Solution multistability in first-order nonlinear differential delay equations
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The dependence of solution behavior to perturbations of the initial function (IF) in a class of
nonlinear differential delay equations (DDEs) is investigated. The structure of basins of
attraction of multistable limit cycles is investigated. These basins can possess complex structure
at all scales measurable numerically although this is not necessarily the case. Sensitive
dependence of the asymptotic solution to perturbations in the initial function is also observed
experimentally using a task specific electronic analog computer designed to investigate the

dynamics of an integraialia first-order DDE.

[. INTRODUCTION

The set formed by all the points in the phase spééé of
a dynamical system which are attracted to a given solution
(e.g., a fixed point, 2 limit cycle, or a chaotic solution) is
called the basin of attraction of that solution. Some ana-
lytic maps and many nonlinear dynamical systems possess
coexisting solutions (referred to as multistable solutions),
and different initial conditions, belonging to different ba-
sins of attraction will be attracted to the corresponding
solutions. The boundaries of the various basins of attrac-
tion are known as basin boundaries.

Sensitive dependence of a dynamical system’s temporal
evolution to perturbations of the initial conditions is ubig-
uitous in nonlinear dynamics. Many investigations, dating
back to the pioneering work by Julia and Fatou? at the
end of the 19th century, have focused on the geometry of
basin boundaries of muitistable analytic maps of the com-
plex plane. It is now clear that some of these transforma-
tions possess what are known as fractal basin boundaries.
Recently, a number of investigators, including Grebogi,
McDonald, Ott and Yorke (see Refs. 3-5 and references
therein), have discussed the geometry of basin boundaries
in nonlinear return maps obtained from ordinary differen-
tial equations (ODEs) and demonstrated the fractal nature
of these boundaries in various one- and two-dimensional
cases. This paper focuses on the dependence of solution
behavier on the initial conditions in certain first-order non-
linear DDEs.

DDEs have been the focus of intense study in the past
decade because their solutions may exhibit chaos, and, in
particular, high-dimensional chaos.>’ They have been used
to describe the dynamics of laser systems,®'? physiological
control systems,>™! and artificial neural network mod-
els,'® and to explain the oscillations observed in agricul-
tural commodity prices.!” DDEs have also received con-
siderable attention in the applied mathematics literature
because, through a singular perturbation limit procedure,
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they are a natural continuous time extension of discrete-
time maps.ls’19 Electro-optic?® and acousto-optic?' devices
have been successfully designed to study the dynamics of
DDEs. Vallée and Delisle?? showed experimentally how
the most unstable mode of the linearized DDE enslaves all
the other modes, and how blocking it leads to the appear-
ance of another period-doubling sequence starting with the
second mode. There have been a small number of numer-
ical studies of hysteresis due to the coexistence of periodic
and chaotic solutions of DDEs.>**?! Ikeda er al?® have
argued that the number of coexisting harmonic solutions of
the laser equation studied in Ref. 11 was less than, but
proportional to, the delay.

Work on these hybrid analog computers and the cor-
responding numerical investigations have focused mainly
on the analysis of routes to chaos, but the stability of limit
cycles with respect to changes in the initial functions has,
to now, received little attention. Two notable exceptions
are the works of Aguirregabiria and Etxebarria®* and Li
and Hao.? The former have investigated the structure of
basin boundaries for a delayed Duffing equation. They
studied the system with a class of periodic initial functions
parametrized by the frequency, and demonstrated the ex-
istence of self-similar structure in a subset of the boundary
separating nonchaotic attractors. However, the system
they considered displayed multistability even without the
delay. A preliminary study of the basins of attraction of
two periodic solutions of a first-order DDE was under-
taken by Li and Hao® who were investigating bistability in
an equation introduced by Zhang et a/.'? to describe a lig-
uid crystal hybrid optical bistable device. They did not
report on the structure of the boundary at various scales,
and our results of Sec. III indicate that there is a nontrivial
dependence of solution behavior on perturbations of the
initial functions (IFs), whatever the scale of this pertur-
bation, in systems similar to those considered by these au-
thors.

Except for the single report by Li and Hao, there are
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168 Losson, Mackey, and Longtin: Multistability in detay equations

no results concerning the structure of basin boundaries for
equations that do not display multistability when the delay
term is eliminated. Here, we demonstrate the presence of
multistability in DDEs and show that the structure of the
basin boundaries can be complex at all (numerically) mea-
surable scales. Preliminary analog studies of a first-order
integrable DDE alse suggest that multistability is ubiqui-
tous for nonmonotone nonlinearities, and that the struc-
ture of the basin boundaries separating multistable limit
cycles possesses a complicated geometry on scales ranging
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to rigorously demonstrate self-similar properties with an
analog computer, using such a device allows one to com-
ment on the robustness of the basin geometry under the
influence of the stochastic perturbations present due to the
inherent noise in analog devices.

The paper is organized as follows. In Sec. II, we intro-
duce the class of nosilinear DDEs on which we focus. Bi-
stability is discussed in two first-order DIDEs with smooth
nonlinearities: the logistic DDE and the Mackey—Glass
equation. The bistability is explored with sinusoidal IFs
parametrized by their frequency. Section III considers a
nonlinear integrable DDE introduced by an der Heiden
and Mackey®® as a paradigm for mixed delayed feedback
loops. Higher-order multistability is discussed, and the ba-
sin boundaries are explored with a class of nonconstant
IFs. It is shown numerically that the boundaries can pos-
sess intricate structure at all scales. A task specific elec-
tronic analog computer, designed to integrate the DDE of
Sec. 111, is described in Sec. IV. Hysteresis and multista-
bility are present in the analog computer and confirm the
robustness of the results of Sec. III.

1. FIRST-ORDER NONLINEAR DDEs

We consider the dynamics of nonlinear first-order dif-
ferential delay equations. The equations describe the evo-
Iution of a variable x which is being destroyed at a rate o,
and produced, with some delay, via a nonlinear production
mechanism:

dx F "
7 —ax+F(x,) for
where 7, a> 0, and F (the feedback function) is the rate of
production which depends on the history of the variable.
Throughout this paper, the initial function for Eq. (1) is
denoted by @(2):

t>'0: xTEx(t—T)’ (1)

x(ty=¢@(t) for te[—70).

The wealth of dynamics displayed by Eq. {1) depends to a
great extent on the characteristic of the feedback F.2® We
are interested here in the case where F is nonmonotone,
modeling so-called mixed feedback control loops. In this
case the rate of production is maximal for some interme-
diate value of the delayed variable. Although Eq. {1) looks
simple, it corresponds to a class of semidynamical systems
which can display a remarkable range of solutions: steady
states bifurcating to limit cycles of arbitrary complexity to
chaotic trajectories as a control parameter is varied. The
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FIG. 1. Two coexisting solutions of (2). The parameter values in both
cases are a¢=1, A=581, v=1. (a) The initial function is @{¢)
=0.45in(0.3¢) 4+-0.5. (b) The initial function is now @(#) =0.4 sin(1.34)
+(.5.

dimension of the chaotic attractors for the solutions of (1)
was studied by Farmer’ who found that it was an increas-
ing function of the delay.

In the next section, we illustrate solution dependence
on perturbations of the initial function in three such
DDEs.

A. The “logistic” DDE

The so-called logistic DDE is Eq. (1) with a quadratic
feedback function F:

X
7 —ax+Ax (1—x.),
This DDE takes its name from the observation that it is
obtained by performing a singular perturbation limit pro-
cedure on the celebrated logistic map

AaeR. (2)

where A= lim é- (3
A= oo

The DDE (2) therefore provides us with a continuous time
extension of the logistic map (3). This link between maps
and DDEs has been used in the literature to extend some
results concerning the dynamics of the former to the more
challenging continuous time situation. For a review of such
results, see Ivanov and Sharkovskit."

Figure 1 digplays two coexisting solutions of Eq. (1)
which are obtained with sinusoidal initial functions

xn+1=;fx,,( 1 —'xn),

eR* RBeR.

p(ty=Asin(wt)+ B, 4o

L 1114 4

The only difference between the situation giving rise to the
solutions in Figs. 1{a) and 1(b) is the frequency w of the
sinusoidal initial function @(z). The algorithm used for the
integration of this equation (and the Mackey—Glass equa-
tion, Sec. II B) is based on an adaptive step size sixth-order
Verner method. The delayed term is located and the solu-
tion at this point is interpolated with a three-point Hermite
interpolation scheme. (Because of memory constraints, the
basins of attraction were investigated using a simpler ver-
sion of this code using a fourth-order Runge-Kutta and a
linear interpolation scheme. The stability of the simpler
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FIG. 2. This figure displays which values of o [the frequency of the initial
function @(¢) of Eq. (2)] give rise to the solution of Fig. 1(b), keeping all
other parameters at the values specified in Fig. 1. The vertical bars are
placed at the values of @ giving rise to the solution displayed in Fig. 1(b).
When a vertical bar is not present for a given a, the corresponding solu-
tion of Eq. (2} is the one displayed in Fig. 1(a). In part (a), the DDE
(2} was solved with 5000 different values of @ uniformly distributed
between (¢ and 10. In part (b), (2) was solved with 5000 different values
of o uniformly distributed between 0.421 552 and 0.421 672. No other
types of oscillatory solutions were observed for these parameter values.
The time r, of convergence to the asymptotic limit cycle ranges from
t,~10 delays to .~ 6000 delays, depending on w in a complex manner.

version of the algorithm was checked thoroughly and the
latter could hence be used as a reasonable and efficient
substitute for the original code.)

The presence of bistability in this system is not very
surprising since it has been reported previously by Li ef al,
in a similar DDE arising from modeling the dynamics of
nonlinear optical cavities.?>1? The surprising aspect of this
bistability is shown in Fig. 2 where we plot the occurrence
of the solution in Fig. 1(b) as a function of the frequency
of the initial function. Figure 2 is therefore a glimpse at the
structure of the basins of attractions of different limit cycle

z{t)
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FIG. 3. Two bistable solutions of the Mackey-Glass equation. The pa-
rameters in both panels are a=1, f=3, #=8, r=1.23. The initial func-
tion in both is ¢(£) = 1.5 sin(w#) +0.6. (a) ©=0.3; (b) @=0.7. The tran-
sients are specific to the initial functions, and Fig. 4 displays the limiting
asymptotic solutions evolving from (a) and (b) shown here.
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FIG. 4. The positive and negative bistable solutions of the Mackey-Glass
equation after sufficiently long transients. The parameters are those of
Fig. 3.

solutions of (2). Our digital solutions indicate that this
structure is clearly intricate at all possible scales of numer-
ical investigation.

B. The Mackey-Glass equation
The Mackey—Glass equation,?’

dx Bx,

dt
was introduced in an attemnpt to explain the oscillations in
numbers of neutrophils observed in some cases of chronic
myelogenous leukemia. The most striking feature of this
equation is that when the exponent » in the feedback func-
tion is even, or when the feedback function becomes
F=Bx/(1+|x,|"), the equation is invariant under the
transformation x(#) - —x(#). As & consequence, if x(¢) is
a limit cycle solution of (4), —x(¢) is also a solution. This
bistability is illustrated in Fig. 3 (and Fig. 4).

Although it is easy to understand the origin of this
behavior, the stability of the various limit cycles remains to
be classified. This classification amounts to studying the
structure of the basins of attractions. From a modeling
perspective, it is important to know whether one might
expect to observe both kinds of solutions experimentaily
(given a small uncertainty in the initial preparation) or
whether the initial functions giving rise to different solu-
tions differ in a “radical” way.

In Fig. 5 we plot the values of the frequency @ which
eventually yield strictly positive or negative solutions. The
structure of the basin of attraction in this case is obviously
much simpler than for the quadratic nonlinearity, but
again this is a consequence of symmetry in the Mackey—

(4)

Type
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Frequency of (t)

FIG. 5. This figure displays the values of w giving rise to positive and
negative limit cycles of Eq. (4}. The vertical bars above 0 indicate that at
that value, the asymptotic solution is the positive limit cycle displayed in
Fig. 3(a). The vertical bars going from 0 to —1 indicate that at that value
of @ the asymptotic limit cycle is the negative solution shown in Fig. 3(b).

CHAOS, Vol. 8, No. 2, 1993 _
Downloaded 29 May 2001 to 163.1.103.109. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



170 Losson, Mackey, and Longtin: Multistability in delay equations

Glass equation. Note, however, that relatively small per-
turbations to the initial functions can alter the evolution of
the system in a dramatic way.

Obtaining figures like 2 and 5 is computationally ex-
pensive. It is therefore desirable to focus on a nonlinear

DDE which is analytically tractable {(and hence computa-

tionally more efficient), but which is known to display the
spectrum of dynamics characteristic of first-order nonlin-
ear DDEs. The dynamics of such a system can then be
linked analytically to the behavior of realistic models. In
the next section we investigate such an equation, intro-
duced by an der Heiden and Mackey® as a paradigm for
delayed mixed feedback mechanisms.

an der Heiden and Mackey?® have studied Eq. (1) with
a piecewise constant nonlinearity:

dx P AT d LY fo
E=_ax+r.tx-r), (Ja)
where
¢ if se[8y,0,]
Foy=[S oS0l (5b)
lU 11 b\Ul UL O/Uz,

and ¢, 8,> 6, are also positive constants. One can think of
the piecewise constant forcing as the simplest idealization
of more realistic stmooth nonmonotone functions. An im-
mediate consequence of this choice for F is that (1) can

now be 1ntegrated analytically:

x(tp)e %0} if x.<6, or x,>6,, p
Pty —P)e= =0, if x.e[0,6,],

where y==¢/a is the asymptote of the increasing exponen-
tial segment. Thus the solution of (53) is a sequence of
either increasing or decreasing exponential segments de-
pending on the value of the variable x a time T ago.
Despite its simplicity, Eq. (5) can exhibit solutions
ranging from simple fixed points to wildly oscillating cha-
otic 1:rajf:ct<}ries.26 Since (3) is analytically integrable, one
may use a digital computer to keep track of the crossing
times of the solution with the thresholds 8, and 6;. (De-

tasla ~AF arn Frrtin intoornts 3
tails of an analytic integration algorithm for (5) can be

found in Ref. 28. The algorithm used to produce the figures
of this section is given in Ref. 29.) The solution is deter-
mined uniquely by these crossing times, rather than by all
values of x(z) within one delay interval. In fact, for fixed
x(0), the solution depends solely on the crossing times
within the initial function.?® This “reduction in dimension-
ality” enabled an der Heiden and Mackey?® to analytically
prove [for Eq. (5)] the existence of limit cycles, of a ho-
moclinic orbit, and of Li and Yorke-type chaos, and to
characterize the global stability of simple limit cycles (e,
with one maximum per period), also known as slowly
oscillating periodic solutions.” Further, an der Heiden'®

was able to prove that the map governing the crossing

o . .
times was exact (cf. Ref. 30) for certain parameters, im-

x{)=

plying that the crossings occur very irregularly. These re-
sults have been shown to also hold when the discontinuities

FIG. 6. Graph of an initial function g&.#.

of F are smoothed out,>"* making the results more rele-

vant to real physical systems. This observation, combined
with the existence of analytical results concerning its global
stability, motivated our choice to simulate Eq. (5).

The fact that a trajectory is uniquely determined by
x(—7), x(0) and the times at which the initial function
crosses 8, or 8, on the interval [ —7,0] is important because
it allows us to parametrize a class .# of nonconstant initial

Frrmatinmg 1n +110a] avre T
TUNClions i a natura: way: Let 1) defined on [‘=‘7',9] be an

initial function for Eq. (5) and pick #,, # such that —7<#
<50, If

@ty <6 for te[—mt), @(f)=6
rp(t)(‘-_-‘(@l,ﬂz) for tE(fl,tz), @(t2)=92,
P(>8, for te(6,0), @(0)=0,

then pe# (see Fig. 6).
A. Higher-order multistability

In this section we explore the sensitivity of limit cycle
solutions of Eq. (5) to variations in some nonconstant
initial conditions. We restrict our attention to initial func-
tions pes.

Figure 7 displays bistable limit cycles of (5) obtained
with two different initial functions @, and ¢, in # with «,
8, &, ¢, and 7 held constant. Figure § displays tristable
solutions of Eq. (5). This type of multistability in DDEs
has not been previously reported. Note that this behavior is

LANAL
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FIG. 7. Typical co-existing solutions of Eq. (5) and initial functions
@ef. The parameters are; a=3.25; ¢=20.5; 7=1; 8;=1; 6,=2. For (a)
ty=—0.9925; £,= —0.6; and the period is P=3.66. In (b} #;= —0.995;
t,=—0.27; and the period is P==5.19.
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FIG. 8, Illustration of multistability in Eq. (5). The parameters are the
same as in Fig. 7, except @=3.75. For (a) = —0.925; ,=—0.711; and
the period is P=0.75. (b) #;=—0.9; 1,=—0.386; and P=1.78. (¢) 7,
=0.9925; £,=—0.4; and P==5.03.

robust in the sense that it is observed for large regions of
parameter space. This is illustrated in Fig. 9 where we plot
of the periods of the solutions of (5) obtained with a va-
riety of initial functions g €.# as the parameter ¢ is varied
with «, 8, 6;, 7 held constant. Figure 9 illustrates the
relative predominance of short limit cycles {containing at
most four extrema per period), an example of which is
displayed in Fig. 8(a) Long limit cycles are less common
than their short pt:uuu cournterparts. \nu,uuugu it appears
in Fig. 9 that there is no change in the period of the short
limit cycles as ¢ increases, there is in fact a slight decrease
of the period, but it is unobservable because of the loga-
rithmic plotting of the ordinate.)

1.67 ¥
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¢ ° ° ° ° ° oose
co0c0c0000

00008 © 00 000 O DO0GO0 GO 0000LACOGOOHBS

06C 0 0BO0C00C0 0Q0J0O0R O 000000 0000000000000

1
¢ 16 c=18.5 c=121

FIG. 9. The quantity P= log(1+log({1+ P)) as the parameter ¢ is varted
for 7==1, @=3.25, 8, =1, and &,==2. P was ploited here rather than P, the
period of limit cycle solutions of (5), for the clarity of the figure.

°t1 a t3 1

FIG. 10. Subsets of the basins of attraction of two bistable solutions of
(5) displayed in Figs. 7(a} and 7(b). The black dots represent values of
(¢,1,) such that gpe.# generates the solution of Fig. 7(a). More pre-
cisely, for each ¢, the graphs represents 1000 values for ¢, distributed
uniformly between £, and 0, and the procedure is repeated for 1000 values
of t; . The plotted points represent the loci in (z, ,#;) space which generate
the short limit cycle solution of Fig. 7(a). [Areas void of plotted points
correspond to values of (#,t,) which generate other types of solutions of
Eq. (3): i.e., the long period limit cycle solutions of Fig. 7(b} or asymp-
totically nonoscillatory solution tending to ¥ or 0.]

B. Basins of attraction

Given a fixed set of parameters (o, 6,, 0, 7, ¢) for Eq.
(5), what is the relative distribution of long and short limit
cycles in (#,,£) space? This question is more crucial than
the simple determination of the presence of multistable

l\nhqinnr einca 1t anantitativaly -)Arlrncnnc tha cancitivity nf
UVCIIAVIUL, SLIVAL I Ualitilatively o LLO0LAD LU OLILISIULYALY WL

the solutions to variations of the parameters ¢, and ¢,.

Consider Eq. {5) with the parameters used to generate
Fig. 7. As ¢; and £, are varied, we expect to generate both
types of solutions presented in Figs. 7(a) and 7(b). Figure
10 represents the solution types of Eq. (5) obtained with
10® different initial functions ¢ belonging to &

The most noticeable feature of Fig. 10 is the presence
of regions that are either completely black or completely
white. These regions were numerically investigated to test
for the presence of black dots in completely white regions
and vice versa. The numerical results are consistent with
the existence of sets of positive measure in (#,%) space
which are associated with only one type of limit cycle. This

feature is accentuated in pﬂrq 11 and T") which ara gimilar
ana WiICH arg Simuar

to Fig. 10, but with the parameters of Flg. 8. The relative
abundance of short limit cycles in the space of control
parameters illustrated in Fig. 9 is related to the existence of
these sets which appear to have positive Lebesgue measure
on the (#,,7,) square. Based on extensive digital simuia-
tions, it appears that there is no upper bound on the order
of the multistability displayed by Eq. (5), and the more
finely one looks at the structure in (#;,4) space, the more
new limit cycles (of different period) one is likely to find
(see Fig. 12). This behavior was not observed in the sys-
tems with a continuous nonlinearity discussed in Secs. IT A
and II B.

The existence of positive area subsets of the basins is
important since it suggests the existence of regions in the
space of initial functions which are stable in the sense that
for IFs in these subspaces, the asymptotic solution evolu-

CHAQS, vol. 3, No. 2, 1983 ] ) .
Downloaded 29 May 2001 to 163.1.103.109. Redistribution subject'to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



172 Losson, Mackey, and Longtin: Multistability in delay equations

2]

t, Il t; 0

FIG. 11. Subsets of the basins of attraction of the three solutions of (5)
displayed in Figs. 8(a)-8(c). The black dots represent values of (#,,6)

enich that ;me & msnpratpe the solution of 'F'm 8{h). The two small bars on

SUC vlas PT WErates N sOulon ol 2L o4rs

each axis mark a region which is enlarged in the next figure.

tion is independent of small variations of the initial system
preparation. This property is found in the continuous ex-
amples of Sec. 11, and is therefore not a consequence of the
discontinuous nonlinearity in (5).

We have, to this point, been concerned by the dynam-
ics of purely deterministic DDEs. Although these equa-
tions play an important role in the modeling of real phys-
ical situations, it is obvious that any experimentalist must
deal with a given amount of noise. There are numerous
discussions in the literature of situations where minute sto-
chastic perturbations can have a dramatic effect on the
underlying dynamics. It is therefore interesting to know
whether the multistability discussed here is also observed
in a real physical system designed to be accurately modeled
by a first order nonlinear DDE. This question is examined
in the next section with the help of a task specific electronic

analog computer.

IV. AN ANALOG STUDY OF MULTISTABILITY

In thic cection. we investioate the dvnamics of Fr‘l (5)

ALL RLILG OWiwrLiliily TF W llxvuuva Ch bl LRAAS LA f AALLALLLAL WA A i~ g
with an electronic analog computer. The main motivation
behind this work is to assess the potential of analog com-
putation for the analysis of DDEs. In addition to allowing

t,

FIG. 12. Enlarged view of the small region of Fig. 11 marked on the axes.

-ox(t)

x{1)

(@) I+Dx0-

j{-ax(t)+F(X(t-T))} dt /

FIG. 13. Schematic diagram of the electronic analog computer.

of parameter space, analog computa-

1alllGel sy AL

ranid exnlorations

rapiil CApROIAlRNL

tions are useful to investigate global stability and quantify
the influence of noise on the solutions. Another motivation
stems from recent experimental studies of (delayed) neural
control loops, involving, e.g., the pupil light reflex®® and
delayed visual tracking tasks.”® The analog computer pro-
vides a testbench for these experimental protocols which
also make use of analog delay lines {described in the Ap-
pendix).

The techniques of analog computation for noisy non-
linear systems are described in Ref. 34. The analog com-
puter designed to study Eq. (5) is a closed electronic cir-
cuit. The details of the design can be found in Ref. 29.
Since analog differentiation leads to instability, Eq. (5) is
simulated in its mfepra1 form

2= [ [=ax(6) + Flx ()ds-+xo),
‘o

where

£t
Sz —7.

(7

The circuit, shown schematically in Fig. 13, multiples
the signal x(¢) by a factor ¢, delays it by 7, and transforms
it according to the static nonlinearity F, sums the resulting
signals and integrates the sum. The result of the integration
is equated with the original signal x(¢) at the point where
the ]oop is closed and the voltage x(t) monitored. The
initial state ¢ of the circuit consists in the turn-on state of
the component—described in the Appendix—which pro-
vides the delay in the analog computer. Some details of the
analog computer design are given in the Appendix. Precise
wiring diagrams, calibration procedures, and error calcu-
lation methods are available from the authors. These
lengthy details cannot be included here.

Figure 14 shows four analog solutions. The periodic
solutions are compared with the analytical solutions of (5)
obtained at the same parameter values for constant initial
functions (when the solution is aperiodic, it is impossible
to measure the parameters in the circuit with enough pre-
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FIG. 14. Analog and digital simulations of Eq. (5). The initial functions
were constant and ¢(¢) €[8,,8,] in all cases. In panels (a) and (a’), the
parameters of (5) were 8,=0.5; #,=1.6; a=0.6; c=2.4; 7=1. In (b} and
(b'), 8,=0.9; 8,=1.6; a=0.8; ¢=3.2; r=1. In (c) and (c’}, 6,=0.86;
8,=2; a=1.5; ¢=3.2; 7=1. In (d), it is not possible to measure with
meaningful accuracy all the necessary parameters on the analog computer
when the trace is highly irregular, thus we do not give a digital trace to
compare with the anzlog solution. However, solutions similar te (d) can
be obtained numerically in the following region of parameter space: 8,
zO.S; 9222; azl.j; Cz3.2; T

cision to compare aperiodic digital and analog solutions).
For simple limit cycles, the agreement between the two is
excellent: Discrepancies between the amplitude and period
of the two are on the order of 0.5%. This agreement de-
creases as the solution complexity (i.e., the number of ex-
trema per period) increases. In fact, systematic shifts in
parameter space seem to occur; small shifts lead to quan-
titative disagreement, while larger shifts cause qualitative
differences, e.g., in the number of maxima per period. Nev-
ertheless, it appears that the analog solutions correspond to
analytic solutions of (5). Discrepancies between analytical
and analog solutions are due to noise and to errors in the
estimation of parameters.

Although the signal to noise ratio in our circuit was
large (about 100:1), the exact influence of the noise on
these dynamics is not well understood. Nonlinear dynam-
ical systems can be sensitive to even minute stochastic per-
turbations, especially when the dynamics are chaotic or the
system is operating in the vicinity of bifurcation points or
when trajectories come close to basin boundaries.* Al-
though the topic of stochastic DDEs remains virtually un-
developed, there have been investigations of noise-induced

transitions in equations such as (1)35’36 and (5).37r For this
latter case, colored noise has been shown to perturb the
period more than the amplitude of solutions, especially
near bifurcation points. In our study, fluctuations in both
amplitude and period are expected.”’

The important point is that the solutions of (5) are
observable despite the electronic noise, and thus that the
solutions are stable in the function space in which they
evolve. One way to visualize this is as follows. In the same
way every point on a trajectory of an ordinary differential
equation belongs to the basin of attraction of the solution
toward which it tends asymptotically, every function de-
fined on an interval (z,¢+7) of a solution belongs to the
basin of attraction of the DDE in function space. Qur ex-
periments show that this set of functions, along with their
perturbations (which are much larger than for the analyt-
ical solutions which are accurate to one part in 10'%), thus
also belong to the basin of attraction of the asymptotic
solution.

A. Bifurcations to complex limit cycles

We now discuss the behavior of the circuit as a, 6,
and 6, are varied, and compare the analog solutions with
the analytic solutions of Eq. (5), the latter obtained by
plotting (6) with a digital computer. Unless otherwise
specified, the initial function @ is a constant, and ¢ is fixed.
When 8, and 8, are sufficiently far apart, the solution os-
cillating around @, does not cross the positive feedback
threshold and the feedback in (5) is purely negative. In
this case, both the electronic and analytic solutions have
similar shape and offset, though the values of the amph-
tudes may differ by ~0.5% (see Fig. 14, panelsaand a").

As 8, 0,, the same approximate sequence of bifurca-
tions is observed in both the analog and digital solutions.
However, some complex analytic limit cycles were not ob-
served on the analog computer; in fact, digital simulations
indicate that the regions of parameter space in which these
cycles are stable are often smaller than the errors on the
measured parameters. Nevertheless, the gradual increase in
complexity (i.e., the number of extrema per period) of x as
8,- 0, is observed in the circuit. In particular, when the
two thresholds are sufficiently close, the analog solutions
appear to be aperiodic [an example of such a solution is
displayed in Fig. 14(d))].

One very interesting feature displayed by the electronic
solution is the appearance of spiral-type limit cycles in the
vicinity of an unstable homoclinic cycle, as shown in Fig.
14(c). This phenomenon is described in Ref. 26, where the
DDE is reduced to a one-dimensional map of the unit
interval onto itself. This type of solution is borne out of an
unstable periodic solution around the lower threshold, the
instability being due to positive feedback. As ¢ is in-
creased, the length of the residence time of the solution
around &, increases. Again, there are discrepancies be-
tween the values of o generating the same electronic and
analytic solutions.
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B. Multistability and hysteresis

The initial state of the analog delay line (BBD, see the
Appendix) used to provide the delay in the electronic loop
corresponds to the initial function ¢ for the DDE. All the
properties of the analog oscillator discussed to this point
have been obtained with constant initial voltages in the
BBD corresponding to a constant initial function ¢. The
parameters in the analog computer were set and then the
loop was closed. In the part of the experiment described in
the previous section, parameters were not changed after
oscillation onset to allow for a comparison between exper-
imental observations and analytic solutions. Alternately,
the parameters can be changed continuously as the analog
computer is oscillating. When parameters 8, and/or ¢ are
varied in this fashion without reinitializing the system, a
range of nonconstant initial functions is explored as the
system evolves since the solution on any interval (z,¢47) is
the initial function for the ensuing solution.

As the threshold 6, is slowly increased toward 8, (and
the circuit is allowed to stabilize), solutions undergo a
series of bifurcations toward ones of higher period; <f. Fig.
14. When 6, approaches the second threshold (6, above 2
V for 8,=3.2 V), the solution decays to the lower asymp-
tote (about 1 mV above ground). As 8, is subsequently
decreased, the first oscillatory solution observed in the sys-
tem is the slowest limit cycle corresponding to a pure neg-
ative feedback situation. Thus different solutions of Eq. (3)
are found at the same parameter values depending on

shatls h A A ad Tha anlv dif
wiletliier ul s ueiﬂg increased or decreased. The Oy Gli-

ference in behavior between the rise and the fall of 9, is the
initial condition for the system. This Aysteresis in the bifur-
cation structure indicates the presence of multistability in
the system.

To examine the sensitivity of solution behavior on the
initial function, the analog computer was modified to allow
for an arbitrary initial function to be entered into the BBD.
An electronic switching circuit opens the feedback loop to
permit the loading of an initial function. Our design allows
for the accurate control of the voltages on each of the
capacitors of the BBD by interfacing it with a digital com-
puter, in which the desired initial function is stored. The
rest of the circuit is always initialized to the same state, i.e.,

with one extremity of the loop grounded, while the other

one receives a programmed initial function from the digital
computer through a D/A board. The BBD receives the
signal containing the initial function as well as a sampling
pulse from the digital computer. The electronic switch is
used to close the Ioop once the initial function is sent and
the analog computer is once again autonomous.

Solution dependence on the initial function was inves-
tigated for the class of functions ge.# introduced in Sec.
III (see Fig. 6). Recall that the evolution of x(¢) for t>0
depends only on {#, .55} [for fixed x(0)] because the forcing
term F is piecewise constant.

Figure 15 reveals that at least two periodic solutions
co-exist, each with its own basin of initial functions from

thic rlace Ac t. ig varied hetween 7. and (0 the interval

LIRID LAGI3. RS 8] A0 YOLIVG ULV AL F] QAU Wy i IRl Vi

[#;,0] splits into two sets of ¢, values, one yielding a short
period solution and the other, a long period solution. This

M
nﬁmvkuvvv

3 secs, 5.1 secs.
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FIG. i5. Bistable solutions of Eq. (5} obtained with the electronic analog
computer. The parameters in both panels are 8,=1, 8,=2, a=13.57,
¢=18.7, r=143 ms. Transients were discarded. In panel (a), the param-
eters for the initial function are #;= - 100 ms; #,=—82 ms. In panel (b),
t;=—100 ms; 1= —80.5 ms.

separation of the interval [¢;,0] into sets yielding different
limit cycles confirms the existence of multistability. This
type of analog solution multistability was observed for

laroae ranoes nf narametere when the initial fimetion o, &
18I2C ranges Of paramelers wien e mitia: uncluon g,

although the structure of the sets is complicated and can-
not be determined with the analog computer. Nevertheless,
the multistability observed digitally is also observed in an
inevitably noisy electronic analog computer, whose tempo-
ral evolution can depend in a very sensitive way on the
experimental preparation.

V. CONCLUSION

We have discussed the presence of multistability in
three first-order nonlinear differential delay equations. Al-
though bistability has been previously noted in such sys-
tems,”**%>%%2! we report here on the sensitivity of the so-

lution behavior on perturbations of the initial function. For

MLAVRL UV VAVL VAL PRATUL UGALIVILS UL I Dl L ulieiiin, a8

the logistic DDE (Sec. II A}, the basins of attraction of
bistable limit cycles possess a complicated structure at all
numerical scales. This is also the case for the basins of
attraction of bistable and tristable limit cycles in an inte-
grable nonlinear DDE with a piecewise constant nonlin-
earity (Sec. III).

The nature of the bistability present in the Mackey-
Glass equation {Sec. IT A) is somewhat simpler than that
found in the two other systems mentioned above. More
precisely, a symmetry in this equation [i.e., its invariance
under the transformation x(#) - —x(¢)] is responsible for
the bistability between positive and negative limit cycles. In
addition, the structure of the boundaries separating the

hacine of attraction of thece calutinne goeme tn hae Anita
ASEAVEALL WL RALLL G LAVALL UL bRl WA PLVALT Ol LW U \-luilr\v

regular., This makes the Mackey-Glass equation (or any
DDE displaying the same symmetry) a plausible candidate
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for further analytic work. Our study of the Mackey—Glass
systemn leads us to the conclusion that at least one possible
mechanism for bistability in a DDE is its invariance under
a coordinate transformation.

Finally, in an electronic analog computer designed to
integrate a nonlinear DDE, we observe the sensitive depen-
dence of the evolution of the system to perturbations of the
initial function (Sec. IV). This shows that such sensitivity
is present in real physical systems with delays and noise,
and therefore that it should be considered when studying
the dynamics of such systems experimentally.
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APPENDIX: OVERVIEW OF THE ANALOG COMPUTER

In this Appendix we give a brief description of the
design of the analog computer used to integrate Eq. (5).
The details concerning the circuit, calibration procedure,
and error calculations (too lengthy to be included here)
can be found in Ref. 29 or requested from the authors.

This analog computer is in a sense an analog-digital
hybrid because the delay is synthesized by a digital inte-
grated circuit called an analog delay line, or bucket brigade
device (BBD, RD 5108 from EG&G Reticon). This
CMOS device samples and delays the signal by storing it in
an array of 1024 capacitor circuits. Each of these capaci-
tors (buckets) transfers its charge to the neighboring ca-
pacitor at every other logic HIGH of the sampling signal
or clock (typically a square wave). The delay is propor-
tional to the number of buckets and inversely proportional
to the experimentally controlled clock frequency. The de-
lay was kept at 7=300= 1 ms for the results presented here
(except when specified explicitly)}. The output of the delay
circuit was fed through an eight-pole Bessel filter to re-
move the sampling artifact. The feedback function F in Eq.
(5) is simulated electronically with an LM 393 monolithic
comparator circuit. The thresholds ; and 6, are voltages
controlled by potentiometers. The output of this stage is 5
V when the input is in the interval [6,,8,] and at ground
otherwise, thus simulating the piecewise constant nonlin-
carity in Eq. (3). The rest of the circuit uses standard
op-amp technology, although the design of the integration
stage requires particular care. For the delays used in this
study, the dominant frequency of the solutions is in the 1
Hz range, thus requiring a good low-frequency integrator
with low drift.

To evaluate circuit performance, it is necessary to com-
pare the electronic solutions with the analytic solutions
(6), plotted using a digital computer. The parameters used
for the latter are measured on the electronic circuit (e.g.,

the gain ¢, the delay 7 produced by the BBD, etc.). Their
measurement is not straightforward, since each stage in-
troduces extra gains and offsets which make it deviate from
its ideal desired behavior. For example, the BBD operates
with maximal linearity when the input is slightly biased.
Also, the gain of the integrator is closely linked to its cutoff
frequency, and the frequency of the signal to be integrated
is the main factor influencing the choice of values for the
resistors and capacitors making up the integration stage,
regardless of its total gain. Consequently, the integrator
introduces a gain which adds to that of the stage simulat-
ing the amplification a [see (5)]. An equation has been
derived to connect the circuit parameters to those used in
the analytic solutions.?

The first electronic solutions to be compared with an-
alytic solutions are the steady states corresponding to the
asymptotes 0 and ¥ in (6). The upper asymptote can be
measured with an accuracy of about 0.1%, and we can
relate this value to the ratio ¢/a using the circuit equation
mentioned above (typically this value varies between 5 and
20, for periodic and chaotic behavior). The lower asymp-
tote fluctuates around zero with an amplitude of ~1 mV.
Both asymptotes are stable over periods well beyond 12 h,
and the simpler periodic solutions were also stable over this
time span. The more complicated solutions (e.g., those
crossing either 8, and/or 8, more than five times in one
delay) were stable for shorter periods ranging from sec-
onds to hours depending on the number of extrema per
period, their proximity to the thresholds €, and 9,, and the
noise level in the circuit,
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