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Abstract. In this paper we develop a general modeling framework within which 
many models for systems which produce events at irregular times through a 
combination of probabilistic and deterministic dynamics can be comprehended. 
We state and prove new sufficient conditions for the global asymptotic be- 
haviour of the density evolution in these systems, and apply our results to 
many previously published models for the cell division cycle. In addition, we 
develop a new interpretation for the statistics of action potential production in 
excitable cells. 
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Introduction 

In the biological sciences we are accustomed to dealing with data that often 
appear to be produced by systems that have a mixture of deterministic and 
probabilistic dynamics. Classical physiological examples are the release of trans- 
mitter at the synapse or neuromuscular junction, the onset of mitosis and 
cytokinesis in cells, and the generation of action potentials in neurons and 
other excitable cells. Many other examples may be found in Glass and Mackey 
(1988). 

It is interesting that although the underlying dynamics that give rise to these 
discrete and observable events are continuous in time, more often than not we 
either do not have complete knowledge of these and/or are unable to precisely 
monitor these changes continuously. Rather, we only have the timing of the 
discrete events themselves and perhaps measured values of a few variables at 
these times. Thus, in a very real sense our experimental data gives something 
approximating a Poincar6 section through a continuous time attractor in a 
higher order phase space. However, this apparent limitation has been quite 
successfully turned around in a variety of biological situations to construct 
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discrete time models relating successive values of the accessible state variables 
(Glass and Mackey 1988). 

In this paper we develop a general modeling framework for the treatment of 
the statistical dynamics of systems in which easily identifiable events occur at 
irregular times. Though we clearly have biological systems in mind, the develop- 
ment here is applicable to non-biological systems as well. 

The outline of the paper is as follows. In the first section, we formulate our 
model in terms of a discrete time dynamical system with stochastic perturbations. 
From this formulation, in Sect. 2 we derive an integral recurrence relation for 
densities describing the statistical behaviour of trajectories. (For continuous time 
systems an analogous situation occurs when passing from a stochastic differential 
equation to the corresponding Fokker-Planck equation.) Section 3 develops the 
concept of the Markov operator, a linear integral operator that describes the 
evolution of densities in stochastically perturbed systems, as well as two types of 
stability behaviour that sequences of densities derived from Markov operators 
may have. In Sect. 4 we state and prove two new sufficient conditions for these 
types of stability of densities. Section 5 presents a minor digression in that we 
examine the corresponding stability properties of measures that may be of use 
when densities do not exist. 

In our theory, a concept that we call the internal or physiological time of 
the system plays an important role. With respect to this time our model 
behaves the same way in each period between consecutive events, but not with 
respect to the physical time. The use of the internal time significantly simplifies 
the theory. In Sect. 6 we explicitly consider the nature of this internal time, 
since in many examples (in particular in all models of the cell cycle) the 
physiological time is hidden in the description of the system. In Sect. 7, we 
show how many existing models for the cell division process may be encom- 
passed within the general framework of the theory developed in earlier sections. 
Finally, in Sect. 8 we develop a new model for the stochastic production of 
action potentials by excitable cells, and examine the correlation between succes- 
sive interspike intervals as predicted by the model. 

1 The basic system 

The description of our system is the following. We consider a (biological) 
system which produces events. In addition to the usual laboratory time the 
system is also assumed to have an internal or physiological time. We 
denote this internal time by z to distinguish it from the laboratory (or clock) 
time t. When an event appears the physiological time resets from the value 
,c ~--- ~max to ~ = 0. We assume that the rate of maturation dz/dt depends on the 
amount of an activator (or maturation factor) which we denote by a. Thus we 
have 

dz 
dt q)(a), q~ >~0. (1.1) 

We further assume that the activator is produced by a dynamics described 
by the solution to the differential equation 

da 
dt g(a), g >~ O. (1.2) 
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The solution of (1.2) satisfying the initial condition a(0) = r will be denoted by 

a(t)  = H(t, r), 

and we assume it is defined for all t ~> 0. When an event is produced at a time 
z = Zmax and activator level a . . . .  then a portion Q = Q(amax) of  amax is consumed 
in the production of the event. Thus after the event the activator resets to the 
level 

a = ar~ax - Q ( a m a x ) .  (1.3) 

We call the function y - O ( Y )  the reset  f u n c t i o n ,  and assume it is invertible. The 
inverse of  y -O(Y)  is denoted by 2. 

Our main assumption is related to the physiological time. Namely we assume 
that the survival function of ~max is independent of  the initial value of the 
activator. We denote this survival function by H. Thus, using the notion of 
conditional probability we may write 

prob(zma x >>, x [ a(z  = O) = r) = H ( x )  (1.4) 

for every r > 0. We feel that this assumption corresponds to the intuitive 
meaning of the physiological time, and offer a mathematical argument for it in 
Sect. 6. In the terminology of population dynamics we could say that the lifespan 
of  an organism will be shorter when its rate of  maturat ion is increased. 

With these assumptions, we will derive a recurrence relation for the values of  
activator at the times when events occur. Assume that the events appear at the 
times 

to < tl < t2 < . . . . 

Let a n be the amount  of  the activator at the beginning of the time interval 
(tn, tn + ~). According to Eq. (1.2), this amount  at time t ~ (tn, tn + 1) is given by 

a = I - I ( t  - tn,  a n ) .  

Now using (1.1) we may calculate the physiological time z corresponding to t. 
Namely 

Z = qg(II(s - tn, an)) ds. (1.5) 
n 

Substitute z = H(s - tn, an), dz  = g(II(s  - tn, an)) ds and observe that z = an for 
s = tn and z = a for s = t. Then (1.5) becomes 

= q(z)  dz  = Q(a)  - Q ( a , ) ,  (1.6) 
n 

where 

q(z)  = (p(z) and Q(z )  = q ( y )  dy.  (1 .7)  
g(z) 

The function q has a simple biological interpretation, since it gives the rate of  
change of  the physiological time relative to the activator. 

When t approaches t. +~, the physiological time z and the amount  of  the 
activator a take their maximal values which we denote by vn and a . . . . .  respec- 
tively. In this case Eq. (1.6) gives 

zn = Q(a  . . . . .  ) - Q(an).  (1.8) 
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Further, from the definition of the reset function we have a , + l =  )~-l(a . . . . .  ) ,  
and consequently 

a , + l = ) ~ - l ( Q - l ( Q ( a ~ ) + % ) )  f o r n = 0 , 1 , . . . .  (1.9) 

This is the desired recurrence relation between successive activator levels at event 
occurrence. By assumption, the variables a, and % are independent, see Eq. (1.4), 
and thus we may consider (1.9) as a discrete time dynamical system with 
stochastic perturbations by the z,. 

The behaviour of this sytem from a statistical point of view may be described 
by the sequence of distributions 

Fn(x) = prob(a, < x) f o r n = 0 , 1 , . . . .  

In Sect. 5 we derive some sufficient conditions for the convergence of F,. Before 
this we derive a recurrence formula for the densities f ,  = dFn/dx in the next 
section, and then examine the convergence properties of the densities f ,  in Sects. 
3 and 4. 

2 The evolution of densities 

Set H 1 = 1 - H and denote by h = H'I the density function of the distribution of 
% (assuming that this density exists). If  a, has a distribution F~ then Q(a,) has 
the distribution function Gn(x)=F,(Q-I (x ) ) .  Further, since a, and zn are 
independent, the variable u, = Q(a,) + ~ has a distribution function given by the 
convolution 

f o  tQ-l(x) h(x - y) dG.(y) = h(x - Q(y)) dF.(y). (2.1) 
do 

Finally, )t-l(Q-l(a, ,))  has the distribution function 

o ~(x) H(Q( )~(x)) - Q(y)) dFn ( y). 

From this and the definition of the density, it follows that a. +1 = )o-I(Q- l(u.) ) 
has a density 

I 
.~(x) 

f~ +1 (x) = )~'(x)q(J.(x)) h(Q(~.(x)) - Q( y))f~ (y) dy. (2.2) 
do 

Introducing the operator P defined by 

Pf(x) = - ~ x  H(Q()~(x)) - Q(y)) f ( y )  dy, (2.3) 
do 

we may write these relations in the more abbreviated forms f . + l  = Pfn and 
f ,  = Pnfo. Under some simple regularity conditions concerning 2, Q and H, Eq. 
(2.3) defines a Markov operator on the space LI(R+ ) of all integrable functions 
defined on the half line R+ = [0, oo). These assumptions will be formulated in 
the next section where some concepts from the theory of Markov operators are 
presented. 

At this point it is worth noting the explicit use of the inverse function Q -  l(x) 
in the derivation of Eqs. (1.9) and (2.2). In some applications it may happen that 
the functions ~(x) and q(x) vanish on an interval 0 ~< x ~< xo and are only 
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positive for x > x0. In this case it is clear that Q(x) as given by (1.7) also 
vanishes for 0 ~< x ~< Xo and is thus not invertible. However, as we show in the 
Appendix Eqs. (1.9) and (2.2) are still valid. 

If  the densities f ,  are given then it is easy to find the density of the 
distribution of the interevent intervals, i.e., the time intervals At,  = t n + l - t n  
between the n th and (n + 1) st events. In fact Eq. (1.5) with t = tn+ 1 gives 

% = q~(II(s - tn, an)) ds = q)(I-l(s, a,)) ds. 
n do 

Therefore 

= prob % t> q~(II(s, t)) ds a n = r f~(r) dr. 
0 

From this and (1.4) it follows immediately that 

;; (; ) prob(Atn ~> x) = H ~o(II(s, r)) ds fn(r) dr. 

By differentiation we can find the density distribution function of A tn which we 
denote by an(x). Namely, the density of the interevent intervals is 

;; (f; ) c~n(x ) = h ~0(II(s, r)) ds q)(II(x, r))fn(r ) dr. (2.4) 

In the particular case when f~ = f , ,  (n = 0, 1 , . . . )  is a time independent 
stationary sequence, an has the same property. 

3 Markov operators 

In this section we commence our study of the asymptotic properties of the 
operator 

i 
~(x) 

Pf (x )  = K(x,  y ) f ( y )  dy, (3.1) 
do 

where 

K(x,  y) = - ~x  H(Q(2(x))  - Q(y)). (3.2) 

We will assume that Q, 2 and H satisfy the following conditions: 

1. The functions Q : R +  ~ R +  and 2 : R +  ~ R +  are non-decreasing and abso- 
lutely continuous on each subinterval [0, c] of the half-line R+. Moreover 

Q(0) = 2 ( 0 ) = 0  and lim Q ( x ) =  lim 2(x)=  oo. (3.3) 
x ~ o o  x ~ c ~  

2. The function H : R + - - . R +  is non-increasing, absolutely continuous on each 
interval [0, c], and 

n(0)  = 1, lim H(x )  = 0. (3.4) 
X ~ O 9  
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We use these assumptions in both Sects. 3 and 4 and we will not repeat them in 
the statements of the theorems. 

Next, we introduce the concept of a Markov operator (see Lasota and 
Mackey 1985), and then show that Eqs. (3.1) and (3.2) define a Markov 
operator. Let D be the set of all densities on R+, i.e., 

D = { f ~  L ' : f~>  0 and Nfl] = 1}, 

where E l =  Ll(R+ ) and [1"[1 is the norm in L ' .  A linear operator P :  L l ~  L 1 is 
called a Markov operator if P(D) c D. It is clear that if P is a Markov operator 
and f s L 1, then [IPf[[ ~< IIf[I. 

To show that (3.1)-(3.2) is a Markov operator follows quite easily as a 
corollary from the relation 

;; ;0 f0 V(Q(~.(x)))Pf(x) dx = f ( y )  dy V(x + Q(y))h(x) dx, (3.5) 

where f e L 1 is non-negative and V : R+ ~ R+ is an arbitrary Borel measurable 
function. To verify (3.5), note that from (2.3) 

I = V(Q(X(x)))Pf(x) dx 

f f  t ;~" 
= ,t'(x)q(~.(x)) g(Q(2(x))) dx h(QO(x)) - Q(y))f(y) dy. 

3o 

Setting z = 2(x) we have 

I = V(Q(z))q(z) dz h(Q(z) - Q(y) ) f (y)  dy 

fo f) = f ( y )  dy V(Q(z))h(Q(z) - Q(y))q(z) dz. 

Now substituting Q(z) - Q(y) = x, we immediately obtain 

I = f ( y )  dy V(x + Q(y))h(x) dx 
0 

which completes the derivation of Eq. (3.5). 
Observe that both sides of (3.5) can be infinite. However, if we take V - 1, 

then (3.5) becomes 

;; fo f; ;o Pf(x) dx = f ( y )  dy h(y) dy = f ( y )  dy, 

thus demonstrating that P f  ~ D for f E D, and thus the operator defined by Eqs. 
(3.1) and (3.2) is a Markov operator. 

In studying the asymptotic properties of the sequence of iterates {P"} it is 
convenient to introduce the definitions of asymptotic stability and asymptotic 
periodicity. 

The iterates {P"} of a Markov operator P are called asymptotically stable if 
there exists f ,  e D such that P f ,  = f ,  and 

lim I I P " f - f ,  ll=O f o r f ~ D .  (3.6) 

It is evident that any f ,  satisfying (3.6) is unique. 
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The sequence {pn} is called asymptotically periodic if there exists a finite 
sequence of densities gl, • • •, gr, a sequence of linear functionals 21 . . . .  ,2r, and 
a permutation co of the integers 1 , . . . ,  r such that 

Pgi = gco(i), gigj = 0 for i C j  

and 

lim p n f _  k 2,-(f)go~.(i) = 0  f o r f e L  1. (3.7) 
n - - +  o o  i ~ 1  

Clearly, an asymptotically periodic operator P with r = 1 is asymptotically 
stable. Using this observation it is easy to prove (Lasota and Mackey 1985) the 
following 

Lemma I I f  {P"} is an asymptotically periodic sequence of  the iterates of  a 
Markov operator P, and there exists a set B c R+ of  positive measure such that for 
every f ~ D the inequality 

P"f(x)  > 0 for x ~ B a.e. (3.8) 

holds for sufficiently large n >~ no( f ) ,  then {P"} is asymptotically stable. 

General sufficient conditions for asymptotic stability and asymptotic periodic- 
ity have been summarized by Lasota and Mackey (1985) and extended by 
Komornik and Lasota (1987). The essence of these results is contained in the 
following theorem in which the standard Lebesgue measure on R + is denoted by m. 

Theorem 1 Let P : L I ~ L 1 be a Markov operator. I f  there exist constants 6 > 0 
and 0 < 1 and a measurable set B ~ R+ of  finite measure such that for every f ~ D 
there is an integer n o ( f ) f o r  which 

f Pnf(x) dx <~ 0 for and 6, n >1 no ( f )  m(a)  <<. (3.9) 
R +\B)voG 

then the sequence {P"} is asymptotically periodic. 

Theorem 1 will be our main tool in studying the asymptotic properties of the 
operator P defined by Eqs. (3.1) and (3.2). Consequently, the following remarks 
are important to understand the role of inequality (3.9) even though they are not 
used in later proofs. 

Condition (3.9) can be reformulated as follows. There exists a weakly 
compact set ~,~ c L 1 and a constant 0 < 1 such that 

lira sup d(P% o~) << 0 for f ~ D, 
n + c t 3  

where d(f ,  ~ )  denotes the distance (in L 1 norm) between the function f and the 
set ~ .  From this interpretation it is clear that (3.9) is a rather mild condition. It 
should also be noted that the space L 1 plays an important role. Results 
analogous to those of Theorem 1 in other Banach spaces require, in general, 
much more restrictive assumptions (Miklav6i6 1988, Sine 1989). For example, Y 
must be strongly compact and 0 = 0. 

Theorem 1 also has some relation to the theory of Harris operators (Foguel 
1969). Namely, in the important special case when P is an integral operator, 
Theorem 1 implies that the operator 

-Pf =~ ,  P ( f f  ,)  
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acting on the space LI(C,m,) ,  where C =  Ui suppgi and d m , = f ,  dm, is a 
Harris operator. This observation easily explains the orthogonality condition 
gigs = 0 for i C j  which appears in the definition of asymptotic periodicity. 
Namely the sets Wi = supp gi play the role of atoms of the field $1 on which 
the Harris opera tor /5  acts like a point transformation (/51w, = 1 ws). Lemma 1 
gives a simple condition which implies that, in fact, there is only one atom 
in 2:1 . 

4 Asymptotic behaviour of densities 

We start with a criterion for asymptotic periodicity. Throughout,  we use the 
standard notation for the scalar product of two functions f and g: 

<f, g > = f (x)g(x) dx. 

Theorem 2 Assume that 

for some e > O, and that 

m, - x'h(x) dx < oo (4.1) 

lira inf Q(2(x)) > 1. (4.2) 
x-, ~ Q(x) 

Then the sequence {pn} with P given by Eqs. (3.1) and (3.2) is asymptotically 
periodic. 

Proof. Suppose 0 ~< e 1 ~< •2 so x ~1 ~ 1 + x E2 for x i> 0. As a consequence we have 
m~, ~< 1 +m~2. If  m,2 is bounded, thus satisfying (4.1), then it is clear that m~ 
also satisfies (4.1). Thus, it may be assumed that e ~< 1 in (4.1) without any loss 
of generality. 

Let U(x) = [Q(2(x))] ', so from (3.5) it follows that 

f0 f0 (U, P f ) =  f ( y ) d y  [x+Q(y)]~h(x)dx for f e  D. 

For  E ~ 1, we have [x + Q(y)]~ ~< x ~ + [Q(y)]q Furthermore, by using (4.2) we 
may choose ~ < 1 and x0 >/0 such that [Q(x)] ~ ~< c~[Q(~(x))] ~ for x ~> x0. There- 
fore 

fo fo ;o fo <U, Pf> <~ f ( y )  dy x'h(x) dx + f(y)[Q(y)]' dy h(x) dx 

;0 + f(y)[Q(y)]' dy h(x) dx. 
0 

Replacing [Q(y)]E in the last integral by c~[Q(2(y))] ~, and remembering that 
both f and h are densities and that Q(z) is not a decreasing function of z, we 
obtain 

(U, P f > < ~ ( U , f > + 3  for f e  D, (4.3) 
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~0 ~ 
/3 = [Q(x0)] ~ + x~h(x) dx. 

Denote by Do the set of all f ~ D  such that ( U , f )  < ~ ,  and choose a 
7 > / 3 / ( 1 - c  0. From Eq. (4.3) it follows that (U, P n f ) < 7  for f e D o  and 
sufficiently large n, say n >1 no(f) .  As a consequence of the Chebyshev inequality 
(Lasota and Mackey 1985, Proposition 5.7.1), we have 

f ~ Pnf(x) dx.<7- for >~no(f), >>-0, (4.4) n c 
"~L 

where L = inf{U(x):x >~ c} = U(c). Since U(x) ~ ~ as x ~ ~ ,  we may choose c 
such that y/L < 1. Observe that if in the left hand side of (4.4) we r ep l ace f~  Do 
by f e  D then the integral changes its value by at most 

l iP" f -  P°fH <~ Ilf-f[[. 
Since the set D O is dense in D, this implies that (4.4) holds for a l l f  ~ D (changing 

if necessary). Next, let G c [0, e] be an arbitrary measurable set and define 

w(x) = 1 Q~G~(x), 

where 1 c denotes the characteristic (indicator) function of the set C. It is evident 
that 1a(x) ~< w(Q(2(x))), and by Eq. (3.5) 

;o ;; Pf(x) dx <. f ( y )  dy h(x)w(x + Q(y)) dx. 

Let 2o- = 1 - 7 / L .  Since h is integrable on R+ there is an r />  0 such that 

fFh(X) dx <<. for F = m(F) <~ R+, ~l, 

where again m(F) is the standard Lebesgue measure of the set F on the real line. 
Because of the absolute continuity of Q o 2, we can always find a 6 > 0 such 

that m(Q(2(G))) <. q for G = [0, c] with m(G) <~ 6. Consequently, 

f0 ;o h(x)w(x + Q(y)) dx = h(x) dx <~ a 
( 2 ( G ) )  - -  Q(y) 

whenever G ~ [0, c] and re(G) <~ 6. In particular, for n ~> 1 

fo fo P"f(x) dx = P" -  ' f(y)  dy h(x)w(x + Q(y)) dx <~ a 

if G = [0, c] and m(G) <<. 6. This last inequality, in conjunction with Eq. (4.4), 
implies that 

;o 
for f e D ,  n ) n o ( f ) ,  and arbitrary G c [0, c] satisfying re(G)<<.6. This shows 
that the sufficient condition (3.9) for asymptotic periodicity is satisfied with 
B = [0, c) and 0 = 1 - a, so the proof  is complete. [] 
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Lemma 1 and Theorem 2 allow us to formulate a sufficient condition for 
asymptotic stability, given in the following 

Theorem 3 Assume that P is defined by Eqs. (3.1) and (3.2), and that conditions 
(4.1) and (4.2) are satisfied. I f  there is a number Xo >>-0 such that 

h(x) > 0 for x > Xo, (4.5) 

then the sequence {pnf} is asymptotically stable 

Proof. From our assumptions, it follows that P satisfies (4.3) and thus, by the 
Chebyshev inequality, there is a c > 0 such that 

/ P n f ( x )  dx > 0 (4.6) 

for e v e r y f  e D and sufficiently large n >>. no( f ) .  Since 2(x) --+ oo and Q(x) ~ oo as 
x ~ oo, there is also an Xl >~ 0 such 

2 ( x ) > c  and Q ( 2 ( x ) ) - Q ( y ) > x 0  f o r x ~ > x l , y ~ < c .  (4.7) 

Define B = {x >/x~:(Q(2(x))) '> 0}. It is evident that the set B has positive 
measure since Q(2(x)) is absolutely continuous and is not constant on [xl, oo). 
Now l e t f ~  D be fixed and take n >>-no(f) + 1. Then from (3.1) and (3.2) 

P~f(x) ~ (Q(2(x)))' h(Q(2(x)) - Q(y))P~ - ~f(y) dy for x />  xl.  (4.8) 

According to (4.5) and (4.7) we have h(Q(2(x)) - Q(y)) > 0 for x />  x 1, y ~ c. 
From this and (4,6) it follows that the integral in (4.8) is different from zero. 
Thus P~f(x) > 0 for x e B and n >>. no( f )  + 1. According to Lemma 1, the proof  
is complete. [] 

5 Asymptotic stability of measures 

Theorem 3 gives a sufficient condition for asymptotic stability in terms of the 
evolution of densities under the action of the Markov operator defined by Eqs. 
(3.1) and (3.2). This condition is completely dependent on the absolute continu- 
ity of H, as set forward in condition 2. 

However, by considering the recurrence relation of Eq. (1.9) we may also 
derive another sufficient condition for the asymptotic behaviour of the model 
system framed in terms of the convergence properties of measures. Specifically, 
we consider the recurrence relation (1.9) as a special case of the more general 
discrete time dynamical system 

an+l=S(a , , zn)  n=O, 1 . . . . .  (5.1) 

In considering (5.1), we will introduce the concept of the asymptotic stability of 
measures, and prove a sufficient stability criterion analogous to that of Theorem 
3. 

In considering (5.1), assume that the function S:R+ x R+ ~ R +  is continu- 
ous and that the random variables 

ao, "Co, "el . . . .  (5.2) 
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are independent and non-negative with probability one. Also assume that 
"Co, "Cl . . . .  are equally distributed with a common cumulative distribution func- 
tion given by 

HI (x) = 1 - g (x )  = prob(% < x). 

In this section we are interested in the asymptotic behaviour of the distribu- 
tions 

Fn(x) = prob(an < x) for n = 0, 1 . . . . .  

We will say that the sequence {Fn } of distribution functions is weakly convergent 
to a distribution function F ,  if 

lira F, (x) = F ,  (x) 
n ---~ o o  

for every point x at which F ,  is continuous. The dynamical system (5.1) is called 
weakly asymptotically stable if there is a unique distribution function F ,  such 
that {F, } converges weakly to F ,  for every initial distribution function F0. 

The following theorem is a special (one dimensional) case of a more general 
result proved in Lasota and Mackey (1989). 

Theorem 4 Assume that S and z n satisfy the inequalities 

E([S(x, %) - S ( z ,  "C,)[) < l x - z [  for x Cz,  (5.3) 

and 

E( IS(x, z,)17) ~< ~ Ix I' +/~, (5.4) 

where E denotes the mathematical expectation and c~, 8, and 7 are non-negative 
constants with c¢ < 1 and 7 > 1. Then the dynamical system (5.1) is weakly 
asymptotically stable. 

Using the cumulative distribution function H~ = 1 - H ,  we may rewrite (5.3) 
and (5.4) in the forms 

o ~ ] S ( x , y ) - S ( z , y ) l d g ~ ( y ) < l x - z l  for x Cz  (5.5) 

and 

fo ~° y ) d H l ( y  ) <<. o~ I x I r q- fl (5.6)  IS(x, t' 

respectively. 

Remark 1 Note that in the special case that S ( x , y ) =  T ( x ) + y ,  with 
T:R+ ~ R + ,  so the dynamical system (5.1) has the form 

an+ 1 = T(an) -k'c n, 

then Lasota and Tyrcha (1991) have shown that the conditions (5.5) and (5.6) 
may be replaced by 

I T ( x ) - T ( z ) [ < [ x - - z [  f o r x C z  

and 

respectively. 

fo ° x dH 1 (x) < co, T(x) <~ o~x + 
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In considering the applicability of Theorem 4, the following observations are 
important. From Eq. (5.1) it immediately follows that 

f; F n + l ( x ) =  prob(S(z, z n ) < x l a n = z ) d F n ( z )  for n =0 ,  1 . . . . .  (5.7) 

Since both an and % are independent, we also may write 

prob(S(z, zn) < x lan = z) = prob(S(z, ~n) < x) = l~(x.z)(y) di l l (y) ,  (5.8) 

where B(x, z ) =  { y : S ( z , y ) <  x}. Equations (5.7) and (5.8) illustrate that the 
sequence {Fn } is completely determined by F0 under the assumption that an and 
% are independent for every value of n. The more restrictive assumption that the 
entire sequence (5.2) consists of independent random variables does not change 
the calculation of Fn, and thus we may also apply Theorem 4 in the case where 
we have pairwise independent (an, %). In particular, Theorem 4 applies to the 
dynamical system (1.9). 

It is interesting to note that Eqs. (5.7) and (5.8) offer a new way to derive the 
recurrence relation (2.2) for the densities. Namely, for the dynamical system 
(1.9) we have 

S(z ,y )  =)~ I(Q-I(Q(z)  + y)), 

and as a consequence 

z) = {y : S(z, y) < x}  

= {y s R+ :y < Q(2(x)) - Q(z)}. 

Thus, in this circumstance condition (5.8) now yields 

prob(S(z, %) < x) = ~'/-/1 (Q(2(x)) - Q(z)) for 2(x) ~> z 
O for 2(x) < z" 

Substituting this into (5.7), we obtain 

I 
.~(x) 

Fn +1 (x) = H 1 (Q(2(x)) - Q(z)) dF n (z), 
3o 

and differentiating with respect to x yields (2.2). 

6 A criterion for independence 

The assumed independence of an and % plays a crucial role in the theory as 
developed to this point. It is obvious that this assumption is not easily justified 
even if one accepts the intuitive interpretation of biological time which has been 
used to support our independence assumption. In this section we present a 
mathematical argument to strengthen the plausibility of the independence as- 
sumption concerning an and %. 

Lemma 2 Assume that X and Y are random variables such that Y >~ X >>. 0 with 
probability 1, and that the conditional probability of  Y with respect to X satisfies 

p r o b ( Y > ~ y l X = r ) = H ( Q ( y ) - Q ( r ) )  fory>~r>>.O, (6.1) 
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where Q : R+ ~ R+ & strictly increasing and onto, and H : R+ --* [0, 1] is a 
decreasing function. Then H is the survival function for  the random variable 
Q ( Y )  - Q(X)  and the variables Q ( Y )  - Q(X)  and X are independent. 

Proof. Denote by Fx the cumulative distribution function for X. Then it follows 
that 

prob(Q(Y) - Q(X)  >~ u, X >>, v) = _f, °° 

=If 
prob(Q(Y) - Q(X)  >1 u l X  = r)Fx(dr) 

prob(Y ~> Q--I(u "~- Q(r)) I X = r)Fx(dr ) 

From this and Eq. (6.1) we have 

prob(Q(Y) - Q(X)  >~ u, X >1 v) = .f  o~ 

--If 
H(Q(Q - l(u + Q(r)) - Q(r)))Fx(dr) 

H(u)F~(dr) 

= H(u)( 1 - Fx(v)) 

which completes the proof. [] 

We will want to be able to use Lemma 2 in situations where Q(x) vanishes 
for x ~< Xo (see the remarks following our derivation of  Eq. (2.2) and the 
Appendix). It is straightforward to show that Lemma 2 also holds in the case 
that Q(x) is invertible for x ~> x0 and if Y ~> x0 with probability one. 

To illustrate the usefulness of Lemma 2 in understanding the independ- 
ence assumption, return to the considerations of Sect. 1. However, now we 
assume neither the existence of an internal (biological) time nor do we make 
the assumption embodied in Eq. (1.4). Rather, we assume that the activator 
substance is produced according to Eq. (1.2) as before, and the following 
condition: 

The probability that an event occurs in the time interval [t, t + At], given 
that it has not occurred up to time t, is equal to 

~o(a(t)) At + o(At), (6.2) 

where a(t) is the activator level at time t. As before, we assume that after the 
event occurs, the activator level is reset to the level 2--1(amax). 

NOW consider the situation in which the system starts at time t = 0, when 
the previous event occurred, with an activator level a ( 0 ) = r .  By (1.2), the 
activator level at time t is simply 

a(t) = H(t, r). 

Furthermore, using (6.2) it is easy to calculate the probability that the next 
event appears at a time tl > t. Namely, 

{;0 } prob(tl ~> t [a(0) = r) = exp - (p(II(s, r)) ds . 

~ r u ~ 0 ,  v ~ 0 .  
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Making, as before, the change of variables z = II(s, r) we have 

prob(tl >~ t l a(0) = r) = exp - q(z) dz 
k d r  

= exp{-  Q(a(t)) + Q(r)}. 

Clearly, the condition tl >/t is equivalent to amax I> Y where y -- a(t). Thus, 

prob(am~x >~y [a(0) = r) = exp{-  Q(y) + Q(r)}. 

By Lemma 2, this shows that the variables Q(am~x)- Q(a(O)) and a(0) are 
independent, and furthermore that Q(amax)- Q(a(O)) has an exponential sur- 
vival function e-x. 

Now define 

= Q(a(t)) - Q(a(O)) (6.3) 

so, in particular, 

Then, since 

Zmax = Q(am~x) -- Q(a(O)). 

d'c 
dt - q(a(t))a'(t) = q(a(t))g(a(t)) = 99(a(t)) 

we know that the function z satisfies Eq. (1.1). Furthermore, rmax is independent 
of a(0) and has the exponential survival function H(x)  = e - x .  

Thus, through the use of Lemma 2 we have been able to demonstrate the 
existence of a function having all of the characteristics that we originally 
postulated for the internal (biological) time. As a consequence, the activator 
levels an satisfy the recurrence relation (1.9) with exponentially distributed % and 
the density distribution functions fn of an satisfy the operator equationfn +1 = Pfn 
with P defined by 

Pf ( x )  = 2"(x)q(2(x)) exp - q(z) dz f ( y )  dy. (6.4) 
d o  

It is important to mention that Eq. (1.9), when H(x)  = e -x,  was first derived 
by Loskot (personal communication) during the analysis of the operator (6.4) 
introduced by Tyrcha (1988). 

In subsequent sections, we will refer to the system (6.4) as an exponential 
model with transition probability given by (6.2). 

7 Cell cycle models 

In this section we offer the first of two concrete examples of the application of 
the general formulation of the previous sections by considering several mathe- 
matical models of the cell division cycle. 

In interpreting the cell division cycle within the context of the general model 
presented here, we associate the occurrence of an event with a triggering of the 
process which ultimately leads to mitosis and cytokinesis, and the activator is 
associated with an (as yet) hypothetical substance called mitogen that is neces- 
sary but not sufficient for cell division to occur. 
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We first consider the class of models proposed by Lasota and Mackey (1984), 
Tyson and Hannsgen (1986), and Tyrcha (1988). Within the framework of this 
paper, these models may be described as follows. 

During the lifetime of the cell it must traverse two phases of the cell cycle 
denoted by A and B. The end of phase B coincides with cell division. The 
duration of phase B is constant, and denoted by tB, while the length tA of phase 
A is considered to be a random variable. The transition from phase A to phase 
B is taken to be coincident with the occurrence of an event, and the probability 
that this event occurs during the interval [t, t + At] is given by (6.2) where a(t) is 
the mitogen level. The production of mitogen is governed by Eq. (1.2) with 
g(x)  > 0 for x > 0. Within the context of the general framework developed 
earlier, the transition between phases A and B, i.e., when the event occurs, 
corresponds to the moment when the activator has a level a m . . . .  . Since the 
production of mitogen during B is still governed by Eq. (1.2), at cell division (the 
end of B) the activator has a level of I-I(tB, a . . . . .  ). Finally, in these models the 
mitogen is assumed to be divided equally between both daughter cells at cell 
division, so 

½II(tB, a . . . . .  ) = 2-1(a . . . . .  ) = a ,+l ,  (7.1) 

o r  

2(x) = I-I( - tB,  2X). 

This class of cell cycle models satisfies all of the conditions of the exponential 
model described in Sect. 6, and have an internal time defined by (6.3). Further- 
more, the quantities of mitogen in consecutive generations of newly born cells 
satisfy the recurrence relation (1.9), with ~n having a survival function e - x  
Lastly, the transition operator for the evolution of mitogen density is given by 
Eq. (6.4). 

There are two specific features of these cell cycle models that deserve 
mention. First, the reset function is not arbitrary but is explicitly defined by Eq. 
(7.1). Secondly, Eq. (2.4) gives the distribution of the lengths of the phase A of 
the cell cycle, with the density of the duration of the entire cell cycle given by 

~ '~ , ( t - tB)  fo r t  >/tB 
cTn(t) (7.2) l0 for t < t~" 

The description of the cell cycle that we have given here was first proposed 
by Tyrcha (1988). It reduces to the Lasota and Mackey (1984) model if t~ = 0, 
and to the Tyson and Hannsgen (1986) model if g(x) = k x  and 

0 for x ~> 1 
q)(x) = for x < 1' 

where k and p are positive constants. 
It is interesting to examine these models in the light of our stability results of 

Theorems 3 and 4. First, note that conditions (4.1) and (4.5) are automatically 
satisfied with h(x) = e -X .  Thus, to apply Theorem 3 it is sufficient to verify (4.2). 

For the Lasota-Mackey model, 2(x)= 1I(0, 2x )=  2x and condition (4.2) 
reduces to 

lim inf Q(Zx) _ lim i n f ~  q(z) dz > 1. (7.3) 
x~  o~ Q(x)  x-~ oo jo q(z) dz 
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For q(y)  bounded, (7.3) is more general than the original asymptotic stability 
condition of l i m i n f ~  q ( x ) > 0  stated in Lasota and Mackey (1984) since 
lim i n f x ~  q(x) > 0 then implies (7.3). 

In the case of the Tyson and Hannsgen (1986) cell cycle model, a simple 
i xt~ Moreover, Q ( x ) =  application of Eq. (7.1) gives 2(x) = x / ~  where o-= 5e . 

(p /k )  In + x where In + x = max(0, In x). Therefore, 

ln( ) 
lim Q(2(x)) _ lim = 1, 

x~oo Q(x) x ~  ln x 

and condition (4.2) is never satisfied. However, in this case we may use Theorem 
4 to examine the stability. Equation (1.9), with 2 -  l(x) = ~x, Q(x) = (p /k )  In + x, 
and Q - ~ ( x ) =  e k~/p reduces to 

a,+ 1 = cr max(l ,  a,) e k~./p. 

An elementary calculation shows that inequalities (5.5) and (5.6), with 

S(x,  y) = cr max( 1, x) e ky/p 

and H i ( y ) =  1 - e  y are satisfied whenever k ip  < 1-o- .  This inequality for 
weak asymptotic stability was derived by Tyson and Hannsgen (1986). 

As another example, extensions proposed by Tyson and Hannsgen (1985) 
and Hannsgen et al. (1985) of the well known cell cycle models of Smith and 
Martin (1973) and Shields (1977) also fall within the general framework of this 
paper. 

In these situations, we also assume that the cell goes through phases A and 
B, and that the length tB of phase B is constant. Once again the end of the B 
phase marks cell division. The length tA of the phase A is considered to be a 
random variable with a density distribution function 0, so 

prob(tA >~ x) = Ip(z) dz. 

The activator (mitogen) is once again produced with dynamics described by Eq. 
(1.2), is assumed to not affect tA, and divides equally between mother and 
daughter cells at division. Thus, by assumption, t A and a(0) are independent. 

To show how this model may be incorporated into our general framework, 
assume as before that the event corresponds to the transition point between the 
phases A and B. Furthermore, set 

f; rp(x) - 1, H(x )  = ~O(z) dz, 

and define 2 by Eq. (7.1). The condition ~o _= 1 simply means that the internal 
(biological) time v and laboratory times t are either identical during any given 
cell cycle, or differ by a constant amount. 

Using the special form of the function q = l/g, the recurrence relation (1.9) 
may be considerably simplified. Thus, solving (1.2) with a(0) = r we have 

fr 
a(t) d x  

g(x) - t or Q(a(t)) - Q(r) = t. 
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This, in turn, implies 

and in particular 

a(t) = II(t, r) = Q-I(Q(r) + t), 

2(x) = H ( -  ts, 2x) = Q -  l(Q(2x) - ts). 

Finally, 

S ( x ,  y) = )~ - I ( Q  - l ( Q ( x  ) -t- y)) = ½Q - l ( Q ( x )  -[- y -k- tB),  

and the dynamical system (1.7) reduces to 

am +1 = ½O -l(O(a,)  + z, + tB), (7.4) 

where zn = tan denotes the length of the A phase during the nth cellular 
generation. 

A comparison of Eqs. (1.9) and (7.4) suggests the following correspondence. 
Introduce a new variable ~, = t~ + z, with the density distribution function 

h ( x ) = { ~ o ( X - t ~ )  for x >~ tB 
for x < tB 

and a new reset function 2(x) 1 = 5x. This corresponds to shifting events to the 
division points tan + ts. With these new functions, (7.4) is once again a special 
case of (1.9), and the corresponding recurrence relation for densities has the 
form f~ + i = Pf~ with P given by 

Pf(x) = 2q(2x) h(Q(2x) - Q(y))f(y)  dy. (7.5) 

The operator P defined by (7.5) is easily studied using Theorems 2 and 3. 
Thus, if P satisfies conditions (4.1) and (4.2), then the sequence {P~} is 
asymptotically periodic. If, in addition, P satisfies (4.5), then {P~} is asymptoti- 
cally stable. Condition (4.t) is quite mild, and rather easily satisfied. For 
example, it holds (with E = 1) when G has a finite mean value. However, the 
inequalities (4.2) and (4.5) are much more difficult to apply. 

To illustrate this, consider the specific case in which g(x) = kx ~. Then 
X 1 --c¢ 

Q(x) - k ( 1  - c ~ '  ~ ¢ 1, (7.6) 

and Q(2x)/Q(x) = 21 -~. Thus according to Theorem 2 for e < 1 and 

E(~)  = xh(x) dx < o% (7.7) 

where E(.) denotes the mathematical expectation, the system is asymptotically 
periodic. Using Theorem 4 we will show that it is, in fact, asymptotically stable 
without any additional assumptions concerning h. In particular, we will not 
require (4.5). 

To demonstrate asymptotic stability, ~consider the recurrence relation (7.4) 
with Q defined by (7.6). An elementary calculation gives 

1 1--c~ an+ 1 = 5 [ a  n + k ( 1  - ~)fn] 1/(1 -~) (7.8) 

Set bn = a 1-~ to obtain 

b n + l  = (½) 1 0 : [ b  n _.~ k ( 1  - ~)'~n]- ( 7 . 9 )  
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Theorem 4 in conjunction with Remark 1 shows that for c( < 1 the dynamical 
system (7.9) is weakly asymptotically stable. Thus the sequence of cumulative 
distribution functions 

Gn(x ) = prob(bn < x) 

is weakly convergent to a distribution function G, .  Since the distribution 
functions Fn of an satisfy Fn(x)=Gn(xl-~), they converge weakly to 
F ,  (x) = G ,  (x 1- ~). However, by Theorem 2 we know that for c¢ < 1 the system 
(7.8) is asymptotically periodic which implies that the sequences of densities 
fn = dFn/dx are compact in L 1 norm. This demonstrates that (7.8) is strongly 
asymptotically stable, i.e. for every dens i tyf  e D the sequence {pnf} converges in 
L 1 norm to the stationary density f ,  = dF,/dx. 

Note that for c¢ > 1 every solution a(t) of Eq. (1.2) with g(x )=kx  ~ 
(k > 0, 0¢ > 1), and a(0) > 0 escapes to infinity in a finite time. Consequently, the 
system is not well defined. 

However, the intermediate case of e = 1 is interesting in the following sense. 
When c¢ = 1, Eq. (7.4) reduces to 

an+ 1 = ½an eke". (7.10) 

Clearly, an = 0 (n = 0, 1 , . . . )  is a stationary solution corresponding to the 
distribution 

F*(x)={10 forx~<0"f°rx>0 (7.11) 

Using the method of characteristic functions, it is easy to verify that (7.11) is the 
unique stationary distribution of the dynamical system defined by Eq. (7.10), and 
that for E(ki) < In 2 this system is weakly asymptotically stable. 

Hannsgen et al. (1985) studied the case when ~ = 1 using Mellin transforma- 
tion techniques, and the case of ~ = 0 using lower bound function techniques. In 
the latter case, they also assumed that h is positive on a sufficiently large interval. 
Here we have carried through the complete analysis for arbitrary c( satisfying 
0 ~< c¢ ~< 1 without imposing other conditions on the function h. We have been 
able to do this through the simultaneous use of the asymptotic properties of the 
dynamical system defining the trajectories of {an } and the Markov operator 
generating the sequence {fn } of densities. 

8 Integrate and fire models for biological processes 

Integrate and fire models for the generation of action potentials by excitable cells 
(neurons) have formed the basis for a number of treatments of stochastic single 
cell activity (Tuckwell 1989). Furthermore, they have enjoyed great popularity in 
the modeling of many other types of biological processes (Glass and Mackey 
1979, 1988; Glass et al. 1980; Lasota and Mackey 1985) in which there is 
evidence that some state variable must reach a threshold before an event is 
initiated, for example in models of respiratory rhythmogenesis. 

However, in showing how the general formulation of the previous sections 
may be used to treat integrate and fire models, we will phrase the presentation 
in terms of the genesis of action potentials. Our model is based on standard and 
commonly accepted properties of excitable membranes. The novelty is that under 
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quite natural assumptions the generation of action porentials can be described as 
a special case of Eq. (1.9), and this formulation gives a simple explanation of 
known experimental observations related to the distribution of action potential 
occurrence times. 

We consider a single cell subject to a time invariant depolarizing current / ,  
derived either from an external source (experimentally imposed or due to the 
presynaptic activity of another neuron) or internally if the cell is a pacemaker 
cell. In the absence of any depolarizing input, the membrane potential V will 
spontaneously return to the resting potential if perturbed from that point. In the 
presence of the current / ,  the membrane potential is assumed to have dynamics 
described by 

dV 
- V -  G ( V ) ,  ( 8 . 1 )  

dt 

where V is the constant depolarizing potential induced by the current /, and 
G(V) is directly related to the nonlinear voltage dependent ionic currents 
through the membrane (Mackey 1975). In this formulation, all potentials V are 
measured relative to the resting potential, and time is measured in units of the 
membrane time constant. Further, we have G(V)V > 0 for V ¢ 0. The activator 
of our general formulation is identified with the membrane potential 

a(t) = V(t). 

Thus, Eq. (8.1) can be written in the form 

dV 
~ -  =g(V),  with g(V) = V -  G(V). (8.2) 

If we wish to use a linear approximation in place of (8.2), we write G(V) ~- k V  
so  

dV 
- -  = V - k V .  ( 8 . 3 )  
dt 

Because of the nature of G(V), there is a unique positive value of V, say 
V = Va¢, such that g(Va¢) = 0. (In the linear case, VM = V/k.) Note that the 
qualitative behaviour of the solutions of Eqs. (8.2) and (8.3) is similar for 

V <  VM, t >>.O, 

since every solution starting with the initial value V(0) < VM is strictly increasing 
and asymptotically approaches Vpa as t ~ oo. 

We assume that during an action potential there is a stereotyped sequence of 
channel openings and closings so the membrane potential resets by a constant 
amount V R and 

, ~ - l ( x )  = x - v R  ( 8 . 4 )  

where VR is a positive constant. 
However, the form of the function ~o is somewhat more difficult to determine. 

Note that in order to produce an action potential at time t, the value of the 
activator V(t) must be larger than VR. Therefore, we take q~(x) = 0 for x ~< Vv 
where Vr is a constant threshold and Vr > VR. For x > Vr we assume that ~0(x) 
is positive. 
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Making these connections, we now show that the general method we have 
developed is able to explain: 

1. The existence of a minimum period of time between action potentials, known 
as the refractory period. 

2. The correlation coefficient ~c between successive interspike intervals (Ate) is 
negative. 

3. ~: becomes small when the mean of A t, becomes large. 

By Eq. (8.2), the time At, between the nth and (n + 1)st action potentials is 
given by 

fv, ~ .... dx g(x) = d t.,  (8.5) 

Since the Vm,x,, are always smaller than VM we have 

Vn+l = Vm . . . .  - -  VR < VM - VR. (8.6) 

are always larger than Vr, so the integral (8.5) is Furthermore, the Vm .... 
bounded from below by 

~ T  dx 
M vR g(x) - ta" (8.7) 

We can thus associate ta with the existence of a positive refractory time by simply 
assuming that 

v~ > vM - yR. (8.8) 

The assumption embodied in Eq. (8.8) also considerably simplifies the 
corresponding recurrence relation (1.9) for Vn, giving 

{~ f o r 0 ~ < x <  Vr (8.9) 
Q(x)=  }rq(y) dy for V r < . x ~ V M '  

where, as usual, q = q)/g. Furthermore, from Eqs. (8.6) and (8.8) we have that 
Vn < Vr so Q(Vn)=0 for all n, and the recurrence relation (1.9) (with 
)o -l(x) = x - VR) becomes 

Vn+l = Q-l('cn) - VR for n = 0, 1 , . . . ,  (8.10) 

where the internal times zn are all distributed with the same exponential density 
e-X. 

Initially, the recurrence relation (8.10) does not appear especially interesting. 
For example, the question of asymptotic stability is now trivial since all of the 
variables V, are distributed with the same density. However, (8.10) in combina- 
tion with (8.5) gives us a tool to examine the correlation between successive 
interspike intervals At n and A tn +1. Define 

C(x) ~x ay 
= J Tg 5 " 

Then, since V m .... > Vr > V,, Eq. (8.5) may be rewritten in the form 

At.  = G(V. )  + a(Vm .. . .  ) = 6 ( V . )  + 6 ( V . +  1 + VR). 
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Using this and (8.10) we obtain 

At, = G ( Q - 1 ( % _  1) - -  VR) -[- G(Q-1(%)) .  (8.11) 

Observe that in this expression the A tn are given in terms of  rn's only, and these 
in turn depend on the external excitation of the neuron. We assume here that the 
variables %, " q , . . .  are independent, which is a weaker condition than used in 
many other studies, e.g. see Gerstein and Mandelbrot  (1964). As we show below, 
the assumed independence of the Zo, zl, • • • only implies that the external inputs 
to the neuron are not correlated with the state of  the neuron, and does not imply 
that the interspike intervals A tn are uncorrelated. 

With this independence assumption, we now turn to a calculation of  the 
correlation coefficient 

It(At,, Atn+ 1) 
,~ - ( 8 . 1 2 )  

~r(A tn)~r(A t n + I ) '  

where It denotes the covariance 

It(Atn, Atn+ 1) = E(Atn Atn+ 1) - E(Atn)E(Atn+ 1), 

E is the mathematical  expectation, and a(Atn) is the standard deviation of Atn. 
Define 

¢, = G ( Q - 1 ( % )  _ VR), r/n = G(Q-I (%)) .  (8.13) 

Then A tn = i n -  1 + qn and 

It  = E ( ( ¢ n  + ~ n+  l ) ( ~ n -  1 -}- Fin)) - -  E({n + r/n+ l ) E ( ~ n -  1 -'}- rln)" 

Since the only variables that may not be independent are those with the same 
subscript n, this latter expression simplifies to 

It = E(~nrln ) -- E(~n)E(rl, ). (8.14) 

As we noted above, the variables rn are distributed with an exponential density 
e x, so the variables Q 1(%) are distributed with the density 

s ( x ) = @ x X ) e o ( X ) = { O  for O ~ < x <  Vr 
q(x) e-O(x) for Vr  ~< x < VM" 

Using this in conjunction with the definition of ~. and t/n we have 

r 4 ~ . )  = a ( x  - VR)s(x)  dx, F4~n) = a ( x ) s ( x )  clx, 
T T 

and 

f v ~M 
E(~ntl,) = G(x)G(x  - VR)s(x) dx. 

T 

These relations give 

It = G(x  -- VR) -- G ( y  - VR)s(y)  dy G(x)s(x)  dx. (8.15) 
T T 

We are going to prove that the correlation coefficient x is negative. Due to 
the nonnegativity of  the standard deviations, this reduces to a proof  that It < 0. 
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We first consider the function 

f? r(x) = a (x  - VR) - G where G - G(y - VR)s(y) dy. 
T 

For x e [Vr, VM] we have x -  V R < V r and 

fx VT r(x) = dy G 
- vR g ( Y )  

is a strictly decreasing function in this interval. Moreover, from the definition of 
r it follows that its average value calculated with the weighting function s(x) 
vanishes, i.e., 

f v "M r(x)s(x) dx = 0. 8.16) ( 
T 

Since s(x) > 0 for VT < X < VM, this implies the existence of a unique point 
Xo ~ (VT, VM) such that 

r(x) > O for VT <~ X < Xo and r(x) < O f o r x 0 < x < ~ V M .  

We can rewrite Eq. (8.16) in the form 

i? r(x)s(x) dx = [ - r(x)ls(x) dx, (8.17) 
VT 0 

in which the integrands r(x)s(x) and [-r(x)]s(x)  are strictly positive. Further- 
more, G(x) is positive and strictly increasing in the interval (Vr, VM). From 
(8.17) and this observation it follows directly that 

;0 f? r(x)G(x)s(x) dx < [-r(x)]G(x)s(x) dx. 
T 0 

By Eq. (8.15) the last inequality is equivalent to # < 0 and thus we have proved 
that the correlation coefficient x between successive interspike intervals is nega- 
tive. 

Note in particular that our proof of the negativity of the correlation 
coefficient ~c between successive interspike intervals is independent of any further 
assumptions concerning the functions g and q~. 

Now we turn to a consideration of the dependence of ~: on the parameters 
describing the system, and we pick some specific forms for g and q~. We assume 
that g is linear, g(x) = V -  kx as in Eq. (8.3), and that (0(x) is constant for 
X ~ V T  SO 

{~ for x < VT 
q)(x) = for x >~ Vr" 

These assumptions are similar to those of the Tyson-Hannsgen (1986) model of 
the cell cycle considered in the previous section. 

Now we have VM = V/k and 

p ( V ~ _ - x ~  1 l n (  VM_uX ~[ 
Q(x) = ~ in + \ VM -- VT} '  G(x) = ~ ~ VM - -  V T  J . 
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Consequently, according to (8.13) we have 

1 ( V R v r + e  k~:,,/p ) =rE n ¢ . = ~ l n  V -  ~ , t/. p .  

Since the r. are distributed with the density e-X, this finally gives 

, fo ( +e x p) x E(~.q.) = ~  x e -x In -VM -- V~ 

and 

fo ) 1 e - x  V a  1 
E(~n) = lc In Vr + e-kX/P dx, E(tt.) = - .  

P 

Substituting these expressions into (8.15) we obtain 

,;o # = ~ (x - 1) e - x In VT 

The integral on the right hand side is easy to evaluate, and we obtain 

[ # ] < ~ ; f o ~ ( X + l )  e x In ( V - - ~ a  Fr  + 1) dx 

2 1) (8.18) + 

Furthermore, since the process is stationary we have a(At.) = a(At.+ ~) and the 
denominator in (8.12) has the form 

a(3t . )a(at~+ 1) = a2(dt . )  = a2(G) + ~2(~.). 

Evidently a ( ~ ) =  (1/p)a(z~)= lip and a2(At~)t> lip 2. From this and (8.18) it 
follows that 

v~ 
[P[ ~<P21#[~<~Pln(~M - v r + l )  (8.19) I~c I = a2(At,) 

Finally, note that 

fo ) 1 e-X VR + e -kx/p dx + - .  (8.20) E(At,) = E(~,) + E01,) = ~ In Vr p 

We know that # < 0 for p > 0, and from inequality (8.19) it follows that 
x--*0 as p ~ 0 .  On the other hand, (8.20) implies that E(At,) ~ oo as p ~ 0 .  
Alternately, if we look at the effects of changing the depolarizing input 12 
(equivalent to changing VM), then it is easy to show that (CE(At,)/CVM) < 0 so 
increasing 12 causes a decrease in E(Atn) and the neuron firing frequency 
increases as expected. Furthermore, we may also easily show that (#p/CVM) < O. 
Thus, if the average length of the interval spike intervals is large (low firing 
frequency), then the correlation coefficient ~ of successive interspike intervals is 
small and negative. These behaviours, along with the negativity of ~c, are well 
documented experimentally (Mannard et al. 1977). 
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Appendix 

Here we show that Eqs. (1.9) and (2.2) are still valid in the case that Q(x), as 
given by (1.7), vanishes for 0 <~ x ~< Xo and is thus not invertible. 

Define Q - l ( x )  as the inverse of  Q(x) restricted to x >~ x0. Then we have 

Q(Q - l ( x ) )  = X for x 1> 0, 

while 

Q-I(Q(x) )  = x  for x ~>Xo. 

With Q -  1 defined in this way, we can proceed to repeat the derivation of Eqs. 
(1.9) and (2.2). 

With respect to (1.9), first note that amax, n >/ X 0 with probability one since 
cp(x) = 0 for x < Xo. Further, f rom (1.8) we have 

Q(a . . . . .  ) = Q(an) + zn. (A.1) 

Applying Q-1  to (A.1) we have 

a . . . . .  = Q -  X(Q(a,,) + zn). 

Finally, using the definition of  the reset function [a ,+l  = 2-1(a  . . . . .  )] we once 
again obtain (1.9). 

To show that (2.2) is also valid with Q-1  as defined, we first find the 
distribution function for a , + l  given by (1.9). We start by considering the 
variable u, = Q(an) + zn. 

Let F, denote the distribution function of a,.  Then it follows that 

while 

Thus 

prob(Q(a,)  < x) = 0 if x ~< 0 

prob(Q(a,)  < x) = prob(a,  < Q- l (x ) )  = F, (Q- I (x ) )  if x > 0. 

(0  for x ~< 0 
G.(x) l F~(Q l(x)) for x > 0 '  

is the distribution function of Q(a.). 
It  is clear that the variable un has a distribution function given by the 

convolution 

Sn (x) = g~ (x - y) dG. (y) = H, (x - y) dG. (y)  
oo O,x] 

= Hl(X)F.(xo) + | H~(x - y )  dF . (Q- ' ( y ) ) .  
O( 0,x] 

Defining a new variable z = Q l(y) we may rewrite this as 

f Q- l(x) Sn(x) = H1 (x)F,(xo) + H~ (x - Q(z)) dF,(z) 
dXo 

fo~O f Q - 1 (x) = Hi (x) dr ,  (z) .-[- 0 l(x - Q(z)) dr ,  (z). 
,JXo 
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Since Q(z)  = 0 for z ~< x0 we also have 

fO ~0 f Q -- 1 (x) S .  (x)  = H ,  (x  - Q(z))  dF .  (z) + H1 (x  - Q(z))  d F  n (z) 
d X o  

= f Q - ' ( x ) H I ( x  -- Q(z))  dF.(z) .  
do 

Let the distribution function of Q - l ( u . )  be T.. Then we have 

T . ( x ) = 0  forx~<Xo,  

while 

T . ( x )  = prob(Q - ' ( m )  < x) = prob(u. < Q(x))  = S . ( Q ( x ) )  

Using Eq. (A.2) we can rewrite the last expression as 

f Q- l(Q(x)) 
T . ( x )  = H l (Q(x)  - Q(z))  d r . ( z )  

do 

f; = g l ( Q ( x ) - Q ( z ) ) d F n ( z )  for x > x0, 

so finally 

io rn (x)  = H 1 (Q(x)  - Q(z))  dF.  (z) 

From this we immediately obtain (2.2). 

for x > 0 .  

799 

(A.2) 

for x > Xo. 
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