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A Hopf-Like Equation and Perturbation Theory for 
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We extend techniques developed for the study of turbulent fluid flows to the 
statistical study of the dynamics of differential delay equations. Because the 
phase spaces of differential delay equations are infinite dimensional, phase-space 
densities for these systems are functionals. We derive a Hopf-like functional 
differential equation governing the evolution of these densities. The functional 
differential equation is reduced to an infinite chain of linear partial differential 
equations using perturbation theory. A necessary condition for a measure to be 
invariant under the action of a nonlinear differential delay equation is given. 
Finally, we show that the evolution equation for the density functional is the 
Fourier transform of the infinite-dimensional version of the Kramers-Moyal 
expansion. 

KEY W O R D S :  Hopf-like equation; perturbation theory; differential delay 
equations. 

1. INTRODUCTION 

We derive a functional differential equation for the characteristic functional 
~t of the measure defined on the phase space of a nonlinear differential 
delay equation (DDE). This functional equation describes the evolution of 
a density of initial functions under the action of a DDE. We show that the 
evolution equation for ~ (a Hopf-like equation) is the Fourier transform 
of the infinite-dimensional extension of the Kramers Moyal (KM) expan- 
sion. This approach to the study of delayed dynamics was inspired by the 
work of Capifiski, (1~ which extended functional techniques introduced by 
H o p f .  (2) 
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The formalism used throughout this paper is that of probability theory 
in function spaces. Consequently, there is a strong analogy between our 
presentation, field theories, and the functional description of fluid 
mechanics. In particular, perturbation theory and the expansion of charac- 
teristic functionals in terms of probability moments are applicable to the 
study of differential delay equations, 

The outline of the paper is as follows. The characteristic functional ~, 
is introduced in Section 2. The evolution equation for Y'~ is then derived for 
DDEs with a smooth feedback nonlinearity. 

A power series expansion of ~, is presented in Section 3 and used to 
reduce the Hopf-like equation of Section 2.1 to an infinite number of 
coupled linear hyperbolic partial differential equations (PDEs). We also 
give necessary conditions to be met by the invariant measure(s) for a 
nonlinear DDE with a quadratic nonlinearity. 

Finally, in Section 4, the connection between the Hopf equation and 
the functional extension of the Kramers-Moyal expansion is presented. 

2. C H A R A C T E R I S T I C  F U N C T I O N A L S  FOR DELAY E Q U A T I O N S  

We consider DDEs of the form 

du 
- - = - ~ u ( s ) + F ( u ( s - 1 ) )  for l < s  (la) 
ds 

in which the delay ~ is taken to be 1 without loss of generality, with the 
initial function 

u(s)=v(s)  if s e [ 0 , 1 ]  (lb) 

From now on we write (la), (lb) as the combined system 

u(s)=v(s)  for sE[0 ,1 ]  

d~(s) 
- - -  ~u ( s )+F(v ( s -1 ) )  for l < s < 2  

ds 

(2) 

and denote by ~ the corresponding semidynamical system ~ :  
cg( [0, 1 ] ) ~-~ cg( [0, 1 ] ) given by 

N v ( x )  = uv(x + t) (3) 

where u~ denotes the solution of (2) corresponding to the initial function 
v. Equation (3) defines a semidynamical system because a DDE is noninver- 
tible, i.e., it cannot be run unambiguously forward and backward in time. 
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From (3), the system (2) is equivalent to considering 

8 ~ , , [(8/8t)v(x+t) for x e [ 0 , 1 - t ]  
&~v tx )=] -c~ u ( x+ t ) +F( v ( x+ t - 1 ) )  for x e ( 1 - t , l ]  

(4) 

Thus, we consider a segment of a solution of (2) defined on an interval It = 
[t, t + l ] ,  as t increases (continuously) [i.e., the DDE(2) operates on a 
buffer of length 1, "sliding" it along the time axis]. Equation (4) states that 
the content of this buffer is the initial condition v when the argument 
(x + t) is less than 1, and the solution u of the equation otherwise. 

We next introduce the characteristic functional Y', of a family of 
probability measures evolving from an initial measure. We define the 
characteristic functional ~,  for (4) by 

~t[JI, J2] = f expli fo Jl(x) u~(x + t) dx + i fo J2(x) v(x) dx ] 

x d#o( JF ' (v ,  u~)) (5a) 

The source functions J1 and J2 are elements of (g([0, 11) and the measure 
of integration is the initial measure/~0 (describing the initial distribution of 
functions) composed with r uv), where W,(v): cg([0, 1 ] ) ~ ( ( x c g  is 
defined by 

~t(v) = (v, uv) (5b) 

For simplicity, we will use the notation # 0 ( J ; l ( v ,  uv))= ~ [ v ,  ~(v)] ,  
so (5a) becomes 

Yt[J~,J2]= exp i Ji(x) uo(x+t)dx+i J2(x) v(x)dx 

x d~/[v ,  ~,(v)] (5c) 

When no confusion is possible, we write ~ for ~/r ~(v)] .  
If f and g are two functions defined on an interval/ ,  we denote their 

scalar product by 

{f, g} - s g(x) dx 

To simplify the notation, we also write 

F[J1, J2 ; v] = exp[i{Jl(X), u~(x + t)} + i{J2(x), v(x)} ] (6) 
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Y is used from now on to denote the function of J1, J2, and v defined in 
(6). We begin by noting the following relations: 

6n~ 
- -  = i ' ~  Y u ~ ( ~  + t)} (7) 

- - = i ~ ( Y v ~ ( ~ ) }  (8) 

where it is understood that 

( ( i )}  = f .  (i)d~fK[ v, ~(v) ]  

Note that if #o is the probability measure on the space of all initial 
functions v, and A is any subset of cg([0, 1 ]), then 

]tt(A) ~ k t o ( • t  I ( A ) )  (9) 

In other words, the probability that a randomly chosen function belongs to 
A at time t equals the probability that the counterimage of the function 
(under the action of ~ )  belonged to the counterimage of the set A. This 
defines the family of measures characterized by the solutions Y~, of a 
functional differential equation which is the Fourier transform of the 
infinite-dimensional version of the KM equation. The derivation of such an 
equation for a DDE was first considered by Capifiski. (1) If the semiflow 
is measure-preserving with respect to go, then kt0(A) = t t0(J  7 I(A)). In this 
case, we alternately say that the measure tt o is invariant with respect to ~ .  

We are now in a position to derive an evolution equation for the 
characteristic functional. 

2.1. A Functional Differential Equation for ~ t  

Time differentiation of the characteristic functional 5e~ defined in (5c) 
yields, in conjunction with (4), 

0~' I Io - ,  ,au~(x+t) I #t = i Y JI(X) ~ dx 

i , ,  ,Ou~(x+t) dx) 
=il~fO J l t X ) - ~ X  

t fO -t ~V(x~-t) dx--O~)~f 1 Jl(X) lx(x-~t)dx) = i Y J l ( X )  63x l - t  

+i r J~(x)f(v(x+t-1))dx (10) 
1 t 



Differential Delay Equations 1029 

Therefore, from Eq. (7) and the definition (4), we obtain 

63~0t = f o ~ - t  (~ / ~ e t  \ dx 1_ J x (}~t dx  JI(X) ~ ~ j - - ~ )  --O~fl t 1( ) ~ - - ~  

+ i  1 ~ J~(x)  F ( v ( x + t - 1 ) ) d x  (11) 
1 t 

Equation (11 ) is related to the Hopf functional differential equation for the 
evolution of the characteristic functional ~e,, and contains all the statistical 
information describing the evolution of a density of initial functions under 
the action of the differential delay system (la), (lb). An equation similar to 
(11) was first obtained by Capifiski for a differential delay equation with a 
quadratic nonlinearity (see Example 1 below). 

In order to derive the Hopf equation per se, we restrict our attention 
to situations where the feedback function F in the DDE (la) is a polynomial 

F(v)= ~ ak vk (12) 
k 1 

With nonlinearity (12), Eq. (11) becomes, with identity (8), 

~t~l t - t  0 / 3o~, t \ t J X 6"~t =fo dx  - ~ 1 dx  

+ i(1 k)ak J1 (x ) (~Jk (x+t -1 )  (13) 
k=l  1 t 

Analytically solving the Hopf equation (13) is not possible at present, 
though a correct method of solution should make use of integration with 
respect to measures defined on the space ~g. Presently, the theory of such 
integrals only allows their consistent utilization in solving functional 
differential equations when the measure of integration is the Wiener  
measure.(13) 

The tack of a formalism within which to evaluate functional integrals 
with respect to general measures also poses a problem for the development 
of field theories in physics where the characteristic and generating func- 
tionals (CF, GF) both play fundamental roles. 3 

In statistical physics, the GF is interpreted as the partition function for 
systems with an infinite number of degrees of freedom, while in quantum 

3 The characteristic functional, presented here, is the Fourier transform of a probability 
distribution (i.e., by Bochner's theorem it is the Fourier transform of a measure(~~ The 
generating functional, however, is the Laplace transform of a probability distribution. 

822/69/5-6-8 
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field theory the CF is used to obtain the Green's functions from which the 
scattering amplitudes for various processes are calculated. In quantum field 
theory, the measure of integration is the Wiener measure for the free-particle 
problem, for which the field equations are Wiener-measure-preserving; this 
is not the case when particles interact, and the systems under consideration 
are no longer Wiener-measure-preserving. In that case, investigators reduce 
the functional integral to a countably infinite product of finite-dimensional 
integrals by coarse-graining the phase space (or, in the language of quantum 
field theory, replacing the continuum by a lattice. (12) 

Before proceeding to treat the Hopf equation in a perturbative manner, 
we illustrate its specific form for a simple nonlinear delay equation. 

Example 1. The differential delay equation 

du 
- --~u(s) + ru(s - 1)[1 - u(s - 1)3 (14) 

ds 

can be considered as a continuous analogue of the discrete-time quadratic 
map 

u~+l = r u n ( 1 - u n )  (15) 

because Eq. (14) is the singular perturbation of the quadratic map (15) as 
defined in ref. 3. The characteristic functional is defined by (5c), and the 
functional differential equation corresponding to (13) was shown by 
Capiflski (1) to be 

~t - ~x  \ a J , ( x ) /  ~ 1-, Jl(X) ~ dx 

fl (~, fl (~2~t dx 
+ r J l ( x )  d x - r i  -1 J l ( x )  c~j22(x+ t -  1) 

1- t  6J2(x + t - 1 )  1 t 

(16) 

In spite of the fact that we cannot solve the Hopf equation analyti- 
cally, relatively mild assumptions allow us to gain significant insight into 
the dynamics of ~, .  More precisely, if Y'z is analytic, we can expand it in 
a power series and treat the Hopf equation in a perturbative manner. We 
follow this approach in the next section. 

3. THE M O M E N T S  OF THE M E A S U R E  ~/ft" 

The statistical properties of the random field of functions v and u are 
described by an infinite hierarchy of moments of the measure ~,,. For fixed 
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t, the average value of the contents of the buffer defined on I, = It, t +  1] 
(i.e., v on It, 1] and u~ on (1, 1 + t]), which is just the first-order moment 
of the measure u/K,, is 

m ~ ( t , x ) - ~ v ( x + t ) d # o ( V )  for x e [ 0 , 1 - t ]  (17) 

ml.(t,x)=f,ju~(x+t)d#o(U) for x e ( 1 - t ,  13 (18) 

These two equations can be written as one relation: 

M l ( t , x ) = f  u~(x+t)d~r for x e [ 0 , 1 ]  (19) 

The definition of the second-order moment (or covariance function) 
MZ(t, x, y) is, with the same notation, 

m2( t, x, y) = f~ v(x + t) v(y + t) d~t~ 

2 =-M~(t,x,y)  for x , y ~ [ 0 , 1 - t ] x [ 0 , 1 - t ]  

m2(t, x, y) = [__ u~(x + t) v(y + t) d~t/; 

=M~o(t,x,y ) for x, y e ( 1 - t ,  1 ] x [ O , l - t ]  

m2(t, x, y) = f~ v(x + t) uv(y + t) d~#/~ 

2 =M~,( t ,x ,y)  for x , y ~ [ O , l - t ] x ( 1 - t ,  1] 

mz(t,  x, y) = f~j uv(x + t) uv(y + t) d~U t 

=M~u(t,x,y ) for x , y ~ ( 1 - t ,  1 ] x ( 1 - t ,  1] 

The subscripts of the various components of M 2 refer to the segments of 
the solution whose correlation is given by the particular component. For 
example, M~v describes the correlation between u and v segments of the 
solution as illustrated in Fig. 1. Remember that the initial function is 
defined on an interval [0, 1 ], so to complete the description of the statisti- 
cal dependence of the solution u~ on the initial function it is necessary to 
introduce the functions Mo2,. Mo ~ is the first-order moment of measure/zo, 
M2oo is the second order moment of #o, etc. 

The moments of the measure ~,, are also given by the power series 
expansion of the characteristic functional ~e, as we next discuss. 
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Fig. 1. 
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A DDE transforms a function defined on [0, 1] into a function defined on I t. 

Illustration of the o, v, and u segments of the solution. 

3.1. Taylor Series Expansion of the Functional  ~ t  

The expression for the series expansion of a functional can be under- 
s tood with the following argument.  Let 

F(y l  ..... Yk) = F(y)  

be a function of k variables. The power series expansion of F is 

F ( y ) =  ~, "'" 2 e n ( i l  ..... i , ) ( y l  ..... Yn) (20) 
n=O i1=0 in--O 

where 

g , ( i l , . . . ,  i , )  _ - 0 " F ( y )  

~Yl " 0 Y ~  y=o 

Passing to a con t inuum in the sense 

i---~ X i 

yi( i  = 1 ..... k ) - ~  y ( x )  

- - O 0  < X  < O0 

~fR dx 
i 

we obtain the corresponding series expansion of a functional  ~ :  

~ [ Y ] =  ~ fR d x J ' " d x ' ~ E ' ~ ( x l ' " " x ~ ) y ( x l ) ' " Y ( X n )  
n=O n 

(21) 

(22) 
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where 

1 6"~[y ]  
g,(Xl,...,x,,) = n! 3y(~O) ~ . ~ y ( x , )  y=0 (23) 

~ [ y ]  is called the characteristic functional of the functions d~ 
With these conventions, the expansion of the characteristic functional 

(5c) is 

~'~l-J~, J~] . . . .  r  x~ ..... x~) 
p = O  q = 0  

• J1 J2 
/ \ j = q +  I 

(24) 

The kernels Epq in the expansion are proportional to the moment functions 
of the measure ~W[v, ~v] .  From Eqs. (7) and (8) they are given by 

1 6P~t 
~pq(t, XI , . . . ,Xp)  - - p !  6 j  q 6 j p _  q 

i p 
p! (u , (x~) .  u~(xq) v (x~+~) . . . v ( x ; ) )  (25) 

i p 
P t (26) = ~ Moqvl~-q~( , xl, . . . ,x~) 

p: 

where from now on we use the notation 

P - -  P t M~q~(p q~(t, x l  ..... Xp) - Muq~lp ql( , x) 

Equation (24) is the infinite-dimensional generalization of the well-known 
expansion of a characteristic function in terms of the corresponding 
probability moments (or their Legendre transforms, the cumulants). 

3.2. PDEs for  the  M o m e n t s  

The evolution equation of the kth moment is given by substituting the 
moment in question into (13) and then using formula (24) to the 
appropriate order. 

Consider the first-order moments of the measure ~//~. If we substitute 
the definitions (25)-(26) and the expansion (24) into Eq. (13), we obtain a 
PDE for the moment Ml( t ,  x): 
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M~(t, x)= 8 at -~x M~(t, x) for x e [0, 1 - t] 

1 ~Vu( t , x )=-c~M~u( t , x )+  ~ akMko~(x+t--1,..k.,x+t--1) (27) 
k = l  

for x e ( 1 - t ,  1] 

Equation (27) is simply the Hopf  equation (13) for the first-order 
moments. In (27) the k arguments of M k indicate that it is the k-point O k 

autocorrelation function of the initial function distribution described by #0. 
Moments whose labels do not contain u are moments of the initial 
measure. 

The second-order moment functions M2(t, x) are given by the solu- 
tions of the four equations 

8 8 8 2 
~3t Mv2(t' x, y) = -~x Mv~(t, x, y) + ~ M~(t, x, y) 

for ( x , y ) e [ O ,  1 - t )  x[O, I - t )  (28) 

2 8 2 M~(t, x, y) = ~y M~(t, x, y) -~M~o(t, x, y) 

x _, . . . .  x + t - l , y )  + akMo(kk ,),(t, + t -  | (k--l) 
k = 2  

for ( x , y ) e ( 1 - t ] •  [-0, l - t ]  (29) 

8 8 2 
- -  ~M,u(t ,  x, y )  at Mv~(t' x, y) = -~xMvu(t, x, y) - 2 

k ( k  --  1 
+ akM~o~ ~)(t ,x ,y+t--1 . . . .  l , y + t _ l )  

k = 2  

for ( x , y ) e [ O , l - t ] •  1] (30) 

2 M.~(t, x, y) = - 2~M~u(t, x, y) 

k (k l)  + ak{MoCk_,~(t,x+t-- 1 . . . . .  x + t - - l , y )  
k = l  

k + M~o(k-~(t, x, y + t-- 1,(k.s. 1~, y+  t-- 1)} 

for (x ,y )~(1- - t ,  1 ] •  (31) 
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The functions Mo2 and MZoou are given by 

2 Mo.(t, x, y) 

k k = - ~ M o ~ +  a~Mok ( x , y + t - 1 , . . . , y + t - 1 )  (32) 
k = 2  

0 3 
Ot M~176 x, y, z) 

3 ~ k k = - e M o o u ( t , x , y , z ) +  ~ a k M o k ( x , y , z + t - - 1  ..... z + t - - 1 )  (33) 
k - - 3  

k and similar equations give the moments Mo<k 1~,. 
A pattern clearly emerges from the preceding analysis: The moment 

MP(t,  x) is given by 2 p partial differential equations of the same form as 
(28)-(31) since MP(t,  x) is a function of p variables, each of which can 
belong to one of two possible intervals ([0, 1 -  t] or ( 1 -  t, 1]). The first 
of these equations (when all the x~ belong to [0, 1 - t]) is 

c~t M~.(t, x) = - -  Mv,(t ,  x) (34) 
j = l  OXl 

We call the equations which give the moments of the form MPt,~p_0 
mixed  equations because they yield functions which correlate u and v 
segments of the solution. For the moment of order p, there are (2 p -  2) 
mixed equations and 2 pure equations. The pure equations give Mvg and 
M~ p, the p-point autocorrelation functions of the v and u segments of the 
solution. 

I f x j E E 0 , 1 - t ]  f o r j = l , . . . , l a n d x j e ( 1 - t ,  1] f o r j = / + l  ..... p, then 
when the forcing term F of Eq. (la) is the polynomial (12), the generic 
form of the mixed equation for M~<, 0 is 

P t i 3 p M~+<; 11( , x) = ~ M~+(;-t~(t, x) - ~(p - l) g~.l~-o(t ,  x) 
i = 1  

~-1 ; ~,r(p+/) +, t ++~=o + M:f~<p Oo:(t, x)_ (35) �9 : aj ~.~, Joi,<,-'>t', x) (+j )  

Once again, this equation is one representative of the ( 2 P - 2 )  mixed 
equations to be solved to obtain the moment of order p. Deriving these 
equations is tedious, but the task is greatly simplified by the similarity 
existing between the systems of equations for moments of different orders. 

Equation (24) presented above is reminiscent of functional expansions 
in quantum field theory and statistical mechanics, which are usually dealt 
with using Feynman diagrams. 
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In quantum field theory, Feynman diagrams are used to represent the 
terms in the expansion of a characteristic functional which describes the 
distribution of fields (in physics, fields are elements of a function space: 
they are functions, or paths in the phase space). The evolution equations 
for these fields are obtained by replacing various Lagrangians in the Euler- 
Lagrange equations which result from applying the principle of least 
action. (12) Feynman diagrams are used to represent the moments (or 
n-point correlation functions) of the distribution of fields. The nth moment 
of the distribution (or n-point correlation function) is represented by n 
diagrams. (9) In our treatment of delayed dynamics, the nth moment can 
also be represented by graphs. Preliminary studies indicate that a graphical 
treatment of (24) is possible, but we have been unable so far to make 
significant progress. We leave as an open problem the efficient use of 
Feynman diagrams for the probabilistic description of delayed dynamics. 

Before proceeding, we illustrate the ideas presented above and derive 
the partial differential equations analogous to (27) and (28)-(31) for the 
nonlinear DDE (14) considered in Example 1. 

Example 2. When the DDE is 

dbl 
- - =  .c~u(s) + ru(s - 1) - ru2(s-  1) (36) 
ds 

the first-order moment equations are given by 

8M~(t, x)  8M~(t, x) (37) 
8t 8x 

8Mlu(t, x) 
- ~ M l u ( t , x ) + r M l o ( X + t - 1 ) - r M ' o o ( X - t - l , x + t - 1  ) (38) 

8t 

The i'our evolution equations for the second-order moments are 

2 2 8M.v(t, Y) 8Mvv(t ' 8M~v(t, x, y) x, y) + x, 

8t 8x 8y 

for x, y e t 0 , 1 - t ]  

2 2 
8M~.(t, Y) - ~M~(t ,  x, y) 2 aM~u(t , x, y) x, 

+ rMvo(t, x, y +  t - -  1) 
8t 3x 

3 -.rM~oo(t, x , y +  t -  1, y +  t -  1) 

(39) 

for x e [ 0 , 1 - t ] ,  y e ( 1 - t , l ]  (40) 
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8M~( t ,  x , y )  OMZ~(t, x , y )  
- ~M~( t ,  x, y)  + rM2o~(t, x + t - l, y)  

8t 8y 
3 -rMoo~(t ,  x +  t -  1, x +  t -  1, y) 

for x e ( 1 - t ,  1], y e [ O , l - t ]  (41) 

8 M ~ ( t ,  x, y)  _ _ 2aM~.(t,  x, y)  
8t 

+r[M2o~(t, x +  t -  1, y ) +  M~o(t, x , y  + t -  1)] 

-r[M3oo~(t, x +  t -  1, x +  t - -  1, y)  

+ M ~ o o ( t , x , y + t - l , y + t - - 1 ) ]  

for x , y ~ ( 1 - t ,  1] (42) 

To solve these equations, one needs to solve first for the moments Mo 2,  
M~2o, and M3oo,,, which satisfy equations of the form 

,~ML(t, x, y) 
~t 

3 z) 8Moou(t, x, y, 

8t 

- eM2ou(t, x, y)  + rM2oo(t, x, y)  - rM3ooo(t, x, y, z) (43) 

3 z ) + r M 3 o o o ( x , y , z + t  1) = - ~Moo~(t, x, y, 

4 - r M  . . . .  (x,y, z +  t -  1, z +  t -  1) (44) 

Hence, the moments can be obtained by successively solving ordinary or 
hyperbolic partial differential equations. Suppose for illustration that 
first-order moments of the initial measure are real positive constants: 

F i r s t  M o m e n t .  

Mo ~ =m~ (45) 

2 (46) Moo = m 2 

3 _ (47) Mooo - m3 

4 _ ( 4 8 )  moooo - m 4 

For M~(t, x), the evolution equation (38) reduces to 

8Mlu(t, x)  _ ~M~u(t, x)  + r(rn I - rn2) (49) 
8t 

whose solution is 

r(ml - m 2 1  
m l . ( t , x ) = 7 1 + [ M l u ( O , x ) - 7 1 ] e  ~' where 71 = (50) 
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At t = 0 ,  from (3) and (4) we know that v(1)=u~(1). In addition, 
mlo(t, x) =- m~(t, x). Therefore, from (17)-(18), 

M'o( t=O,x= l)=I~ v(1) d/lo = f~ u~(1) d~o(V) = M l , ( t = O , x =  1) 

and from the initial condition (45) we conclude Ml~(t = O, x ) =  m 1. Hence 

Mlu(t, x) = 71 + [ml - 71] e-~' (51) 

S e c o n d  Moments .  To obtain expressions for M2v, My 2, and M2u we 
have to solve their respective equations of motion (remember that M2" i s  
given). We first tackle (41) [this choice is arbitrary; (40) can dealt with in 
the same manner]: 

o m L ( t ,  x, y)  om2v(t, x, y)  oCm2uv(t, x, y)  q- r(m 2 - m3) (52) 
Ot ~y 

with initial condition M~v(0, x , y ) =  2 Mvv(O , x, y ) = m  2 for all x, y in the 
domains defined in (41). This initial condition is, as for the first moment, 
obtained from Eqs. (17)-(18). Equation (52) is solved using the method of 
characteristics, and the solution is 

r(m2--m3) 
M ~ ( t , x , y ) = 7 2 + [ m 2 - 7 2 ] e  -~' where 72 = (53) 

2 The moment M~(t ,  x, y) can be obtained in a similar way and the result 
is 

2 t M ~ (  , x, y )  = M~o(t, x, y )  (54) 

This equality is due to the fact that the moments of the initial measure are 
constant. Finally, it is necessary to solve (43) and (44) before obtaining 
MZu. Using (46)-(48), 

Mo2~ = 72 + [m2 - -  72"] e-~' 

M2o = 7 2  -{- [m2-- y2]e st 

3 -- :el  
Moo~=73 + [ m 3 -  y3]e 

M~oo(t) = 73 + [m3 -733e  -~' 

so that the evolution for M2u becomes 

cgM2~(t, x, y) 

cgt 

where 73 -= 
r(m3 -- m4 ) 

(55) 

(56) 

(57) 

(58) 

- -2c~M2u(t, x, y) + 2r72 - 2r73 + 2re ~'[rn 2 - m3 - 72 + 73] 

(59) 
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The above is a linear first-order O D E  which can be solved to give 

ML(t ) 2r = - -  e ~' [ (m 2 -- m3) -- (72 -- 73)] + r (~)2 - -  73) "j- fe-2~'  

where 

~/ '~  O~ (m2--m3)--2  (72-73) +m2 

This analysis can be carried out in a similar way when the moments  
are not  constants,  but  such that  the equations derived above remain 
solvable analytically. 

It is of  physical interest to investigate the constraint  to be satisfied by 
a measure # , ,  invariant under the action of a differential delay equation. 
For  the nonlinear  D D E  (36), the characteristic function Y/ of such a 
measure is defined as 

@ ' [ J , ] =  exp i Jl(x) uv(x+t)dx dlt, (61) 

and so we have 

r162 ] = ~t[-J1, 0] for all t 

where ~/tEJ1, J2] is given by (5c). The H o p f  equat ion (16) becomes 

o = Jx{X) a x -  Jl{ ) dx 

f / 6Y/ 
+r , Jl(x) b j t ( x+t_ l )dX  

fl g)2y/ dx, Vt {62) --ri-1 l-tJ~(x) ~j2(x+t--1) 

By choosing t = 0, the first integral in the H o p f  equat ion must  vanish, so 
that  we have 

3--x = 0 a.e. (63) 

1039 

(60) 

3.3. Invar iant  Measures 
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From this relation a necessary condition for the invariant measure follows: 
using (26), the moments  must satisfy 

n 0 
kZl= ~ k  ~ M~'qv("-q'(x~'"" xk) = 0 (64) 

4. T H E  H O P F  E Q U A T I O N  A N D  T H E  K R A M E R S - M O Y A L  
E X P A N S I O N  

Our treatment of delayed dynamics is developed in the spirit of 
statistical mechanics and ergodic theory. The need for such a treatment 
arises from the nature of some experimental data available in the biological 
sciences, where large collections of units whose individual dynamics are 
given by DDEs  have been considered. (8/ 

One of the powerful tools of modern statistical mechanics is the use of 
equations describing the evolution of densities of initial conditions under 
the action of a finite-dimensional dynamical system. When that system is 
a set of ODEs  the evolution equation is known as the generalized Liouville 
equation. 4 When the system is a set of stochastic differential equations 
perturbed by realizations of a Wiener process, the evolution of densities is 
given by the Fokker-Planck equation. (m In general, for finite-dimensional 
systems the evolution of densities is governed by the Kramers-Moyal 
(KM) equation. It  is of some interest to understand how the K M  
formalism carries over to systems with an infinite number of degrees of 
freedom such as DDEs. 

The Hopf  equation is probabilistic in the sense that it describes a set 
DDEs in the same way that the Schr6dinger equation describes a 
microscopic physical system. 5 Given that this is precisely the role of the 
K M  expansion for finite-dimensional dynamical systems, it is important  to 
clarify the relation between the functional version of the K M  equation and 
the Hopf-like equation (13) derived here. Our derivation of the functional 
version of the K M  expansion is inspired by the derivation of the 
n-dimensional case given by Risken. (m 

4 The generalized Liouville equation discussed here does not require the assumption of 
incompressibility. When this incompressibility assumption is valid, which is the case when 
dealing with conservative systems, the generalized Liouville equation reduces to the Liouville 
equation. The Liouville equation studied in Hamiltonian mechanics is a special case of a 
more general equation of evolution for the phase-space densities of dynamical systems. For 
details, see ref. 4 and references therein. 

5A Schr6dinger equation can always be transformed into a Fokker-Planck equation, which 
is just a truncation of the KM expansion, but the physical interpretation of the transforma- 
tion remains unclear/11) 
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To make the connection between 3(, and the KM expansion more 
explicit, consider the expansion (24) of the characteristic functional ~,. 
Using Eq. (26), we find that (24) becomes 

i i £ 7;, M P,~_~,( t, x) 
p = O  q = O  0 / ) ;  

) x J~(xj) dxj l~ J2(xj) dxj (65) 
~ \ j = q + l  

Let ~[G,  HI G', H ' ]  be the transition probability functional that given the 
pair (G'(x+t), H'(x+t))  in CgxC£, with x e [ O , l - t ] x ( 1 - t ,  1], we 
obtain the pair (G(x+t+t . ) ,  H ( x + t + t . ) )  for x e [ O , l - ( t + t . ) ] x  
( 1 - ( t + t . ) , l ]  [i.e., G (G') is an initial function which generates a 
solution H (H')]. 

~g'[v, ~ ,  +,.)v] is related to the transition probability functional ~ by 

(66) 

In addition, ~/K is the inverse Fourier transform of the characteristic 
functional ~[J~ ,  J2] introduced in Eq. (5c), 

iCU[v, 5'~tv ] = fg~ F l~e, EJ1, J2] d~t/'EJ1, J2] (67) 

Also, 

and therefore 

~@[v, 5~(,+ ,.)v I v' , 2,~t v' ] = ;~ ~-~et + ,.[J1, J2] d~[J1, J2] (68) 

where 

+ fo Jl(X)[-JY(x) + ~,+,.~v(x)] dx 
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and the measure of integration C[J1,  J21 is a measure like the one used 
in the definition (5a) of the characteristic functional. More precisely, the 
measure ~tU describes the distribution of functions in c~ generating pairs 
(v, 5~v) under the action of the transformation (5b), and the measure 
// '[J1, J2] describes the distribution of functions generating pairs (Ja, J2) in 
the same space. Inserting (65) into Eq. (68), we obtain 

~[v, ~,+,.)vlv',  J y ]  

= f ~ I ~ =  ~ f ~ ' f ~  1Mp x) ~ .~l~-q~(t+t,, 
0 q=O 

x iJl(xi) iJ2(xj) d~F'[J,, J2] (69) 
j 1 

The Dirac 6 functional is a straightforward generalization of the more 
usual N-dimensional version. It satisfies 

fe 6 [H-G]  dco= {~ ifotherwiseH=G almost everywhere (70) 

where H and G are elements of ~, co is a measure defined on ~, and the 
result of the integration is a number (not a function). We will use this 
definition to simplify expansion (69). Before doing so, recall the following 
identity (see the Appendix): 

I~ iJl(xj) 1~ iJ2(xj) ~-d~U[J,, J2] 
/ \ j = q + l  

r l ) " " " ~ U v ( X q )  r + 1))'"' ~D(Xp) 
6[C,+,.)v- ~ y ]  

(71) 
Introduce the symbolic differential operator 

~.~(U q, V (p q))= (--6)P 
6uv(x,) ... ~u~(xq) 6v(x~q+ 1))"" 6v(xp) 

Using the identity (71), we have that Eq. (69) reduces to 

.~[v, 5P(t + t,)vlv', ~v'] 

: _ . . .  x ) d x  

0 q = O  

x 6 I v -  v'] 6[C,+,.)v - ~,v'] (72) 
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P t Suppose that the moments Muqv(~ q)( + t , ,  x) can be expanded in a 
power series about t ,  = 0: 

1 
MP~(,_q)(t + t , ,  x) = M,Pqr ~>(t, x ) t ,  + C(t2,) + ... 

p[ 

Equation (72) with expansion (73) is inserted in (66) to yield 

(73) 

~[v, ~,+,./v] 

p 0 q = O  

x:#F[v ' ,A '~y]6[v-v ' )3[A'~( ,+t , lv-~v ']d#o(V' )  (74) 

where the measure #o is defined on the space of initial functions. Carrying 
out the functional integration in (74) and dividing by t ,  gives 

t ,  

. .  P - ~ �9 ~(u~, v (" ~)) ~qo,~_~,(t, x) dx 
1 q = 0  

x W'[o, 3~(,+ ,.)v] (75) 

Taking the limit t . - - ,  0, we get the infinite-dimensional version of  the 
Kramers-Moyal expansion : 

at 

"~ " ' "  ~.@(U q,  V ( p - q ) )  ~Puqb(p-q)( t ,  • )  dx ~U[v, ~ v ]  ( 7 6 )  

p i q o 

The above analysis is not restricted to delay differential equations of the 
form (la), (lb). The only real constraint imposed on the dynamical system 
under consideration is that its phase space be a normed function space. 
Therefore this analysis is also valid for the statistical investigation of partial 
differential equations. In fact this approach was pioneered by Hopf in ref. 2, 
in which he derived an evolution equation for the characteristic functional 
describing the solutions of the Navier-Stokes equations statistically. 

From (67), it is clear that taking the Fourier transform of (76) yields 
the evolution equation for the characteristic functional ~,~(t[J1,J2]. 
However, in Section 2.1, we derived the Hopf evolution equation (13) for 
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~ [ J 1 ,  J2]. Thus we conclude that the Hopf equation (13) is the Fourier 
transform of the infinite-dimensional extension of the Kramers-Moyal 
expansion (76). 

From (73), the KM coefficients are-given by solving the partial 
differential equations presented in Section 3.2. 

5. D I S C U S S I O N  

The introduction of the joint characteristic functional (5c) provides a 
tool for the investigation of differential delay equations from a probabilistic 
point of view. This approach is meaningful from a physical perspective 
when dealing with large collections of entities whose dynamics are 
governed by DDEs. For example, it is well known that certain aspects 
of neuronal activity can be described with nonlinear DDEs of the type 
discussed here. (7) In addition, physiological evidence suggests that in some 
cases the functional unit in the brain is not the single neuron, but a collec- 
tion of neurons. Therefore, it is expected that to analyze physiologically 
plausible neural networks a probabilistic approach will be more adequate 
than a purely deterministic one. Moreover, a probabilistic description is 
clearly needed when the models are formulated as stochastic DDEs. In this 
case, the characteristic functional (5c) is no longer valid, but it can be 
modified in a way similar to that presented in Section 7 of ref. 5 (in the 
context of stochastic PDEs), and a three-interval characteristic functional 
should then be considered. 

As a conclusion, we note that the expansion (24) is similar to func- 
tional expansions in quantum field theory and statistical mechanics which 
are treated in a perturbative manner and analyzed with Feynman 
diagrams. Although the moment PDEs of Section 3.2 can indeed be 
deduced from a graphical analysis of expansion (24), (6) it remains to be 
seen .whether the introduction of proper Feynman diagrams will provide, 
through graphical manipulations, significant insight into delayed dynamics. 

6. S U M M A R Y  

In this paper, we have derived a Hopf-like functional equation for the 
evolution of the characteristic functional of a measure defined on the space 
of initial functions for a class of nonlinear differential delay equations. 
Using perturbation theory, the Hopf equation is reduced to an infinite 
chain of partial differential equations for the moments of the evolving 
distributions of functions. The first two moments are obtained explicitly for 
a DDE with a quadratic nonlinearity, when the moments of the initial 
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measure are constant. Finally, we show that the Hopf equation is the 
Fourier transform of the infinite-dimensional version of the Kramers- 
Moyal expansion. 

A P P E N D I X  

Here we derive Eq. (71), 

f T iJl(xJ) [ I  iJ2(xj) d~i/'[J1, J2] 
/ ",j=q+ l 

(-6)" 6v(x~)) bEv-v'] 6[~, = (6H(Xl)""" 6bl(Xq) 6V(X(q+ 1))'" 

Recall that the 6 functional can be written 

(~[G-H]= f exp { - i  f~ K(r)[G(r)- H(r)] dr} 

= f~ Y1 do) 

do) 

~ v ' ]  )l)-- +z. 

(At) 

(A2) 

where the functions H and G, defined on r e [0, 1], are elements of the 
function space cg([0, 1]). Functionally differentiating (A2) yields 

66[a- HI -Iv [-iK(r)] )", do) (A3) fig 
More generally, 

aG(rl)- .-aG(rq)= , (-i) q K(rj) F~ do) (A4) 

We can define (~[E--F], where E and F are elements of ~d[0, 1], is a 
fashion analogous to (A2): 

6[E- F] = f exp { - i  ;~ L(r)[E(r)- F(r)] &} dco 

-= f~ Y2 do) (a5) 

From (A4), it is clear that if O[G-H] is differentiated q times while 
3 [ E - F ]  is differentiated ( p - q )  times, the product of the two quantities 
will be 

822/69/'5-6 9 
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6 q ~ [ G -  H] 6(P-q~(~[E--F] 
X 

6G(rl). . .6G(rq) 6E(rq+l). . .6E(rp) 
6p 

= 6G(r~)... 6G(rq) 3E(r(q+ 1))""  6E(rp) f I G  - HI 6[E- -  F] 

f~ iK(rj) iL(rj) ~-1 )r2 J2] d~l/~ [ J1, (16 )  
/ \ j = q +  1 

Replac ing  [ G - H I  by [ v - v ' ]  and [ E - F ]  by [ ~ t + t . ) v - ~ v ' ] ,  identify- 
ing the source funct ions K, L M  with J1, J2, and  using the ident i ty  
~'-1 ](2 = ~, (A6) yields (71). 
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