Bifurcations and traveling waves in a delayed partial differential equation
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Here cell population dynamics in which there is simultaneous proliferation and maturation is
considered. The resulting mathematical model is a nonlinear first-order partial differential
equation for the cell density #(#x) in which there is retardation in both temporal (z) and
maturation variables (x), and contains three parameters. The solution behavior depends

on the initial function cp(x) and a three component parameter vector P =
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(8,4,r). For strictly
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{i.e,, non-negative) importance: a trivial solution #,=0, a positive stationary solution u, and
a time periodic solution u,(2). For @(0) = 0 there are a number of different solution

types depending on P: the trivial solution u,, a spatially inhomogeneous stationary solutlon
u,n{x), a spatially homogeneous singular solution #, a traveling wave solution

U, (X)), slow traveling waves u,,,.(#,x), and slow trave]mg chaotic waves u,,,(#,x). The
regions of parameter space in which these solutions exist and are locally stable are delineated

and studied.

I. INTRODUCTION

A variety of mathematical models for biological dy-
namics are most appropriately framed as differential delay
equations.! Many of these problems involve descriptions of
cell replication, and in this circumstance the natural delay
is the cell cycle time.

In this paper we consider a model for cell replication in
which cells are both proliferating and maturing. The dy-
namical equation describing this situation is a novel first-
order partial differential equation in which there is a retar-
dation in the time variable as well as in the maturation
variable. In Sec. II, we derive this equation, and in Sec. III
we briefly discuss the numerical techniques we have em-
ployed in the investigation of the solution behavior. In
Secs, IV and V we present the results of our investigation
for initial functions drawn from two different classes. The
paper concludes with a brief discussion in Sec. VL.

1. A MODEL FOR PROLIFERATING AND MATURING
CELLULAR POPULATIONS

To put the model of this paper into a biological con-
text, some brief introductory considerations may be help-
ful. Since the number of cell types is so varied, we illustrate
these using the mammalian erythroid (red blood cell) pro-
duction system
they prohferate they mature, and they d1e Wlth respect to
proliferation, the cell cycle can be considered to be com-
posed of four major phases: the initial resting or gap phases
(Gy/Gy), followed by DNA synthesis, then another gap
(G,), to finally culminate in mitosis and cytokinesis (the
production of two daughter cefls). With respect to matu-
ration, it is generally accepted that there is a population of
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pluripotential stem cells (PPSC) within the bone marrow
that give rise to primitive stem cells committed to the pro-
duction of erythrocytes, platelets, white blood cells, and
Iymphocytes. The committed (more mature) stem cells for
the erythroid series (CSC-E) are assayed in vitro by the
primitive and mature burst forming units (BFU-E} and
colony forming units (CFU-E). These cells are then fol-
lowed, with respect to maturity, by the erythroblasts,
Throughout this hierarchy (but not including the PPSC)
there is an increase in both the intracellular hemoglobin
rate and content from the lowest in the BFU-E, through a
maximal level in the most mature of erythroblasts. Finally,
death is an event that can take place at any point within the
cell cycle, as well as at different maturation levels.
Within the erythroid system there is a well-established
local regulatory mechanism that exercises control over the
proliferative rates within the BFU-E, CFU-E, and eryth-
roblasts such that the proliferative rate {the rate that cells
enter the cell cycle at the G/ G, gap) is maximal at low cell
numbers and monotonically decreases as cell numbers rise.
With these comments in mind, consider a population
of cells that is capable of both proliferation and matura-
tion. Actively proliferating cells are those actually in cycle
that are committed to the replication of their DNA and the
ultimate passage through mitosis and cytokinesis, with the
eventual production of two daughter cells. The position of
one of these cells within the cell cycle is denoted by a (cell
age), which is assumed to range from @ = 0 (the point of
commitment) to a = 7 (the point of cytokinesis). In addi-
tion, each cell can be characterized by a maturation vari-
able x whose range can be taken, without loss of generality,
from x == 0 to x = 1. For concreteness one could think of
the erythroid precursor cells and associate the maturation
variable with the intracellular hemoglobin content. We as-
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sume that cells die at a rate >0, independent of age or
maturation level, and mature (e.g., synthesize hemoglo-
bin) with a velocity V(x).

If we denote the density of proliferating cells by
U(t,x,a), then the conservation equation for U(t,x,e) is
given by

U BU V(U]

6t+8a+ Ix — 1y (1)
with the initial condition
U0,x,a) =T(x,a), for (x,e)e[0,1] % [0,7].
(2)

The total number u of proliferating cells of a given matu-
ration level is defined in a natural way as

u(tx) = J: Ultx,a)da. (3)

In completing the formulation of this problem, we specify
the boundary condition

Ut,x,0) = 2U(tx,1) = F(u(t.x)). {(4)

The first part of this boundary condition reflects the fact
that the two daughter cells produced at the end of the cell
division cycle form the input flux for the cell cycle. The
second portion states that the input flux is a function & of
the total number of cells at a given maturation level.?

To proceed beyond this point, for concreteness and to
capture the observation that the hemoglobin synthesis rate

increases as the hemoglobin content increases, we assume .

that the maturation velocity ¥ has the form

Fix)=rx, r>0 (5)
Thus Eq. (1) becomes

au au U

— ko= — [¥y+7]U, (6)

" da 3x

with the same initial and boundary conditions stated be-
fore.
The general solution of Eq. {6) is

I(xe "a— e~ "+ 0<gi<a,
Uxa) = | y(s — ape=m0)e 7%, acr 7
Integrating Eq. (6) over the age variable a gives
du Ju ‘
x -+ rx e [y + rlu — {U(t,x,7) — U(tx,0)}.
(8)

Utilizing the general solution (7) in conjunction with the
boundary condition (4) gives

ou du
ETREAN™
= —[y+rlu

T(xe™ "7 —t)e ¥+ O<igT,

F(u(t — rxe~ ™I ror

+ (9

Equation (9) is the fundamental result of this section,
and clearly demonsirates the time retardation (¢ — ) as
well as the spatial retardation (xe ™ ') that makes this
particular model unique. When # = 0, a variant of (9) de-
scribes the dynamic behavior observed in periodic he-
matopoiesis in both laboratory animals and humans.>™

In this paper we focus on the solution properties of Eq.
(9) when we take the proliferation rate to be (1 —u), a
linearly decreasing function of », as is observed biologi-
cally, so the input flux % at the start of the cell cycle is the
product of this proliferation rate and the cell density u:

Fu) =ul(l —u),
set

T

a=e"", and A=Y tN7

d=y+r

and pick 7 =1 without loss of generality, so (9} is equiv-
alent to
Su ou Sttt A1
E+rxax- —Su+ Au (1l —u,),
where u, =u(r— 1,xe~"). To complete the specification of
the problem requires an initial condition, and we use the
special one:

(10)

for (£x)€{0,1]1X[0,1].
(11)

In the remainder of this paper we study the solutions
of (10} to obtain insight into the modes of dynamic behav-
ior that are possible and their dependence on the initial
function ¢, which would correspond to the cell numbers
entering from the PPSC compartment. A number of
authors®!! have studied the global stability properties of a
class of partial differential equations that includes Eq. (9)
when 7 = 0. These results indicate that when ¢(0) > 0 the
solutions of (9} (with 7 =0) will be globally asymptoti-
cally stable. However, when @(0) =0 the solutions are
chaotic on a function space. To our knowledge there are no
analytic results to give insight into solution behavior when
7> 0, and this is of potential interest, since both chemo-
therapy and radiotherapy are capable of reducing the
PPSC input to zero, corresponding to ¢(0) = 0.

As shown below, the characteristics x(¢) of Eq. (2)
are strictly non-negative for all times ¢, and no boundary
condition is required, except for the case ¢(0) =0, in
which case we impose the condition u(#,x =0) =0,

u(t — Lxe™ "y=p(x),

lll. NUMERICAL METHODS

Equation (10} is studied for two cases: (i} @(0)>0
and (ii) ¢(0) = 0. Due to the complex behavior encoun-
tered in the study of this problem, we used two numerical
approaches.

A. Galerkin finite elements method

In the absence of large spatial gradients, du/dx
=& (1), we use the Galerkin finite elements method
(GFEM'?) for spatial discretization, with a first-order im-
plicit corrector—predictor time integration scheme.
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Briefly, given a partial nonlinear differential equation
L(u) =0 in a domain D, with the appropriate initial and
boundary conditions in D, the method assumes that u is
accurately represented by an approximate solution

N
ua(t,x) = Z[ uj(t)qu(x):

j=
where the ¢; are known basis functions, the u; are the
unknown coefficients, and N is the number of nodes in the
spatial discretization. Since the basis functions are chosen
to be equal to unity at the nodes, the unknown coefficients
u; are equal to the approximate solution #, at the nodes.
Substitution of (12) into the equation L(u} = 0, gives the
nenzero residual R:
N

R=L(u) = 2. up;

j=1
To obtain the unknown coefficients the residual R is forced
to zero in the following integral sense:

(12)

(13)

Fr=(Ry) = fDRqSk dx=0, k=1,..N, (14)

where the ¢, are the weighting functions. In the Galerkin
method the weighting functions are equal to the basis func-
tions. If L is a nonlinear differential operator the spatial
discretization leads to a set of nonlinear ordinary differen-
tial equations F; =0,k = 1,...,N, which can be solved by
the Newton-Raphson method or any other root finder.
In this work we use the linear basis and weighting
functions. The spatial domain consists of 30-500 elements.
A uniform node distribution is used, except for the cases
where a boundary layer and wave trains develop. The time
integration scheme is a first-order implicit predictor—
corrector method {forward Euler-backward Euler) with a
fixed time step & = 10~ 2, The resulting implicit set of non-

linear algebraic equations for the unknown coefficients #;

are solved using the Newton—Raphson iteration scheme.

B. Integration along characteristics

In the presence of large spatial gradients
[Ou/dx> & (1)], spatial discretization is inadequate and
time integration along the characteristics of Eq. (2) may
be employed.

Along the x characteristics, x(¢) = £¢”, Eq. (2) can be
rewritten as

éz=—6u+/lu(l—u), (15)
7 r wh
where
u(tx())=u(rge’™) (16a)
and
u(tx(0))=u(t — LEH V), (16b)

£ is a parameter that defines each characteristic [x(¢ = 0)
= £], and d/dt denotes the total derivative (time deriva-
tive) along the characteristics: :

du(tx) _au(t,x)
d = &

In the rest of this paper we use the convention that
x(t) = E¢"" denotes the value of the maturation at a given
time 7 on a given characteristic defined by &, which denotes
a fixed maturation value. From Eq. (16) it follows that
integration along the characteristics eliminates the need to
perform any spatial interpolation due to the spatial retar-
dation e 7, and thus dispenses with errors associated with
the spatial discretization. We use an Euler explicit
correctozr-predictor again with a constant time step of A
=10"*%

up £+ M) = u(,ge™) + hftu(tée™)),

(17)

(18a)

Ukt + BEUEP) = u(rEe™) + hflup (4 RESUHIY),

(18b)
Au(tée)) = ~ du(tge™) + Au(t — 1,g’ 1)
X[1—u(z—1,gM =] (18c¢)

Higher-order schemes are easy to implement, but the
accuracy of the method, established from comparison with
known analytical solutions of Eq. {10) for no delay and
bifurcation results (see Sec. III below), is more than sat-
isfactory.

IV. RESULTS FOR ¢(0)>0
A. Local analysis

Extensive numerical simulation indicates that repre-
sentative solution behavior is obtained with ¢(x) =x+4¢
for ¢ 0.

For 0 <A < § it is clear that the only non-negative (and
therefore biologically meaningful) stationary spatially ho-
mogeneous solution to Eq. (15) is the trivial solution
u,=0. For A>8 there is a second solution given by

= (A — &)/8 that coexists with u,.

1. Stability of the trivial solution

To examine the local stability of the trivial solution we
linearize (15} about u, to give

dz S i
a= Tt

wherein z = ¥ — u,. The associated eigenvalue is given im-
plicitly by

p= -8+ e,

(1%)

(20)
and it is a straightforward matter to show that u <0 for
O<A<d u=0for A =6, and >0 for A > 8. Thus when
the trivial solution #, is the only non-negative homoge-
neous solution it is locally stable, and loses its stability as
soon as the second homogeneous solution u,, exists.

2. Stability of the homogeneous solution

Next we examine the stability of #,. Again linearizing

Eq. (15) gives
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Z
5= — 82+ (25— )z, (21)

where z = u — u,. Now, assuming a time periodic solution

of the form e T, we obtain
U+io= —8+ (26 — X)e He. (22)
Separating (22) into real and imaginary parts gives
p= —8+4+ (28— A)e ¥ cos w, {23a)
W= (Zﬁ—i)e‘; sin o. (23b)

For (5,4) such that

S
1!(26——)»)2——81<cos‘1(25 ,) \ (24)

— /L

using the criteria of I-I:ayes13 it is easy to show that p <0,
and when the inequality is reversed, g > 0. Thus, whenever
(24) is satisfied we know that u is locally stable.

3. Biturcation to a periodic solution

It is straightforward to show that u=0 when (§,1)
satisfy

&

! A
1/(28—)..)2—67=cos“1(26"_,1). (25)

We denote the unique solution of (25) by A%(8). This
condition corresponds to a periodic solution u,, of the linear
Pm:afmn (21) with period

WAL &4 Waldd PRIV

27 27
=—=————, (26)

®  J25=2)T-5
The limiting conditions of Egs. (23) and (25) are as 50,
w—7/2, and as § - A,w— . The period T of the temporal
oscillation satisfies 2<T°<4.

Thus, when (253) is satisfied so A=2%(8), there is a
Hopf bifurcation'? from the spatially homogeneous station-
ary solutions ,, to a periodic solution #, of period T along
the characteristics x(#} = £e™. Close to the Hopf bifurca-
tion, after the initial transients die out, the periodic solu-
tions u,(#,x(¢)) along the characteristics, are approximately
given by

A—58
up(t,x(t))=—/1—.+ ecos(wt); e<l, O<x<l.
- (27)
Note that this implies that
uy(t£e™) = up(t + T,Ee U+ D). (28)

Equation (28) also shows that the solution behavior is
determined solely from the characteristics in the immedi-
ate vicinity of x =0, that is as E'—.ﬂ Since in this section

we are studying the long time solutlon behavior for ¢(x)
= x + ¢ with.¢> 0, it is clear that the initial information is
determined solely by c. Given ¢> 0, no matter how small,
for sufficient long times the solution behavior in the entire
maturation domain 0 <x<1 is determined by the charac-
teristics emanating from near the origin and carrying the
same information ¢(Q) =c.

- HAOS, Vol. 2,
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FIG. 1. Bifurcation diagram in the (§,4) plane, for Eq. (10} with @(0)
> 0. The Hopf bifurcation curve (full line) was obtained from Eq. (24)
and from numerical integration of Eq. (10). Above the bifurcation curve
the sclutions are spatially homogeneous and time periodic. Within the
region bounded above by the bifurcation line and below by the line 4 = §,

the golutiong are Qtntlnnnry and cnnhn!l\r homoeeneous: 11 = f? — 8V/A.

© SQIULIONS are sia C Spatlany Nomaogencous: U, = O/

For A<§ the stable stationary solution is the trivial solution #,=0.

The time scale of this transfer is set by the parameter »

and (O —= > 0. The characterictie time raanired tn carmy
ang g\ c 2 0E CRAraclerisitc Ume required 1o carry

the initial information from a location x(¢ = 0) = e<@(0)
tox=e"'is ¥ =~ Thus, for large » the characteristic
time #* vanishes and the resulting periodic solutions u ., set
in at once, while as 7—0 the characteristic time diverges
and a transient pattern lasts for an infinitely long time.

To summarize: (1) for every pair (8,4) = (8,4°(8))
obtained from (25) there is a Hopf bifurcation along the
characteristics; (2) at sufficiently long times the solution
behavior is set solely by the information emanating from
the characteristics next to the origin (z,x) = (0,0); and
(3) the time scale of the pattern for a given ¢(0) is set by
the magnitude of r. Our numerical results (see below) con-
firm these three observations.

Fimn‘p 1 ¢howe the hifurcatinn diaoram in the A

ApvAh 4 SOVES v VillabQuiil LlGpidail L tne Fugis

plane, obtained from Eqs. (20) and (25) for the case of
@{0) > 0. The full line denotes the temporal Hopf bifurca-
tion on which there are periodic solutions and below which
the solutions are spatially homogeneous and stationary.
These spatially homogeneous solutions are of two types.
Below the A = § line they are the trivial solutions #, and
for 8 < A < A® they are the positive solutions z,,. It will be
shown in the next section that numericaily the periodic
solutions are spatially homogeneous, as expected from the
analysis.

B. Numerical results

=
=]
[=]
=
=]
—

=X

Figure 2 shows the evolution of uz,x(¢)} along three
characteristics for parameters just above the Hopf bifurca-
tion line, demonstrating that along the characteristics the
solutions oscillate around the spatially homogeneous
steady state u, with constant amplitude. The calculated
period obtained from Eq. (25) is 77 = 3.09, consistent with
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FIG. 2. Evolution of cell populations u(t,xe™) along three characteristics
E=0, 0.3, and 0.6 (84,7 = {1,4.3,00001), Afte

- 1tial #r mte Aia
5 T U v, ARG WY (AT 1 LTSVUUUR § ATST Iitiar Wransients aic
out the solutions are periodic along the characteristics: u(z
+ T,xe’"+ T3, and oscillate with constant amplitude around the homo-
geneous stationary solutions #, = (§ — A}/A = 0.7674, with a period of
=31

the period of the oscillations shown in Fig. 2. Higher-order
bifurcations are likely to be present at larger values of A
than those considered here, but they are beyond the scope
of this paper.

Next we address the question of time scales and the
nature of the evolving solutions in the (z,x) space close to
the Hopf bifurcation. Figure 3 shows u(z,x) as a function
of maturation at three consecutive times for two values of
r. For small r the profiles are inhomogeneous, oscillating
around the steady-state vaiues with amplitudes as shown in
Fig. 2. For small » (long time scales) the solution u(#,x)
results from a linear superposition of waves of equal am-
plitude but different time varying phase, and hence the
profiles are not periodic, u{z,x)s%u{s + T,x), at fixed x.
For larger r the time scale t* is smaller and the solution for
a given time is homogeneous since, for all x, the informa-
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FIG. 3. Effect of » on the evolving spatial distribution of cell populations
u(t,x). (8,4} = (1,4.3). Top = 0.001, bottom'r = 0.1. ¢ = 100.2 (full),
101.1 (dash), 102 (dash-triple dotted). The time scale to have spatially
hgmgaenggug nnrmrhr- solutiong is £+ = r—] el (rn(g) =01, For »
= 0.001 the soluuons are spatially mhomogencous since they are given by
superposition of out-of-plane oscillations. For »=0.1 the solutions are
homogeneous, since they are the result superposntmn of in-phase oscilla-
tions. ;

tion is coming from the characteristics next to the origin
{t,x) = (0,0) and hence from the same constant value
@(0) =0.1. Since r defines the time scale * of evolution
toward a spatially homogeneous time periodic solution, we
conclude that at any given time the solutions are either
spatially inhomogeneous transient solutions (2*> ) or spa-
tially homogeneous time periodic solutions (#* < t) accord-
ing to the magmtude of r.

We next show that for Iczduvcly small » the transient
inhomogeneous solutions evolve, at sufficiently long times,
into spatially homogeneous periodic solutions. Figure 4
shows the evolving #(#,x) profiles for small » and three sets
of times t=100.2 + »7, 101.1 + nT, 102 + aT. The top
figure (n =0) shows a typical transient inhomogeneous
profile constrained in a band defined by the amplitude of
the oscillations along the characteristics. The middle figure
(n = 100) shows the profiles are being stretched, but con-
tinue to be confined in the same band. The stretching effect
is a result of time periodicity along the characteristics,
u(t,x(t}) = p(t + nT,x(t 4- nT)), demonstrating that after
n cycles the value of # at a given x will be the same value
that it had at x(t — »T"). After sufficiently many cycles the
profiles are stretched, and eventually approach spatially
homogeneous cell populations, since at a given time all
values of u are the result of the same initial data coming

se or copyright, see http://ojps.aip.org/chaos/chocr.jsp



236 Algjandro D. Rey and Michael C. Mackey: Bifurcations and traveling waves

o ——
Tl bt

0.8 e e T

0.6

u(t.x)

04 -

- —

.-1._‘..

0.8 [

0.6 - N

u(:.X)

0.4 ' -

0.8 |-

0.6 o]

u{t,x)

0.4 |- -

0.2 - 1

i i i i
0 0.2 0.4 0.6 - 0.8 1
Maturation, x

FIG. 4. Evolution of inhomogeneous cell populations u(t,x) for r<l.

P={§A,ry= (1430000 r=1002 4 uT (full), 101.1 4 #T (dash),

102 4 T (dash—triple dotted). Top # =0, middle » = 100, bottom »
= 1000. For r<1 there is a low speed of transmission of the initial data
close to the origin {#,x) = (0,0) into the whole maturation range 0 <x< 1.
At sufficiently long times ¢ #* the profiles stretch cut and eventually
become homogeneous.

from the characteristics next to the origin (£,x) = (0,0).
This is shown in the lower figure (n = 1000) in which « is
almost totally homogeneous and time periodic.

Summary: The main conclusions of this section, sum-
‘marized in Table 1, are as follows.

(1If @(0) >0 the stationary spatially homogeneous
solutions u,, = (4 — 8)/8 to Eq. (10) undergo a Hopf bi-
furcation at a given value of (§,4) = (6, Ab(ﬁn given by
Eq. (25). The resulting solutions are periodic along the
characteristics of Eq. (10).

(2) The eventual solution behavior depends on the
value of the initial function near the origin qo(e) with e<1.
For the choice (pLx ) =0.1 + x, at sufficiently 1(‘Jﬁg times
all the characteristics £e™ crossing the maturation interval
0<x<1 carry the same information from the initial data

TABLE L ¢(0) >0 (Secs. IV A and IV B).

Solution
Parameters type Symbol Figure number
0<A<s trivial u, 1
stationary,
S<A<At spatially Uy L2
homogeneous
time periodic
AlgA spatially S 1,3,4

homogencous

¢(0), and hence the solutions are eventually spatially ho-
mogeneous and time periodic.

(3) For a given ¢(0) > 0, the time required to achieve
the homogeneous time periodic behavior depends on the
magnitude of # that sets the speed of transmission of infor-
mation from the region next to the origin (£x) = (0,0) to
the entire maturation range O<x<1.

V. RESULTS FOR ¢(0)=0
A, Local analysis

In this section we present the local analysis of Eq. (10)
when the initial function vanishes for zero maturation,
@(0) =0. We use the numerical techniques described
briefly in Sec. IT. Before presenting and discussing the nu-
merical results we present some analytical results that are
crucial in constructing the bifurcation diagram.

1. Background
As discugsed in

0 < A < 8, the single stationary solution to (10) is the trivial
solution u,=0. However, when 0 < § < A, the stationary so-
lutions to Eqs. (10) are chaotic in a function space, and
there is no longer a unique globally asymptotically stable
steady state. Rather, there are three famiiies of stationary
solutions: a trivial solution #, =0, a spatially nonuniform
solution u,;(x), and a singular solution,

[/1—6
ux) = 1

:U

ev and Mar‘l(pv when @

AL AR GRANe ATAGARS Y

(O\ =0 and

—, x>0,
>

0, x=0,

according to the wvalues of the parameter vector P
= (8,4,r). Furthermore, for a given P the spatially inho-
mogeneous solution is not unique and depends on the ini-
tial function ¢ (x). '

In this paper we restrict our study to ¢(x) = x. In Rey
and Mackey'"> we showed numerically that for ¢(x) = x
there were three possible stationary stable solutions to Eq.
(10) depending on the value of » relative to a critical value
r;: (1) for # < r,, the singular solution u(x); (2) for r=1+#,
there is an inhomogeneous solution u.;(x) for x>0; and
(3) for r> r, there is a trivial solution u#,=0 for x>0.

The parameter vector P at which there is a loss of
stability of the trivial solution u, with ¢(x) = x is found
from linearizing Eq. (15) around the trivial solution:

(29)
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= — 8z + Az, (30)

¥4

dt

where z represents infinitesimal perturbations to the trivial
solution along the characteristics, so

2(t,x(8)) = z(8,5¢"")

and
ztx(2)) = z(¢t — L,geU 1y,

For perturbations of the form z(t,£e™) = efe”™ with e<l,
we find

r=—56+2e", (31)

establishing that a spatially inhomogeneous solution is
marginally stable if 7=r,, where #, is the unique solution of
(31). For 0 < r<r, the trivial solution is unstable to infin-
itesimal spatially linear perturbations, but stable to those
perturbations if #> #,.

These local stability results, valid for linear spatial per-
turbations, have been studied numerically by integration of
Egs. (10) and (15) for @(x)=x 0<8<10, and
10~ %<r<1.1. For any given value of (§,4) we always
found that there is a critical » = r,, given by Eq. (31), for
which the stationary solution is the spatially inhomoge-
neous solution u,; if » <r, the stationary solution is the
singular solution, and if #» #, it is the trivial solution.

Denote the value of P satisfying Eq. {31) by P and
define

AP=%(6,r) = (6 + r)e’ (32)

as the curve in the (8,A4) plane on which #,, is the stable
solution for the given value of ». We note that by increasing
r, A* increases for a given 8. In Rey and Mackey,"” using
Galerkin finite elements with 30 linear basis functions we
found that for (6,4} = (2,4), r.=0.469 31, while Eq. (31)
predicts r,~0.4785, an error of 1.9%. This accuracy is
greatly improved by integrating along the characteristics
since we dispense with errors incurred by spatial discreti-
zation.

In Rey and Mackey'® we also showed that when 7 is
close to r, the cell population evolves toward the trivial or
the singular solution very slowly, in analogy to the critical
slowing down observed in phase transitions. Furthermore,
we showed that when # is less than #, the solution slowly
evolves with the formation of a boundary layer in the im-
mediate vicinity of x =0. We then expect that for a given
{8,r) if A is close to but larger than A° the solution will
exhibit the slowing down and boundary layer behavior de-
scribed above, evolving on a time scale proportional to
A — A, Therefore if spatial oscillations are present, they
will be transported with a velocity dictated by the dynam-
ics of the boundary layer.

2. Bifurcations of the singular solution to a traveling
wave

We now address the possible existence of a Hopf bifur-
cation of the singular solution #, into a traveling wave

solution u,,,(#,x) when A becomes sufficiently large. Lin-
carizing Eq. (10), for x>0, around the singular solution
Ug

u(t,x) = ug(x) + z(¢x},
we obtain

O & sy 52 3
E+fx£——— z + (26 —A)z, (33)
where z, = u(¢ — l,xe ~"). Introducing the change of vari-

ables x = ¢’ gives
gz Oz
at fay o

with z. = u(f — 1,y — r). Motivated by numerical simula-
tions we seek solutions of the form

—8z+ (26 — A)z, {34)

z(1,x) = @t~ Nigley, (35)

Substituting (35) into (34) gives the same relations (23)
to (26) that we obtained in our investigation of the spa-
tially homogeneous solution u, in Sec. IV. Again, for a
given & the value of A that satisfies Eq. (24) is denoted by
A% This means that for 0 <7< 1, values of (8,4 =A% 1%
that satisfy Eq. (24) will result in a simultaneous temporal
and spatial Hopf bifurcation of u, and give rise to left
traveling waves. We therefore expect that for r<1 and
with a A infinitesimally larger than A” the solutions to Eq,
(10}, after transients die out, will be approximately given
by

U {8X)

A=6 .
N T—ecos(w((l—r)t+lnx)), x>0, (36)

0, x=0,

with e«l. Alternately, along the characteristics (£>0)
they are
d (™) 5 — e cos(@(r+ In 5)),
0, x=0.
(37)
In the {#,x) plane these solutions are left traveling waves,
with an angular frequency o* = (1 — r) and a constant
wave vector & = @ in a logarithmic scale that diverges as
x—0 in a linear maturation scale. The hyperbolic waves
are not dispersive since in a logarithmic maturation scale
the phase velocity U = w*/k is equal to the group velocity
G = do*/dk:

U=G=(1-r). (38)

The wave propagates to the left with a velocity in a linear
maturation scale vanishes at x = 0. On a logarithmic mat-
uration scale the constant wavelength L of the traveling
pattern is given by L = e’%, where T, = 2n/w is the period
of the temporal oscﬂlatlon observed along the characteris-
tics, and L is constrained by e*<L<e*. Note that the wave-
length L (the ratio of the locations of two successive

x>0,
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TABLE II. ${0) =0 (Secs. V A and V B).

Parameters

Solution
type Symbol

Figure
number

trivial 1, 58

stationary,
spatially o 58
inhomogeneous

0<rg"min 0<6€6m” /’Ls(.ﬂ.(tlb_

singular, 58
stationary, N 9,10
spatially

homogeneous

AbgA

traveling . 56
waves Yo 7.9

AP

trivial u, 5,13

0<8<b*<Bpan A=A

stationa_ry,
spatially un 513
inhomogeneous

Aeh

slow traveling

waves Hoy 5,11,12,13

Ocd <A’

trivial u, 5

Foin <7< Fmax

stationary,
spatially
inhomogeneous

Hoh 5

0<8* <88 AeAedb

singular,
-stationary U, 5

spatially

homogeneous

AP<A

slow 511,12
traveling Haw
waves

A<AS

trivial u, 5

Faan <7 0<8<8ma

stationary,
spatiatly 7 5
inhomogeneous

A'gA

slow 5
chaotic o 15,16,17
traveling
waves

troughs) is independent of r, but depends on (8,4). Fur-

thermore, the period along the characteristics is related to '

the period 7, in the {z,x) plane by

T,

Ty=7——.

(39}

It will be shown in the next section that the apparent di-
vergence at r = } never occurs since other dynamics set in
this region of the parameter space.

W (Brre

3. Bifurcation of the inhomogeneous solution u,,

We next examine in more detail the situation in pa-
rameter space in which the line corresponding to the spa-
tially inhomogeneous solution z,,(x) intersects the Hopf
bifurcation line A% Substituting A = (8 + r)e” into Egq.
(25) gives

&

=c0s/[28 — (8 + r)e’]* — &, (40)
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which for § = 0 gives r;, =~0.7455. The maximum value of
r for the intersection of the curves A* and A? is also found

from Eq. (40) by noting that in the limit A* = A°(§— «,7)
and A% = A6 ),
5 l. 41
26— (841 2—¢" (41)

and that & — s, which yields 7,,,=1n 3=1.0986. Thus Eq.
(40) defines a value of 8 = &* for which A* = A%.

Collecting the above observations we conclude (see
Table IT) the following.

(1) When r<ry;, and A>A®> 1% the solution consists
of left traveling waves with a velocity (wave vector) that
vanishes (diverges) as x—Q.

(2) When rpin < F<rmax and A>A*> A% or A5 A7 4°
the solution consists of slow left traveling waves with a
diverging wave vector, but with a propagation speed set by
the controlling slow dynamics of the boundary layer.

(3) When r,,, < then > A” for any 8. If > A% it
will be shown in the next section that the solution slowly
evolves to a transient chaotic state described by slow left
traveling waves #,(#,x) of a diverging wave vector, but
with oscillations around time and space varying cell den-
sities.

Each of these situations is assocnated with a distinct
bifurcation diagram in the (§,4) plane for ¢(x) =x, as
shown in Fig, 5.

(1) For r = roim AP = 2% at § =0, and the bifurcation
diagram consists of three regions (three stable stationary

solutions and a traveling wave solution) defined by A* and.

Y 1h wh n b
A%, with A% > A¥ when § 0. For A» A" the stable solution is

1,,,, When A° < 2 < A° the stable solutions are the stationary
spatially homogeneous singular solutions u, when A <A®
the stable solutions are trivial solutions, u#, and when A
= A° the stable solutions are the stationary spatially inho-
mogeneous solutions ;. This also represents all r<ry;,
cases, since the bifurcation line always lies above the sta-
bility line. '

(2) For ryin<#=1<Fpup A2 =A% at 0< 6 = &% and

the hifurcation diagram consists of three regions (fher

the bifurcation diagram consists of three regions (thre
stable stationary solutions and a slow traveling wave solu-
tion) defined by A* and A% with A%~ A* when 8> 8*. For
A»A%> A% and 8<8* the stable solution is u,, but when
A’ <A < A% and 8> 5* the stable solutions are the stationary
spatially homogeneous singular solutions u,, when A <A*
the stable solutions are trivial solutions, u#, and when A
= A® the stable solutions are the stationary spatially inho-
mogeneous solutions ;.

{(3) For 7> e A < A° for all 8, and the bifurcation
diagram consists of two regions (three stable stationary
solutions) defined by A% If A > A° the stable solutions are
slow chaotic traveling waves ., if 1 = A® the stable so-
lutions are the stationary spatially inhomogeneous solu-
tions 2, and if A <A® the stable solutions are the trivial
solutions u,. '

In the following section we provide numerical evidence
for these paints.

35 T 1 ] 1
1= 0.7455

-

-
e

Sp-
> ol
0

FIG. 5. bifurcation diagram corresponding to Eq. (10}, with ¢(x) = x,
in the (§,4) plane for three representative values of rzry,, = 0.7455:
7= #yin (top), r=1 (middle}, and r= 1.1 1y, = In 3 (bottom). The
full line represents the Hopf bifurcation line and the dashed line repre-
sents the stationary inhomogeneous solutions, For 0.7455 <#<In 3 the
two lines intersect. Proximity to the dashed line always involves very slow

M rad Tha a1
dynamics. The six possible solutions are the trivial solution u,, the spa-

tially: inhomogeneous stationary solution uy, the singular solution
hyperbolic traveling waves u,,, slow traveling waves #,,, and show cha-
otic waves i,

B. Numerical solutions

4, 0 <r<tmn

Figure 6 shows the evolution of the cell density along
three characteristics for A° < A? < A. The solution osciliates
with an eventually constant amplitude around u. Figure 6
shows that the solutions are in phase since the character-
istics were chosen such that & = &e7¢ = &,¢” ’«. The pe-
riod T, = 2.36 is in accordance with the period calculated
from Eq. (26).

Figure 7 shows the evolution of the cell density in the
{t,In x) plane for the same parameters and three different
times obtained using GFEM. The time intervals of 4.8 are
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FIG. 6. Cell density evolution along three characteristics: (£&),£4.&;)
= (0.2 1072118 x 10~ 7%,22.43¢ 10~ ) for (§,4,7) = (5,15.7,0.5).
Al = 15,661, A% == 9.067, T,==2.367, and u, = 0.681.

approximately equal to the expected period T, = T,/(1
— r) = 4.72. The figure clearly shows the validity of Eq.
(39). The initial transient clearly shows the left traveling
nondispersive hyperbolic waves; after one period T, the
oscillation has advanced one wave length L = ¢7c = 10.59
in a logarithmic maturation scale, where L is given by
calculating the ratio of two successive troughs in the log-
arithmic scale.

Below the Hopf bifurcation we expect the solutions to
evolve to u, if A> A% to u,, if A =2° and to u,if A <A°.

Figure 8 shows the evolution of the cell density along
three characteristics for rer;, = 0.7455, The resulis show
an exponential growth, indicating that there is a matura-
tion dependence of #(z,x). The first set, for which Al 2
> A% clearly shows that the solution converges, with
damped oscillations {o the singular solution #, For the
second set (1=A") the exponential growth, denoting spa-
tial inhomogeneities, crosses the vertical line at # = 216.5,
the time at which the characteristic £; reaches x = 1.

u(t,x)

10°

FIG. 7. Initial cell density evolution in the (# In x) plane for the same
parameters as in Fig. 6, for t =4 (dash), 8.8 (full), 13.6 (dash—dotted),
18.4 (dash-triple dotted), obtained using GFEM.

1 | NN B A M S S S |
08 -
£ 0.6} ——
- /7
< M
7 04} if .
/A
i
0.2 | I,” y \ -
o / 8=5,A=12.1
ol Z 1t 1
200 215 220 225
Dimensionless Time, t

FIG. 8. Cell density evolution along three characteristics (£,£5,&;)
= (0.2X10- 0055 10- 70,0810~ for r=10.7455, 6 =35, and two
A values: 12,5 and 12.1. For the two sets, A% = 15.661, A° = 12,108. The
singular solutions are u, = 0.6, and u, = (.586 for the first and second
sets, respectively. The vertical line denotes the time at which the charac-

tamioiin £ aamaliae - 1
CHIaLUL 6 1CACLITY A = L.

Figure 8 shows that when P = P, integration along the
characteristics leads eventually to the singular solution,
which is consistent with the GFEM results. It turns out
that the inhomogeneous solution always approaches u, at
large x. This is explained by noting that as — o and x— co
delays play no role, and the solutions should converge to
the solutions of Eq. (2) in the absence of delays. In this
case, we showed in Rey and Mackey'® that for A — 8 = r
the solution converges to

_ (A —8)x
o =TT 8y 4 A

whose limit as x— e is indeed u,,

Next we ook, in more detail, at the solution behavior
in the immediate vicinity of the bifurcation line A°
= A%(8).

Figure 9 shows the evolution of the cell density along
three characteristics for rzr;, = 0.7455 and 4 <A® (top)
and A>A? (bottom). In both cases A®>A°. When A is
slightly smaller than A? the solution eventually converges
to the singular solution through long lasting damped oscil-
lations along the whole maturation field, analogous to a
pretransitional phenomena. When A is slightly larger than
A% the solution oscillates without loss of amplitude around
u,, indicating the left traveling waves in the (7,x) plane.

Figure 10 shows the GFEM solution corresponding to
the overdamped traveling waves for =24 (dash—dotted
line) and 64 (solid line). At any fixed maturation the os-
cillations lose amplitude with increasing times.

(42)

8. Fipin<F' < Fpay

A representative bifurcation diagram for this matura-
tion velocity range is shown in Fig, 5. The bifurcation line
crosses the stability line, but the slopes are nearly equal.
Since A is approximately equal to A%, the interaction of two
important effects set in: the critical slowing down associ-
ated with the stability line 2° = 2°(8} and the overdamped
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1= T T T Y T T
&5, A=15.4
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FIG. 9. Cell density evolution along three characteristics (£),&5,&,)
=(02x1077,05%10~ 708X 10~ ™) for r=0.7455, =5 and A
= 15.4 < A° = 15.66 (top), and A = 15.8 (bottom} > A* = 15.66. In both
cases A%> 1% = 12.108,

pretransitional oscillations associated with the bifurcation
line A% = A%(8). Furthermore, oscillations denote left trav-
eling waves that eventually lead either to the singular so-
lution or to the sustained oscillatory state, but they can
never lead to the trivial solution. Therefore, in the range of
8 for which A*> 4 > A® the solutions slowly decay without
oscillations to the trivial solution, and in the range of & for
which A*<A <A® the solutions slowly converge through
traveling overdamped waves into the singular solution.
Furthermore, when A is slightly larger than A°> A% and

3
3
0.4} =
0.2F .
0 1 ] 1 1
0 0.2 0.4 0.6 0.8 1
Mamration, x

FIG. 10. Cell density profiles obtained with GFEM. r=0.7455, § =5,
A =15.4, r= 24 (dash—dotted) and 64 (full),

1.2 T 7
8=1, A=5.6

1—

08

0.6 |

u(t,x)

0.4 -

02r

L ]

¥
&=5, A=16.7

0.8

u{tx)

e(t,x}

FIG. 11. Cell density evolution along three characteristics (£,,£,,&,) = (2
K107 ™5x107 8% 10~ ™) for =1 and three sets (8,4) = (1,5.6),
(5,16.7), and (8,25). The first two sets correspond to cases where A > A°
>A” and the third to A> A% 5 A%, The vertical line has the same meaning
as in Fig. 8.

when 2 is slightly larger than A%> A° the solutions slowly
evolve into traveling waves due to the proximity to the
stability line, and the dynamics is dictated by the slowly
evolving boundary layer.

Figure 11 shows the evolution of the cell density along
three characteristics for r = 1, two cases corresponding to
A>A5> A% and a third to A > A%> A%, The first case ( upper
plot) exhibits oscillations not exactly around the singular
solution »; with an irregularity in the amplitude. This is
attributed to the fact that the system is quenched into an
unstable state. The second case (middle plot) represents a
weaker quenching, since A is now closer to A°. The ampli-
tudes appear fo be constant in time and the oscillations
occur closer to the singular solution u,. For the third case
(lower plot) A is slightly larger than A% A° and the oscil-
lation is of constant amplitude and around #,. In this range
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u(tx)

u(tx)

u(tx)

1073 10 10! 10°
Maturation, x

FIG, 12, Cell density nrofiles for the three sets of parameters as in Fie. 11
JLE AN VN rof netn n Fi1g. 1L,

L GENSRY P LeS IO SULS O PRIAllLills as

obtained with GFEM. ¢ = 24 (dash-dotted), 64 (full), and 184 (dash~
triple dotted}. The values of u, for the three sets are 0.82, 0.7, and 0.68.

of the maturation velocity » the chosen A values are close to
A® and the traveling waves move with a velocity dictated by
the advancing boundary layer.

Figure 12 shows the corresponding cell population
profiles in a logarithmic maturation scale, obtained with
GFEM. First, note that the traveling wave solutions shown
in the maturation range 0 < r<r,;, should not be present
here, since T,— oo. The figures show that indeed the waves
travel and that the dynamics are slow compared with pre-
vious results. There is, nevertheless, a similarity since the
waves have a constant wavelength in a logarithmic matu-
ration scale, but with a small renormalization of the ex-
pected value L = ¢ that decreases as we approach the
intersection of the bifurcation line with the stability line.
The figure also shows that as we move toward the bifurca-
tion line there is a continuous transformation from large
oscillations around lower values than «, to smaller oscilla-

1 T T T
8=t, A=4.261
0.8} -
e 0.6
[ ]
FTV )
g 0.4fF
0.2k
1 1
1 T
&=1, =45
08 |
< 06 |
ys
oy
g’
® 04 |
0.2 |
| 1
1 T
=1, A=4.68
08}
o 06
[1)
nr
H 04
02}
) o 1 [ -
150 160 170 180 190

Dimensionless Time, t

FIG. 13. Cell density evolution along three characteristics (£),£,,£3)
={02x10-°,0.5x10"08x10""). r=0.9 and §=1, and three
values A: 4.261 (top), 4.5 (middle), and 4.68 (bottom}. The vertical line
denotes the time at which the characteristic &; reaches x = 1. For this
case A = 4.26] and A° = 4.673,

tions around u,, and therefore these solutions are of the
same type. The dynamics of the boundary layer regime is
given in detail in Rey and Mackey."

The solution behavior for the maturation velocity
Yange Fpin < ¥ < Fmay i the region bounded from above by
the stability line and from below by the bifurcation line is
shown in Fig. 13. The upper and middle plots, for which
s A> A%, show that the trivial solutions are indeed stable
to the traveling wave perturbations. The lower figure
clearly shows the slowing down effect due to the proximity
of the stability line, since even at these times the waves just
start to penetrate from x == 1.

Finally, we examine the region bounded from above by
the bifurcation line and from below by the stability line.
Figure 14 shows the cell population evolution for three A
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FIG, 14. Cell population evolution for = 1, § = 10, and three A values:
30.1 (top), 30.4 (middle), and 33 (bottom), for three characteristics
(Epbots) = (2107751078 %10~ ™). Again, the full line de-
notes the time at which the characteristic §; reaches x =1, For these
cases A% = 30.40.

values: A <A? (top), A =A% (middle), and 2> A® (bot-
tom). The upper plot shows the typical overdamped oscil-
lations with subsequent convergence to #,. The middle plot
shows the left motion of the traveling oscillations. The
bottom plot shows a case corresponding to a strong quench
with oscillations covering most of the maturation range.
For this value of » a large value of A does not introduce
irregularities in T

6. Ipax<l

Now the bifurcation diagram consists of two regions
defined by A°. For A A* the solution are traveling chaotic
waves 4., when A <A’ the stable solutions are trivial so-
lutions #,,'* and when A = A® the stable solutions are the
stationary inhomogeneous solutions uy,.

CHAOS

5=5, A=18.4
0.8

0.61

u(t,x)

o.2r

8=5 , A=19

0.6

u(tx)
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08
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L ‘
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FIG. 15. Cell density evolution along three characteristics (£),65,84) = (2
%10~ 5% 10" 8% 10~ for r== 1.1, §=5, and three values of A
== 18.4 (top), 19 (middle), and 20 (bottom). For the three cases A
= 18.32 and A? = 30.40. The vertical full line denotes the time at which
the characteristic &, reaches x = 1.

Figure 15 shows the evolution of the cell density (A°
= 18.32) for A > A°. For the smallest A the solutions oscil-

- late with a small irregularity in the amplitude about a value

lower than #,. For a second A the amplitude irregularities
grow, and in the third case the oscillations appear to be
chaotic.

Figure 16 shows the cell density profiles for four times
using GFEM. From the initial linear profile the solution
slowly evolves to a smooth profile with a maximum. Soon
after, waves penetrate from the right with oscillations
around maturation-dependent cell densities and with de-
creasing wavelength for increasing maturations.

Figure 17 shows the same type of behavior, but with
stronger irregularities. The nature of this slow irregular
oscillations is clearly distinct from the previous traveling
waves, and hence we name them slow chaotic traveling

1992
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FIG. 16. Cell density profiles for (§,4,7) = (5,19,1.1) and four times
t = 40 (dash-dashed), 88 (full), and 128 (dash-triple dotted), and 184
{dash), cbtained using GFEM.

waves. These behaviors will be the object of a more exten-
sive future study.

VL. CONCLUSIONS

The introduction of delayed arguments in a first-order
partial differential equation leads to a variety of extremely
rich phenomena. In this paper we have shown with a nu-
merical example that the solutions are chaotic in a space of
initial power functions; o{x) = x* with p real. The possible
interaction due to the proximity of attractors of a different
nature gives rise to a variety of phenomena like slowing
down, pretransitional phenomena, and irregular oscilla-
tions. Next, we summarize our findings for the particular

initial foncotion need in thic worl: (alen cea Tahlee T and ITY

initial function used in this work (also see Tables T and IT).

For strictly positive initial functions, ¢(0) >0, there
are three solutions: a trivial solution 4, =0, a stationary
spatially homogeneous solution u, and spatially homoge-
neous time periodic solution u,(¢). The bifurcation dia-
gram in terms of (8,4) consists of three regions-defined by
8= A and a curve A? = A(8) denoting a Hopf bifurcation.

u(tx)

1 1 1
0.4 0.6 0.8 1
Maturation, x

FIG. 17. Cell density profiles for (§,4,7) = (5,20,1.1) and three times
¢t == 24 {dash-dashed), 64 (full), and 136 (dash-triple dotted) obtained
with GFEM.
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For A> A® the time scale 7* to reach u, depends on r. As
r—0, *> o and as r>1, t¥-0.

When r<r,,, the bifurcation diagram in terms of (5,1)
consists of three regions, defined by two nonintersecting
lines representing a stationary solution [A°= A(8)] and a
Honf bifurcation [A? = A(8)). and four nossible solution

Hopf bifurcation [A” = A(8)], and four possible solution
types: a trivial solution w, for 4 < A% a spatially inhomoge-
neous stationary solution u.;,(x) for A = A% a spatially ho-
mogeneous singular solution u, for A% <A < A%, and a left
traveling wave solution #,,(#,x) for A® <A. The traveling
waves are hyperbolic and nondispersive; the wave vector is
position dependent and diverges as x—0, while the angular
frequency is proportional to (1 — #). The spatial and tem-
poral oscillations are around the singular solution u,. In a
linear maturation scale the phase velocity U is a function of
position: as x—0, U—0 but is constant on a logarithmic
maturation scale.

When 74, <7 <7max the lines A and A° intersect at
8 = 8* and the bifurcation diagram consists again of three

raginne and fanr ecalntinne Tha valna n'P 8 — A% at tha in.
LUZIUILS allU 1UUL SWIuLIUILe, 11U Ydiub =0 au uiv i

tersection point increases as » increases. For any given
5<8* the stable solutions are u, if 1 <A%, uy(x) if A = A%,
and slow left traveling waves u,(#,x) if 1> A% The slow
traveling nondispersive waves g, (x,f) move to the left
with a phase velocity dictated by the dynamics of a bound-
ary layer located at x = O but the wave vectors share the
characteristics of the faster waves u,, (x,#). For any given
&> 5% the stable solutions are u, if 1 < A%, u, (x) if A = A%
i, if A< A < A?, and ag, () if ABA%

Finally, if 737, then 2°> A? for all 8, and there are
two regions and three solutions: #, if A < A% uy,(x) if A
=A%, and u, (tx) if A>A°, where these last solutions are
slow left travelmg chaotlc waves describing osc111at10ns
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