  ~ > 0 such  t h a t  

u(t,x) > ~c(x) = ~x- Z lmbj(X) for  t > t3(u) , 

w h e r e  ltl,bl(X ) d e n o t e s  the  c h a r a c t e r i s t i c  func t ion  of  the  i n t e rva l  [1, hi .  [ ]  

L e m m a  3. Let u(t)(x)= u(t, x) and a(t)(x)= a(t, x) be two solutions of (30). 
Then 

l im  I1 u(t) - a(t)II = 0 .  (44) 
l ~ o o  

Proof Le t  e = II~cll, w h e r e  ~c is the  func t ion  of  L e m m a  2. D e n o t e  by  
v(t)(x)=v(t ,x)  the  s o l u t i o n  of  (30) sa t i s fy ing  the in i t ia l  c o n d i t i o n  
v(t)(x) = e - l ~ ( x )  for  t e [ - z ,0 ] .  A c c o r d i n g  to  L e m m a  2 the re  exis ts  t l  such  
t h a t  u(t) > ~c a n d  zi(t) __> ~c for  t e [ t l  - z, t~].  Le t  u~ a n d  tit be  the  s o l u t i o n s  of  
(30) sa t i s fy ing  the in i t i a l  c o n d i t i o n s  

ul(s) = (1 - e)-t(u(tl + s) - ~c) a n d  ~il(s) = (1 - e ) - a ( u ( t l  + s) - 1¢) 

for  s e [ - r,  0] .  T h e n  

u(t  1 q- t) = (1 --  e)Ul(t)  -I- eV(t) a n d  t i ( t l  + t) = (1 --  ~:)l,ll(t ) + ev(t) 

for  eve ry  t > O. U s i n g  an  i n d u c t i o n  a r g u m e n t  we f ind sequences  of  n u m b e r s  
t~, tz,  • • • a n d  func t ions  Ul,  ~il, u2, ~i2, • • • such  t h a t  

u,-l(tn + t) = (1 - e)un(t) + ev(t) a n d  tin_~(t .  + t) = (1 - e)~i.(t) + ~v(t) 
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for t > 0 and a positive integer n. This implies that 

u(tl + -  - • + t .  + t )  - t i ( t l  + .  • - + t .  + t )  = ( 1  - ~ ) " ( u . ( t )  - a.(t) 

Since the functions u,(t) and ft,(t) are densities, the last formula 
gives (44). [] 

In the last part of this section we show that there exists a stationary 
solution of (30). From this and Lemma 3, Theorem 1 follows immediately. 

A densi tyf~ D is a stationary solution of (30) if it satisfies the equation 

xf'(x) + 2f(x) = q'(x)f(q(x)) . 

This equation can be rewritten as the integral equation 

xZf ' (x)  = f f  yq'(y)f(q(y)) dy .  

Consequent tyf  is a fixed point of the operator 

; ' x )  1 ;  
~ f ( x )  = -~ q-1 (y)f(y) dy = ~ yq'(y)f(q(y)) dy . (45) 

It is easy to check that ~ :LI (0 ,  oo)-~ LI(0, oo) is a Markov operator, i.e. 
is linear and ~(D) ~ D. We give a sufficient condition for the existence and 

uniqueness of a fixed point of ~ ,  which we will called a stationary density. In 
order to do this we will need an auxiliary result. 

Let (X, d ,  #) be a a-finite measure space. A Markov operator ~ : L 1 --* L 1 
is called asymptotically stable if there exists a stationary density f ,  such that 

lim [ [ ~ " f - f * [ [  = 0 f o r f e D .  (46) 
n ~ o o  

Equation (46) implies that for an asymptotically stable operator there exists 
exactly one stationary density. A Markov operator ~ ' L I ~ L  1 is called 
constrictive if there exists a weakly compact set Y e L 1 such that 

l i m d ( ~ " f ~ ) = 0  for f e D ,  
n ~ o o  

where d ( ~ " f  ~ )  denotes the distance, in L 1 norm, between the element 
f and the set ~ .  In particular ~ is constrictive if there exists an integrable 
co > 0 such that 

~ ' f <  co + ~,( f )  and lim [[e,(f)l[ = O. 

The importance of weak constrictiveness is a consequence of the following 
theorem of Komornik (1986): 

Spectral decomposition theorem. The iterates of a constrictive operator ~ can 
be written in the form 

~ " f =  ~ 21(f)g~.(~) + Q , f  f o r f e  L 1 , 
i = 1  
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where: 

(1)  g l  . . . . .  gr are densities with disjoint supports; 
(2) 21 . . . . .  2, are linear functionals on L1; 
(3) ~ is a permutation of 1 . . . . .  r such that ~gi  = g~(i) and ~" denotes the 

n th iterate of a; and 
(4) Q, is a sequence of operators such that lim II Q, fl[ = O for f ~  L 1. 

n---~ o9 

Now we show that the operator ~ given by (45) is asymptotically stable. From 
this fact it follows that (30) has a unique fixed point in the set of densities. 

Lemma 4. Assume that q ' (0 )<e .  Then the operator ~ : L I ( 0 , ~ ) ~  
L 1 (0, ~ )  given by (45) is asymptotically stable. 

Proof Since q'(0) < e, there exist e ~ (0, q'(0)), r > 0 and K e (0, 1) such that 

(q'(0) + e)(q'(0) - ~),-1 < K(1 + r) .  

Let p ~(0, 1) be a number such that [q ' (y)-q ' (0)[  < e for y < p and let 
x A p = rain{x, p}. Denote by ¢ the function 

x 1-~, for x ~ [ 0 , 1 ]  
¢ ( x ) =  1, for x > l  

and let 
R ( f )  = supf(x)~(x) ,  f o r f ~  D .  

x>0 

Denote by Do the subset of D consisting of all funct ionsfe  D with R ( f )  < or. 
Then for every f ~  Do we have 

fo x ~ -~ ~ f ( x )  = x -  1 ~ yq'(y)f(q(y)) dy 

fo =< x -~-~ yq'(y)f(q(y))dy + p-~-~ yq'(y)f(q(y))dy 

<= x - ~ - ~ R ( f )  yq'(y)q(y)'-~ dy + p-~-~ 

x - l - r  
<= - - R ( f ) ( x  A p)~+ ~(q'(O) + e)(q'(O) - ~)~-~ + p-~-~ 

l + r  

<= K R ( f )  + p-l-r 

This implies that R ( ~ f )  <= K R ( f )  + B, where B = p -  1 r. By an induction 
argument we obtain 

B 
R ( ~ " f )  <= K " R ( f )  + I~-- K " 

Since R ( f )  < oo, there is an integer no = no(f)  such that 

B 
R ( ~ " f ) <  1 + - -  f o r n > n o .  (47) 

1 - - K  
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Moreover, from the definition of N it follows immediately that 

~ f ( x ) < x  -2 for f e D .  

Let co be a function given by 

~'xr-l(1 +B/(1 - K ) ) ,  for xE(0 ,1 ]  
co(X) = ~X_2, for x > 1. 

Let 
= { f~  D :f(x) _-< co(x)} . 

(48) 

Since co is an integrable function the set ~ is weakly compact. From (47) and 
(48) it follows that ~ " f ( x )  < co(x) f o r f e  Do and sufficiently large n. Since Do is 
a dense subset of D, the operator N is weakly constrictive. 

Now we show that the operator N is asymptotically stable. In order to do 
this we check that the set S = {91 . . . . .  9r} in Spectral Decomposition 
Theorem contains only one element. Let 9 e S and A = suppg. If z = infA, 
then from the definition of ~ 9  it follows that 

[ q -  I(Z)¢ (30) C2 supp ~ 9 -  (49) 

If 91 and g2 are different elements of S, then also N91 and N92 are different 
elements of S and have disjoint supports, which contradicts (49). [] 

5 Conclusion 

To our knowledge, little is known about the solution behavior of systems like 
(10)-(11) that contain both temporal delays and nonlocal maturational de- 
pendencies. Indeed, there are many open problems in the elucidation of the 
solution behavior of differential delay equations without maturational non- 
locality (Mackey and Milton 1990). 

Although Gyllenberg and Heijmans (1987) considered a similar equation 
to (24), it is difficult to apply their results to our case. Their and our models are 
based on different biological assumptions. For  example, in their paper the 
maturation is bounded because the rate of entering of the second phase at 
maximum size is infinite. In our case the boundedness of the maturation 
follows from the condition V(mF) = 0. Moreover, the semigroup generated by 
the equation considered by Gyllenberg and Heijmans (1987) is compact for 
sufficiently large t, which does not occur in our case. 

Rey and Mackey (1992, 1993) have numerically studied the solution 
properties of a class of delayed partial differential equations of the form 

~u 0u 
O - - [ + r X ~ x =  - 6 u + 2 u ~ ( 1 - u d  for (t, x) e [0, ~ ) x [0,1] , (50) 

where u~ - u(t - ~, e-r~x), which is similar to the equations derived here. For  
this system one must specify an initial function 

(a(t' ,x') for (t',x') e [ - ~,0] x [0, 1] . 
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Rey and Mackey  (1992, 1993) have shown numerically that  the solution 
evolution of  (50) i s  highly dependent  on ~b(t', 0). Namely,  when ~b(t', 0 ) >  0 
then the numerical ly generated solutions of  (50) seem to globally converge to 
a unique limit. However,  when q~(t', 0) = 0 then the behavior  is quite different 
in that  the limiting solutions m a y  be both  temporal ly  and spatially periodic or 
chaotic, including traveling wave solutions, and that  the ultimate nature of  the 
limiting value of  u(t, x) depends, in an unknown  way, on qS(t', 0). 

This behavior  is reminiscent of  that  observed by a variety of  authors  
(Brunovsk~ 1983, Brunovsk3) and K o m o r n i k  1984, Lasota  1981, Losko t  1985, 
Rudnicki,  1985, 1987, 1988) for the solutions of  equat ions like (50) when ~ - 0 .  
This indicates that  the solutions set of (10)-(11) is likely to be correspondingly 
rich and we suspect that  it will display a b road  spectrum of dynamical  
behaviors dependent  on the initial function. This same sensitive dependence of  
the eventual solution behavior  on the initial function has been studied numer-  
ically by Crabb  et al. (1993) and Losson et al. (1993) in differential delay 
equations. 
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