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We examine asymptotically periodic density evolution in one-dimensional maps 
perturbed by noise, associating the macroscopic state of these dynamical 
systems with a phase space density. For asymptotically periodic systems density 
evolution becomes periodic in time, as do some macroscopic properties 
calculated from them. The general formalism of asymptotic periodicity is 
examined and used to calculate time correlations along trajectories of these 
maps as well as their limiting conditional entropy. The time correlation is shown 
to naturally decouple into periodic and stochastic components. Finally, 
asymptotic periodicity is studied in a noise-perturbed piecewise linear map, 
focusing on how the variation of noise amplitude can cause a transition from 
asymptotic periodicity to asymptotic stability in the density evolution of this 
system. 
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1. I N T R O D U C T I O N  

The study of highly irregular behavior  in one-dimensional  maps  often deals 

with deterministic t ransformat ions  that  exhibit chaotic mot ion  in a phase 
space. However,  complex behavior  in the iterates of maps may also be 
observed when one-d imens ional  maps  are stochastically per turbed by 
noise. In  this case the evolut ion of iterates is truly random,  even when the 

under lying noise-free map has periodic solutions. 
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586 Provatas and IVlackey 

Often, the unpredictable behavior of trajectory evolution in nonlinear 
dynamical systems can be simplified if one examines their behavior in terms 
of density evolution. (1) This alternative viewpoint has particular appeal 
when applying the concepts of nonlinear dynamics to many problems in 
statistical physics, (2) and offers an immediate connection with the mathe- 
matical discipline of ergodic theory which developed from the early work 
of Boltzmann and Gibbs. 

This paper examines the property of asymptotic periodicity (3) in the 
density evolution of one-dimensional noise-perturbed maps. The remainder 
of this section contrasts the trajectory versus density evolution in noise- 
perturbed maps and introduces the noise-induced Markov operator, a 
linear integral operator that governs the flow of densities in these systems. 
Section 2 introduces the dynamical concept of asymptotic periodicity, and 
gives general techniques for the calculation of the autocorrelation function 
and the conditional entropy of an asymptotically periodic system. Finally, 
in Section 3 we illustrate noise-induced asymptotic periodicity in the map 

xt+l=S(xt)+~ m o d l  (1) 

where S is the map ~4) given by 

S(x)=ex+~ modl  (2) 

The 3, in (1) are uniformly distributed on [0, 0], while the parameters 
and /~ are adjusted to give period-(m + 1) solutions in the map S. It is of 
particular interest to examine how varying the noise amplitude leads to a 
transition from asymptotic periodicity to asymptotic stability in density 
evolution. 

1.1. Trajectory Versus Density Evolution 

Chaotic attractors, for which the motion of a time series through them 
is ergodic with respect to some invariant measure, can be found in several 
deterministic systems, such as the logistic (5) and hat maps (6) for certain 
ranges of parameter values. Another class of systems in which this type of 
ergodic attractor arises is in maps possessing simple periodic solutions, 
which are stochastically perturbed by noise. While it is not entirely sur- 
prising that such a situation should arise, the stochastic perturbation has 
transformed a completely predictable problem to one where we can at most 
know the boundaries of the phase space attractor, but not the motion of 
a trajectory through it. This is reminiscent of the situation encountered 
when dealing with the N-body problem. To make the study of such noise- 
perturbed maps more tractable, we may argue, as Gibbs did when dealing 
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with the N-body problem, that a macroscopic state of a system described 
by such maps is not in general given by a single point in phase space, but 
rather a collection, or ensemble, of points distributed according to some 
density. The evolution of a system, in this formalism, is therefore given by 
the evolution (or flow) of densities. In this approach, exact values are 
replaced by ensemble averages or expectation values weighted by the phase 
space density. 

For  the systems of statistical mechanics in the thermodynamic limit 
(number of particles N-~ 0% volume V ~  oe), it is assumed that the 
evolution of densities attains the density of the canonical ensemble Z. For  
low-dimensional noise-perturbed maps, however, the flow of densities may 
display several types of behavior, never attaining an equilibrium density. 

1.2. Noise- Induced Markov  Operators and the 
Evolution of Densities 

The evolution of densities under the action of a dynamical system S is 
described by a Markov operator which we denote by P. Formally, any 
linear operator U:  L ~ ~ L 1 that satisfies 

P~'~>O and fx P'f(x)dx= fx f (x)dx 

for f>~0 is called a Markov operator, ~1) where X denotes the phase space 
on which S operates. Throughout  this paper we deal with the subset of L 1 
functions which are normalized to one. This set of densities is denoted by 
D. It is clear that when a Markov operator acts on a density it yields 
another density. Beginning with an ensemble of phase space points 
representing some macroscopic state of a system, and distributed according 
to an initial density fo, one unit of time (iteration) later the new density 
state of the system f l  is given by f1 = Pfo. For a deterministic one-dimen- 
sional map S, defined on X =  [0, 1] and additively perturbed by noise 
distributed with density h(x), so x n + ~ = S(xn) + 4, P is given (3) by 

Pf(x) = f] h(x - S(y)) f(y)  dy (3) 

Markov operators may possess a stationary density f*. This density 
satisfies Pf* = f *  and may be associated with a state of thermodynamic 
equilibrium of a dynamical system. 

The evolution of densities under (3) characterizes P as well as the 
dynamical map (~ S. Three general behaviors may be displayed by the 
sequence {P~Co}. These are ergodicity, mixing, and exactness. In all 
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three cases the system possesses an invariant density f* .  However, the three 
behaviors differ in the way the sequence {P~fo} converges to f* .  

Of the three cases above, exactness implies the strongest form of 
convergence of {P~o}- Mathematically, a system is said to be exact (1) if 
and only if 

lim IP~fo-f*l  = 0 
l ~ o o  

for all initial densities fo. Exactness may be considered as the analogue of 
an approach to equilibrium from all initial preparations of a system. 

Mixing implies a weak form of convergence of {P~/o}. In particular, 
for any L ~176 function ~-, a system is mixing (1) if and only if 

p t  lim ( ~fo, f f  ) = ( f * ,  ~ - )  
l ~ o o  

for all initial densities fo- Mixing systems spread densities throughout the 
accessible phase space, as determined by the support o f f* .  

Ergodicity implies the weakest form of convergence of {Plfo}. For 
ergodic (1) systems 

1 ' i pn 
lim - y '  ( ~ f 0 , ~ g ) = ( f * , f f )  

t ~ o o  t n =  1 

for all fo e D and any L ~ function ~. 
Exactness implies mixing, which in turn implies ergodicity. However, 

ergodicity alone does not constrain the sequence {P~Co} to become 
asymptotically equal to f* .  

2. A S Y M P T O T I C  PERIODIC ITY  

Asymptotic periodicity is a type of density evolution that may be dis- 
played by one-dimensional maps by themselves (7) or under the influence of 
noise. Without loss of generality, the phase space of these maps will be 
taken as [0, 1]. For asymptotically periodic systems the sequence {P~Co} 
satisfies the Komornik spectral decomposition theorem (ref. 8, Theorem 1). 
This theorem states that for any initial density fo, 

r 

Pfo(x) = ~ 2,(fo) gi(x) + Qfo(x) (4) 
i=l 

where the functions gi form a sequence of r densities satisfying g i g / =  0 if 
i r  i, j =  1,..., r, so the supports of the g,. densities, denoted supp{gi}, are 
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disjoint. Also the gi satisfy Pgi= g~(i~, where ~(i) is a permutation on the 
numbers {1, 2,..., r}. For ergodic systems c~(i) must be a cyclic permuta- 
tion. (1) The scaling coefficients 2~(fo) are linear functionals of the initial 
density fo given by 

( ~  1 

2i(fo) =Jo Yi(x) fo(x) dx 

where {I1,.} is a sequence of L ~ functions. The symbol Q is called the 
transient operator, and satisfies HQ~forl--,0 as t--* oe. From (4) the tth 
iterate, P~o, may be written as 

PYo(x) = ~ 2i(fo ) g~,(,)(x) + Q~fo(x) (5) 
i ~ l  

Allowing the transient operator to decay and noting that the permutation 
:r is invertible, we may write 

r 

Ufo(x) = ~, ~ '(o(fo) g,(x) (6) 
i = l  

From (6), it is easy to verify that the (necessarily unique) invariant density 
of an ergodic asymptotically periodic system is given by 

1 r 

f * ( x ) = -  Z g,(x) (7) 
r i =  1 

Equation (6) describes a density evolution that is periodic in time. At 
a given time P~C o may be visualized as a linear combination of the basis 
states g~, each scaled by a weighting factor 2~ ,~)(fo). Since we are dealing 
with densities, the 2i(f0) must sum to 1. Each coefficient 2~(fo) gives a 
probabilistic measure of an asymptotically periodic system being in a basis 
state g~. Scaling of more than one basis state implies that the system has 
a probability of being in more than one basis state. When only one term 
is present in the sum of (6), the system will be found in one g~ state at any 
given time. 

A special case of the spectral decomposition theorem occurs when 
r = 1 in (4). In this situation the flow of densities approaches the invariant 
density of the system gl,  and {P~Co} is exact. Exactness in asymptotically 
periodic systems is also known as asymptotic stability. The transition from 
asymptotic periodicity to asymptotic stability in a noise-perturbed system 
will be the focus of the last section. 

Expectation values of a measurable quantity O at a time t are given 
by weighting O over the density P~o. It is clear from (6) that for 
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asymptotically periodic systems ( O )  will generally be periodic in time. The 
time dependence of the oscillation is found from (6) to be 

where 

r 

( o ) ( t ) =  S ,L-,r (8) 
i=1 

{ O(x) ),= f~pp{g,} O(x) gi(x) dx 

2.1. The Autocorre la t ion Function in 
Asymptot ical ly  Periodic Systems 

From the densities P~fo it is possible to calculate all nonequilibrium 
properties of the system represented by the map S. As an illustration, the 
time correlation function is calculated for asymptotically periodic systems 
using the properties of the decomposition (5) and (6). We assume that we 
are dealing with an ergodic asymptotically periodic system, so the permuta- 
tion ~(i) is cyclic, (I) i.e., c~( i )=( i+ l )  modr ,  where r is the number of 
elements in the sum of (5) or (6). 

Defining the autocorrelation function as R~x(~ ) -  (x,xt+~), the time 
correlation function is C(z)= R ~ ( z ) -  ( x )  2. The autocorrelation function 
can be written using the properties of the Markov operator as 

R~(z) = fj xP~(xf*(x) ) dx (9) 

From the invariant density (7) we have 

i=1 

Also, by (4) we may write P{xgi(x)} =2s(xg~)g~(,)(x)+ Q{xg~(x)}, where 
only one term appears since 

Hence, 

~ i ( x g i )  : fsupp{g,(x)} Z i ( x ) ( x g i ( x )  ) dx  (1 l) 

U { xgi(x) } = )~i(xgi) g~(i](x) + Q~ { xgi(x) } (12) 

Since Markov operators satisfy liUfol[ = IIfoll, and []Qt(f0)j[ ~ 0 as t--* Go, 
we have 

;~i(xg,) = <x), (13) 
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Substituting (13) into (12), using the definition (9) of the autocorrelation, 
and noting that 

' 1 
( x )  ~ ( x ) i  and ( x ) 2 = r E  (x) i  (x) j  (14) 

?' i = 1  i , j= l  

the time correlation function C(r) takes the form 

<x>.,,o <x>/+ (15) 
' =  "=  i = 1  

where the {,(r) are defined by 

l f0' ~(~) = r xQ~(xg,(x)) dx (16) 

By the properties of the transient operator Q the terms {~(~) --+ 0 as ~ --+ oo. 
The first term of (15) is periodic due to the cyclicity of the permuta- 

tion c~(i). To see this, recall that ~ ( i ) =  (i+z) rood r. Extract the j =  ( i+v) 
mod r term of the sum in the curly brackets of (15) and add it to single 
term (x)~w). The first term of (15) can then be rewritten as 

- ( x ) j  ( x ) ,  (17) 
r i = l  r j, jval + 

With the aid of the identity 
n - - 1  

E e2~ i ( ' n z ) /n=- -1  ( 1 8 )  

m = l  

where n and z are integers, with z nonzero, (17) can be written as 

1 ~ { 'j~__ [ r~ l  (2• im(i+r_j)) l  } 7 ( x ) j  exp - (x) i  (19) 
i = 1  1 1 r 

The sum (i+ z) in the exponent of (19) is understood to be modulo r. We 
make the substitution k = m + 1 in (19) and use the fact that e 2~i(lm~ 

e 2=i(vr), hence dropping the "modulo" notation. Also, we define the discrete 
frequencies oo/=Dz(j--1)/r. With these substitutions in (15) the time 
correlation function becomes 

where 

r 

m = 2  i = 1  

(20) 

~(oo,~,) =1 ~ (x)ee  '~ *) (21) 
r k = l  
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Note that with the substitution k = m + 1 in (19) the periodic part of (20) 
begins at m = 2. 

An interesting property of asymptotically periodic systems is evident 
from (20). Namely, the correlation C(v) function naturally decomposes into 
sustained periodic and decaying stochastic components. This decoupling of 
the time correlation function into two independent components can be 
understood as follows. Asymptotically periodic systems have r disjoint 
attracting regions of their phase space X whose union is given by 

r 

U supp{&} 
i = 1  

Each of the regions supp{gi} maps onto each other cyclically according to 
~(i). All ensembles of initial conditions will asymptotically map into these 
regions (i.e., all densities will decompose). Thus a time series will also visit 
these supports periodically, and we expect a periodic component in the 
time correlation function. However, iterates of the time series which return 
into any one of the supp{gi} are described by a density gi, and so there 
must exist a stochastic component of the correlation function [the second 
term of (20)]. This component is seen to decay to zero by (16). 

2.2. The Condit ional  Entropy for 
Asymptot ica l ly  Periodic Systems 

Assuming the existence of a density f describing the thermodynamic 
state of a system at a time t, Gibbs introduced the concept of the index of 
probability, given by - l og f (x ) .  Weighting the index of probability by the 
density f, he introduced what is now known as the Boltzmann-Gibbs 
entropy, given by 

H(f) = - I x f ( x )  log f(x) dx 

It can be shown (9'1~ that the Boltzmann-Gibbs entropy is the only (up to 
a multiplicative constant) entropy definition satisfying the property of 
being an extensive quantity, which a mathematical analog of the thermo- 
dynamic entropy should have. 

The Boltzmann-Gibbs entropy can be generalized by introducing the 
conditional entropy. If f and g are two densities such that s u p p f c  supp g, 
then the conditional entropy of the density f with respect to the density g 
is defined as 

1 r He(f[ g)=  --If(x)Jx log k g-(~_] dx (22) 
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Since Hc(fl g ) =  0 when f =  g, this implies that the conditional entropy is 
a measure of how close the states characterized by f and g are to each 
other. Moreover, using the Gibbs inequality, it can be shown (1) that the 
conditional entropy satisfies 

H~(fl g) <~ 0 (23) 

When dealing with asymptotically periodic systems the limiting condi- 
tional entropy takes on a particularly transparent form, clearly expressing 
that l i m , ~  Hc(P'folf*) is dependent on the initial preparation of the 
system through fo. To see this, use the invariant density (7) along with the 
asymptotic decomposition (6) and the orthogonality of the gi to obtain 

lim Hc(Ufolf* ) 
t ----~ c o  

r 

= ~ f_. 2~-~(~l(f~ g~(x)log[-r2=-~(o(fo) ] dx 
z ~ x  

r 

= ~ I_. [2~-'(o(fo) g~(x)]{l~ +log(r)} dx (24) 
i = 1  

Also, since the permutation ~(i) is invertible, we have 

r r 

2~-,(o(fo)= ~ 2,(fo ) (25) 
i = 1  i = I  

Thus, defining 

H ~ t c ( P ~ o l f * )  ~- lim Hc(Ufolf*) (26) 

we may reexpress the limiting conditional entropy as 

r 

H2(Ufol f*)  = - l o g ( r ) -  ~ 2i(fo)log 2i(fo) 
i = 1  

Noting that the 0 ~< ),i(fo)~< 1 for all i, we obtain 

- l o g ( r )  ~< H ~ (P~Co J f *  ) ~< 0 

(27) 

(28) 

When an initial density fo is localized over one of supp{gi}, then 
{P~o} will asymptotically cycle through the sequence {gi}. In this case 
there is only one component to the spectral decomposition (6) at any time 
t. According to (27), this situation is one of lowest conditional entropy and 
H~(Ufotfo ) = - log(r) .  Physically, this implies that the initial ensemble, 
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described by f0, will evolve through Ui supp{gi} in the most localized 
manner possible. At any time t, only a "pure state" gi is needed to describe 
the statistical properties of the system. In general any f0 whose support 
runs over the boundary of some gi will cause P~c 0 to decompose into a 
linear combination of several densities gi. At a time t the members of an 
ensemble are now less localized, and more information is required to deter- 
mine their distribution through the phase space. As a result, the conditional 
entropy of a linear combination of several densities g~ has a higher condi- 
tional entropy than a single pure state g~. 

Asymptotically periodic systems can also be shown to be irreversible. 
It has been shown (11) that if P is a Markov operator, then the conditional 
entropy must satisfy 

H~.(P~flf *) >~ H c ( f l f * )  (29) 

By the decomposition (5), the density sequence {P~/o} settles onto a 
periodic cycle after a sufficiently long transient. The rate at which the 
transient decays is controlled by the transient term Qfo in the expansion 
(5). Since IlQ~foll--,0 as t ~  o% the conditional entropy of asymptotically 
periodic systems increases uniformly to the limiting value given by (27), 
satisfying 

Age(Pro I f *  ) >~ 0 (30) 

where A denotes the temporal change in H C. In the special case when f0 is 
a linear combination of the states g~ there is no transient term in the expan- 
sion (5). In that case the equality in (30) holds. 

Equation (27) shows that the unique, limiting conditional entropy of 
an asymptotically periodic system settles down to a value uniquely deter- 
mined by the density of the initial preparation of the system, while the 
iterates Pf0 remain asymptotically periodic. This implies that all density 
states within the cycle to which {Pro} converges are of the same entropy 
with respect to the stationary density (7). 

3. N O I S E - I N D U C E D  A S Y M P T O T I C  P E R I O D I C I T Y  
IN THE  KEENER M A P  

We now turn to an explicit example of a stochastically perturbed 
dynamical system that displays asymptotic periodicity. This is the system 
(1), (2) and we restrict c~ to 0 < e <  1. Density evolution in this system is 
described by the Markov operator 

1 

Pf(x)  = [ f ( y ) { h ( x  - S1(y)) + h ( x -  S2(y)) } dx (31) 
Jo 
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where $1 and $2 describe the two branches of the map in (2). The support 
of the kernel K(x, y) in (31) is illustrated in Fig. 1. The width in the x 
direction of the support branches is 0, where 0 is such that 0 ~< ~ ~< 0 in (1). 
As the Markov operator (31) can been shown (1) to satisfy the conditions 
of asymptotic periodicity, the density P~r o of (31) can be spectrally decom- 
posed as a linear combination of a sequence of densities {g~}, i.e., 

Ufo(x) = L Z~'(i)(fo) gi(x) + Q' lJo(x) 
i = 1  

(32) 

In (32) the dependence of 2~t(i)(f0) and gi on 0 is implied. Hence, {P~'o} 
can be either asymptotically periodic ( r >  1) or stable (r = 1). It will be 
shown that a transition between the two behaviors can be induced by 
changes in the noise amplitude. Moreover, there will always exist one 
stationary density f *  for the operator (32), given by 

r 

f * ( x ) = -  X gi(x) 
f .  

z = l  

Y 

x-[3+l(~ ~ {  

1 -  - . . . . . . . . . . . . . . . . . . . . . . . .  1 - [ 3  

. . . . . .  

/i::/ 
- " . -  (~ 

~+[~-1 

~+ 3+0-1 

X 

Fig. 1. The support of the kernel K(x, y) of the integral equation (31). Note that its form is 
just the inverse of the map (2) with bands bounded by straight-line branches. The width of 
the bands in the x direction is 0. 
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which is the average of all the elements of the {g,} sequence. Unless 
otherwise stated, a stationary density refers to this f* .  

3.1. Support  Structure of the Sequence {P'fo} 

In this subsection we establish conditions by which to determine the 
regions on [0, 1] where P~fo in (31) [or (32)] is nonzero for a given noise 
amplitude 0. This region is called the support of PSro and is denoted by 
supp{PSro}. The support structure is diagrammatically represented in what 
is called a support bifurcation diagram. This is a figure illustrating where 
a density is nonzero, on the vertical axis, as a function of noise amplitude 
0 on the horizontal axis. In the limit t ~ o% and for a particular choice of 
fo defined below, the support bifurcation diagram of {P~o} converges to 
that of supp{f*} (or equivalently the union of the supports of the &). 

To assure that after a sufficiently long transient the supports of the 
{pgCo} will coincide with those o f f *  in (7), it is clear from (32) that all 
)oi(fo) must be nonzero. Thus we must have 

1 

,~,(fo) = fo Y~(x)fo(x) & > o 

Since the Yi are not identically equal to zero, an initial density entirely 
supported on the unit interval guarantees that 2i(f0) > 0 for all i. Thus, the 
densities {PgCo} will go to a limiting sequence that satisfies 

lim supp{P~f} = supp{f*} (33) 
t ~ o o  

where f *  denotes the stationary density (7). This is because the limit of the 
sequence {P~fo} and f *  are both nonzero on the supports of the gj. Thus, 
in order to map the attracting region of phase space on which the densities 
gi are supported, or equivalently the supports of the stationary density (7), 
one need only begin with an initial density fo satisfying 

supp{fo} = [0, 1] (34) 

There is yet another result that is useful in establishing the rate at 
which the support of PT"o converges to that o f f* .  For the operator (31) it 
is not difficult to show that if the supports of two successive densities, say 
P'~ and P'~C o, are identical, then all subsequent densities will have the 
same supports. Mathematically, if supp fo = [0, 1 ] and 

supp{P *~ lfo} = supp{P'~o} (35) 
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for some to and 0, then 

lim supp{P~ 'o}  = s u p p { P f ' ~  c} = supp{f*} 
l + O 0  

(36) 

Equation (36) may be used as follows. If the support bifurcation 
diagrams of Pr~ and U~'o overlap for certain values of 0, then these 
regions remain "frozen" for all later times. For these values of 0 we say 
that the attracting region of phase space (the union of the gi) has been 
established by the t0th iteration. 

3.2. An Algorithm for Obtaining supp{Ptfo} 

Figure 1 schematically depicts the domain of the kernel K(x, y) of (31) 
for uniform noise distributed on [0, 0]. It is clear that supp{P~} is 
obtained from supp{U-~f}  by allowing the former to play the role o f f ( y )  
in (31), intersecting the domain of the y variable with the domain of 
K(x, y), and retaining the x projection of this resulting set. Hence, from the 
diagram any initial density supported on a subset [a, b] of [0, 1] will 
iterate, under (31), into a density whose supports are in 

(L u U) m [0, 1 ] (37) 

where the two sets L and U are defined by 

L =  Ec~a + / 3 -  1, ~b+~+O- 1] 

and 

u =  D a + P , ~ b + / ~ + 0 ]  

respectively, and the splitting is induced by the modulo operator. The two 
sets L and U originate due to the intersection of [a, b] with the unbounded 
domain between the two pairs of lines defining the boundaries of K(x, y) 
in (31). The intersection of L w U with [0, 1] ensures that the resulting 
supports lie inside the unit interval. Note that the two component sets of 
(37) are shifted from each other by - 1. Thus, we define L as the lower set 
and the second set U as the upper set. 

As an example, consider an initial density fo entirely supported on 
[0, 1 ]. After one iteration a new density f l  emerges whose supports for a 
given 0 are given by 

supp{fj } = [0, min(f l+ 0 +c~-  1, 1)]w [max(fl, 1), 1] (38) 
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The support bifurcation diagram of (38) can be viewed as the support of 
f0 with a removed wedge defined by 

Thus, 

A l l  = F/~ -}- 0"~- ~ - -  1, l ]  (39) 

supp{f,  } = supp{PJo} = supp{fo} c~ A'~, (40) 

where c denotes the set complement. Allowing (40) to become the domain 
o f f (y )  in (31), a second density f2 emerges whose supports are given as the 
supports off1 intersected with the complement of the union of the wedge- 
shaped sets, 

A21E(fi + O)(c~ + 1 ) - ~ -  1, (c~+ 1 ) f l -  1] (41) 

and 

A22E(fl+ 0)(~ + I)-+- ~(c~- 1), (ce-t- 1)fl] (42) 

Thus, 

supp{p2Jo} = supp{Pfl} n (A21 u A22) c (43) 

Continuing in this fashion produces, via (37), an algorithm by which 
the support structure of the tth density in the sequence {P~f0} is obtained. 
To find a general expression of these supports as a function of time is a for- 
midable task, as it is extremely sensitive to the choice of parameters fl and 
~. As an example of this sensitivity, Figs. 2 and 3 illustrate the support 

supp { Pf0(x) } 

1.0 

0.7 :i:i:i:i:i:i:i:i:i:i:i:!:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i 
- - ~  ::iii!!!!ii!iii!i!i!!!i!!iiii! 

031 
~+~+o-1 ~ ::::::::::::::::::::::::::::: 

~ - i + : : :  : : :+:; : : : : : : : :  : ~ 0 
0.0 0.3 0.7 1.0 

Fig. 2. The support bifurcation diagram of supp{Pfo} when supp{fo} = [0, 1]. The dotted 
area is the region of support. 



Asymptotic Periodicity 599 

supp { P2fo(x) } 
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Fig. 3. (a) The support bifurcation diagram of supp{Pfo} for fl< l/(c~+ 1). (b)supp{Pf0 } 
for f l>  1/(c~+ 1). Note the sensitivity of bifurcations of supp{P~o} to the choice of ft. The 
dotted area is the region of support. 

bifurcation sets of Pro and P 2 f  o, respectively. In Fig. 2, fl = 1/(c~ + 1). In 
Fig. 3a, fi is slightly less than 1/(c~ + 1). In Fig. 3b, fl is slightly greater than 
1/(~ + 1). 

3.3. The Supports of f*  for I ~= l / (om+  . . . 1 )  

Using the procedure developed in the last subsection, it is possible to 

derive an analytic expression defining the supports  of the union of the g, 
densities when 

1 / )  m =  1, 2,... (44) P=~m+ . . .  + 1 '  
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This choice of fl corresponds to period-(m + 1) solutions of the noise-free 
map (2). The addition of noise to (2) with fl as in (44) will transform the 
attracting region of phase space from a sequence of points to a sequence of 
bands, destroying any predictability related to trajectories of the system 
(1). However, we will show that the flow of densities does become 
asymptotically periodic, restoring exact predictability in the statistical 
sense. 

Starting with an initial density satisfying s u p p { f o } = [ 0 ,  l ]  and 
applying (37) repeatedly, the supports of f *  with fl as in (44) can be 
shown (~2) to be 

s u p p { f * } =  1 - ~  1--~m+X 

( [ 0 ,  f l+O+~:-- 1] w H(o:, fl, m +  1), 

where 

0 <~ 0 <~ Ocri~(m + 1 ) 

0crit(m + 1 ) < 0 ~  1 

(45) 

H*(e~ f l )= fl 7k, i ~  - 1 _ _ ~ r n + l  (46) 
i = 0  k ~ 0  

+ e~+2-:~i+~ 1 (47) 

and 

H(o~,fl, m + l ) = i =  ~ ~k fl,\~=oCZk (fl+O) 

while 

0crit(m + 1) -= (48) 
0~m"~ ' ' "  +1  

It is straightforward to show that (45) remains invariant under one 
iteration using (37). 

Figures 4a~4c show the evolution of supp{P~fo} to the set (45) when 
m = l .  The solid lines in Fig. 4c depict supp{f*}.  The line 0=0orit(2) 
divides 0 space into two parts. For 0 ~< 0 ~< 0crit(2) it can be shown that den- 
sity evolution becomes asymptotically periodic with period two, with the 
two dotted regions corresponding to the supports of the two gi densities in 
(32). To the right of 0crit(2) density evolution becomes asymptotically 
stable. In this region the dotted areas, even when disjoint for some values 
of 0, correspond to the support of one invariant density f* .  
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Fig. 4. The  evolut ion  of s u p p { P f 0  } for 0 ~ 0crit(2), when  fi = l/(c~ + 1 ), :~ = 1/2. (b) The  first 
s appor t  of  par t  (a) is modified.  ( c ) T h e  second suppor t  of par t  (a) is modified.  This  process 
cont inues  cyclically. The  dot ted area is the asympto t i c  region of suppor t .  
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supp{ f*(x)  } 

1.0 

0.5 

0.0 
0.0 
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 

0.3 

-(2) 

y 0 

Fig. 5. The support structure of l i m , ~  supp{PJo }. For 0 ~< 0crit(4) the limiting support 
structure is given by (45), where supp{f0} = [0, 1] is assumed. The dotted area is the region 
of support. 
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Figure 5 illustrates the set (45) outlining the invariant density (or the 
support of the union of the gi) when m = 3. Analogous statements to those 
made above can be said concerning density evolution to the left and right 
of 0crit(4). 

3.4. A s y m p t o t i c  Per iodic i ty  for  0 ~< 0crit(m -I- 1 ) 

When showing that the set (45) remains invariant under one applica- 
tion of (37), we also discover that for O<~Ocrit(m+ 1) the (m+ 1) com- 

(a)  r / r  

8 ' ~  " 
5.3 

2.7 

0.0 

s.ot f~yo(x) 

5 ' 3 t / ~  

2.7 

0.0 I 
0.0 0.3 

S.Ot f % ( X )  

5"3 t 

0.0 0.3 

1.8 1.0 

0.0. . - 0.0 
0.o 0.5 1.o (b) ~ pSlfo(X ) 0.0 0.5 1.0 

14.0~ 

/? 4.7 
/% 

I 0.0 i , ,~ 

14"01 eSZf~ 

4.7 

i /  ~ j  0.0 , /-~ , 
0.7 1.0 

P83f~ 

14.0~ 
9 . 3 ~  
4.7 

' ' ~ X 0.0 A / '~  /-~1 
0.7 1.0 

14'0 t p8410(X) 

4.7 

0.0 I / \ l  ~ X 
0.0 0,3 0.7 1.0 

Fig. 6. The emergence of period-two and period-three noise-induced asymptotic periodicity 
at the onset points (a) 0~ri~(2 ), fl = 1/(c~ + 1 ), 7 = 1/2 and (b) 0~rit(3), fi = 1/(cd + c~ + 1 ), c~ = 1/2. 
(a) A transient of 30 densities has been discarded, and P31fo , p32fo , p33Jo are shown. Since 
P31fo = P33fo, the sequence {P~Co} repeats with period two. The initial density, shown in the 
inset, was uniform over [0.4, 0.7]. (b) A transient of 80 densities has been discarded and P81fo 
through Psgf0 are shown. Since PSlfo = ps4jo, the sequence {P~0} repeats with period three. 
The initial density, shown in the inset, is uniform on [0.3, 0.9]. 

822/63/3 -4-12 
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ponents of (45) map onto each other in a cyclic fashion. In other words, 
the first set maps exactly onto the second, the second exactly onto the 
third,..., and the (rn+ 1)th exactly onto the first. Since (31) possesses a 
spectral decomposition, we therefore conclude that each of these (m + 1) 
components of (45), in the 0 range specified, is the domain of one of the 
( r e + l )  gi densities in (31). Thus, the sequence {P~fo} will become 
asymptotically periodic with period (m + 1) for 0 ~ Oom(m + 1 ). 

Figure 6a numerically illustrates period-two noise-induced asymptotic 
periodicity of the sequence {P~Co} with fo uniform on [0.4, 0.7] with 
0 = 0orit(2). Note that both gl and g2 are present in the decomposition (32), 
but weighted differently. Figure 6b illustrates period-three noise-induced 
asymptotic periodicity with 0 =  0crit(3) and with the initial density chosen 
uniform on [0.3, 0.9]. Note that at any given time the largest contribution 
to the probability density P~c o comes from one of the gi densities, with 
some small contribution from the other two. 

The fraction of an initial ensemble, distributed according to fo, that 
settles onto the supports of the densities gi represents 2~(f0) of the spectral 
decomposition (32). Also, it can be shown ~ that iterates of the sequence 
{P~o} decompose into the ( m + l )  supports defined by (45) by the 
(m + 1)th iteration. When 

1 
- fi--c~m+c~m-l+ .-. + e + l  and O~Ocrit(m-t-1 ) (49) 

we thus have 

)ti(fo) = f~ pm+Ifo(x) dx, i =  1, 2,..., m + 1 (50) 
upp~ 

where supp i is the boundary defined by (45). 
Equation (50) is easily obtained for the period-two case, when m = i. 

Using the explicit form of the operator (31), we have 

ff m i n [ 1 , ( x - - / 3 +  l ) / a ]  fo(Y) dy, 

Pf~ = ~ ~(~' ~)/~ fo(Y) dy, 
\ ~ min[O, ( x - / ~  0)/~] 

O ~ x ~ e + f l + O - 1  

~ x ~ l  

(51) 

When 0 ~< 0crit(2), the functions in (51), after an infinite number of (even) 
oscillations, will become 21(f0 ) gl and )L2(fo ) g2, respectively. The domains 
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of (51) are the supports of the two g~ densities. Thus, integrating (51) over 
their respective domains yields the scaling coefficients 2~(fo): 

fc~+fl+O--1 fmin[1,(x--fl+l)/e] 
"~l(f~ = "o O(x-r o+1)/~ f~  d y d x  

(52) 

= fo(Y) dy dx 
& ( f o )  ~ 0~/~ 

The dependence of the asymptotic evolution of {P~Co} on )Co, with 
fi = 1/(c~ + 1), c~ = 1/2, and 0 = 0.14 < 0cr~t(2), is shown numerically for three 
choices of initial density fo in Fig. 7. In Fig. 7a the asymptotic sequence 
{P~fo} "bounces" between gl and g2, while in Figs. 7b and 7c the period- 
two asymptotic decomposition involves both g~ and g2. Note that although 
the initial densities in Figs. 7b and 7c are supported on [0.2, 0.6], the 
associated scaling coefficients Zl(fo) and 22(fo) are different in each case. 

(a) 

P41fo(x) 
12.0 
8.0 
4.0 
0.0 

12.04.0S.0 I ~  fo(x) 

0.0 

e43fo(x) 
12.0 
8.0 
4.0 

0"00.0 0:.3 

Fig. 7. 

6.0 (b) 3.0 (e) 6.3 

3.0~ 1 . 5 t ~  32t ~ 
0.0 , 0.0 " 010 - 

0.0 0.5 1".0 0.0 0.5 1.0 0.0 0.5 1.0 

P41fo(x) I / ~  f~ 
12.0 ~- 12.0 

4.0 4.0 
i 0 . 0  i 0 . 0  I 

p42fo(X) I / ~  fo(X) 
12.0 t 12.0 

8.0 t ~  8.0 
4.0 4.O 

i 0 . 0  / ' - N  i 0.0 / - ~  I 

t P43fo(X) ~ p93fo(x) 
12.0 12.0 t 

4.0 4.0 / / ~  
: : ~ - x  0 . 0  : ~ x  0 . 0  i i i ~ - x  

0.7 1.0 0.0 0.3 0.7 1.0 0.0 0.3 0.7 1.0 

Numerical simulations of period-two noise-induced asymptotic periodicity of P~fo for 
three initial densities fo. In all parts,/? = 1/(c~ +l), c~ = 1/2, and 0 = 0.14 < 0crJt(2 ). (a, b)Forty 
transient densities have been discarded and the iterates P4~fo, p42Jo , p43Jo are shown. Since 
p4Ifo=p43fo , the sequence {Pro} repeats with period two. (c)Ninety transients have been 
discarded and p91jo = p93fo. In parts (a) and (b) the initial densities fo, shown in the insets, 
are uniform over [0, 0.2] and [0.2, 0.6], respectively, while in part (c), fo(x) = 12.5(x-0.2) 
for x~ [0.2, 0.6]. 
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Figure 8 illustrates period-three asymptotic periodicity in the evolution 
of the sequence {P~ro}. Now fl= 1/(c~2+e+ 1), c~= 1/2, and 0=0 .068<  
0crit(3 ). Each figure corresponds to a different initial density fo -Note  how 
a slight change in )Co changes the number of scaling coefficients 2i(fo), 
i=  1, 2, 3, in the period-three asymptotic decomposition of {P~fo}- 

3.5, Transi t ion to A s y m p t o t i c  S tab i l i ty  for  0 > Ocri t (m 4" 1 ) 

To now, asymptotic periodicity has only been considered for values of 

0 ~ 0crit(m + 1 ) and fi - 
~"*+ ... +1 
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Numerical simulation of period-three noise-induced asymptotic periodicity of P~c o for 
three initial densities )co. In all three parts, /3 = 1/(cd + c~ + 1 ), c~ = 1/2, and 0 = 0~068 < 0orit(3 ). 
(a, b)Sixty transients have been thrown out, showing P61f  o, p62fo, p63fo, and p64f o. Since 
P6~fo = P64fo , the sequence {P~fo} repeats with period three. (c) A transient of 80 densities has 
been discarded and PS~fo = P84fo. The initial densities fo for parts (a) and (b) are uniform on 
[0.6, 0.7] and [0.2, 0.6], respectively, and in part (c), f o ( x )  = (50/9)(x- 0.2) for x E [0.2, 0.8]. 
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What about the evolution of P~f0 above 0crit(m + 1). q For 0 > 0crit(m-t-1), 
mixing of an ensemble of initial conditions will take place. For 
0 > 0crit(m + 1), all initial density states will evolve to one unique stationary 
density. Thus, from the considerations of Section 1 the operator (31), in 
this 0 range, is exact or asymptotically stable. The transition from 
asymptotic periodicity to asymptotic stability when O>Ocrit(m+ 1) is 
proved first for the case when m = 1. 

T h e o r e m  1. Consider the system (1), (2) with /3=1/(c~+1) and 
0 > c~(1 -c~)/(c~ + 1). l f fo  is an initial density, then the sequence of iterates 
{P~Co} of the Markov operator (31) is asymptotically stable or exact. 

Proof. By (45), the attracting region of phase space for 0 > 0crit(2) is 
given by 

E0, fl+O+c~- 1] ~ [fl, 1] (53) 

Suppose fo is supported on (53). If not, then iterate once so Pfo will be 
supported on (53). Next, partition the subset of [0, 1] defined by (53) as 

where 

Si=(0,/~+0+c~- 1) 

and 

s;~(~,  1) 

Here Si ~ Sj = ~ if i r j and S; c~ Sj = ~5 if i ~ j. Since Markov operators 
are linear, let us consider first just one component offo (or Pfo) supported 
on Sk or S~,. Say (without loss of generality) that it is S k = (ao, b0). We 
wish first to show that the restriction offo to Sk, written asf'o=folsk(X), 
will eventually spread out to fill the entire attracting region of phase space 
given by (53). 

Iterate f ;  twice, via (37), keeping only that part of P2f'o which returns 
to the set (0, fl + 0 + c~ - 1). Then iterate this remainder twice more, again 
retaining only that part in the set (0,/? + 0 + c~ - 1), etc. By continuing this 
procedure and considering the times t=2n, n =  1, 2, 3,..., some algebra 
yields 

supp{P2nf~} = [max(0, q,), min(c~ + fi + 0 -  1, q2)] (54) 
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where 
2 n - - ,  n - - I  

k = O  k ~ O  

2n 1 n--  1 

qa=e2"bo+( /?+O) ~ e k _  ~. e2k 
k = O  k = O  

Taking the limit n ~ o% (54) becomes 

(55) 

lim supp { P2~f'o } = I O, min ( fl + O + a -1,  ~+o 1 )]  (56) 
1 - :~ 1 ~2 

Similarly, when t = 2n + 1, n = 1, 2, 3 ..... 

supp{p2"+~f;} = [max(/~, q3), rain(l, q4)] (57) 

where now 

Thus, 

2n n--  1 

lao+/~ 2 - :x  X q3 = O~2n + ~k  ~2k 

k = O  k = O  

2n n--  1 

q4=~"+%+(/~+0) F~ cr Z ~2~ 
k ~ O  k = O  

(58) 

n~lim supp{p2~+lf'o}=[~,min(i, fl+Ol_e 1--c~ 2c~ ) ]  (59) 

N o w ,  f o r  0 > 0 c r i t ( 2 ) ,  ( 5 6 )  a d  (59), respectively, satisfy 

fl+O 1 

and 
/?+0 

>1 

Thus there must exist an even integer Mo such that 

supp{PM~C;} = [0, fl + 0 + ~ - 1 ~ (60) 

Iterating (60) once more via (37) and retaining both the upper (U) and 
lower (L) sets that emerge gives 

pMo+%= EO, ~] u Eb', 11 
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where e < fi + 0 + ~ + 1. Allowing [0, e] to play the role of [ao, b0] above, 
eventually [0, e] (after an infinite number of even iterations) will spread 
over the entire interval [0, fi + 0 + ~ - 1 ]. Thus, 

lim supp{P2~PM~C;} = (0, fl + 0 + ~ -- 1) v (fl, 1) 

and so the restriction off0 to S~ spreads out fill the attracting domain of 
f *  given by (53). Since Sk was an arbitrary component of a density on 
E0, 1 ], any component of an initial density will spread to cover the whole 
attracting part of the phase space when 0 > 0or~t(2), i.e., 

lim supp { P %  } = (0, fl + 0 + c~ - 1 ) w (fi, 1 ) 
t ~ o : ?  

(61) 

for n>No(fo), where No(fo) is some integer and foED. Lasota and 
Mackey (ref. 3, Theorem 5.6.1) have shown that if condition (61) holds for 
operators like (31), then the iterates {P~f0 } will be asymptotically stable for 
all fo ~ D. This completes the proof. | 

A generalization of the proof of Theorem 1 can be extended to the case 
when 

1 

~m+ ... +1 

and 

0 > 0crit(m -Jr- 1 ) 

The idea is to begin with an initial density supported on the supports of the 
attracting region of phase space, given by (45), with t = m  + 1. If this is 
not the case, then we just iterate (m+  1) times and then P"+lfo will be 
supported on the attracting region. Then, by algebra similar to that used 
in the proof of the case m = 1, it is demonstrated that any subinterval of an 
initial density will fill up all of the attracting region of phase space given 
by (45). This condition again suffices to cause P~/o to converge strongly to 
f *  for 0>0cr i t (m+ 1). 

The origin of this transition to asymptotic stability above the critical 
onset value 0crit(m + 1) is the nonlinearity induced by the modulo operator 
of the map (2). The fl values (44) give rise to period-(m + 1) solutions when 
0=0 .  However, the addition of noise destroys this periodic condition, 
giving rise to a noisy periodicity if the noise amplitude is low enough. The 
kernel of (31) is nothing more than the inverse of the map (2) with bands 
rather than lines. Hence, when 0 ~< O<~Ocr~,(m + 1), a point in this noisy 
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orbit will jump from one band of (53) to another with probability one, 
although the motion within any one of these bands is completely 
stochastic. We saw that an ensemble (density) of initial conditions evolving 
in such a manner gave rise to asymptotic periodicity of the sequence 
{P)C0}. The stochasticity within each of these bands is entirely determined 
in terms of the statistical properties of the densities gi. When 
O>O~it(m+l), however, a noisy orbit in the mth band has a finite 
probability of jumping to either the (m + 1)th band or back into the first 
band. This is because of the modulo operation in (2), coupled with the fact 
that the maximum noise amplitude 0 > 0~it(m + 1) can cause a trajectory to 

2.~ l 12.~ 1 
1.0 ~ ~ ~i~ ~i~ii~,~g~, ~j~ 6 . 0 ~  

P~fo(x) o.o 0.5 1.o p7nfo(x) o.o o15 11o 
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20f  
0.0 

0.0 0.3 0.7 1.0 
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2.0 J ~  

0.0 
0.0 0.3 0.7 1.0 

Fig. 9. Numerical illustration of the strong convergence of P~/o to a stationary density f *  for 
two choices offo. In both parts /~ = 1/(c~ + 1), e = 1/2, and 0 = 0.24 > 0c~i~(2), and a transient 
of 75 iterations has been discarded. Note in both parts that PV6fo - p V T f o .  The initial densities 
f0 were uniform on [0, 1 ] for part (a) and fo(x)= 50x for x ~ [0, 0:2] for part (b). 
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overshoot x = 1. This effect will eventually mix an ensemble of initial condi- 
tions throughout the attracting region of phase space given by (45). As a 
result, {P~Co} settles toward an asymptotically stable invariant density. It is 
for this reason that we say that each of the components of (45), with 
t = rn + 1, is in fact part of one density g~, 0 > 0crit(m + 1 ). 

Figure 9 numerically illustrates asymptotic stability of P~o to f *  when 
0=0.24>0crit(2) ,  f l=  1/(c~+ 1), and c~= 1/2 for two choices of initial 
density )Co- In Figs. 10a and 10b asymptotic stability of {P~/o} to f *  is 
illustrated for 0 = 0.14 > 0crit(3), fl = 1 / ( ~  2 + 0~ + 1),  and c~ = 1/2. Once more 
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fl = 1/(~ 2 -k ~ + 1), C~ = 1/2, 0 = 0.14 > 0crit(3 ). (a) A transient of length 70 iterations has been 
discarded showing/971fo = p72f0 , where f0 is uniform on [0, 1]. (b)After 100 transients have 
been discarded, P~~ = P~~ The initial density was fo(x)- 50x on [0, 0.2]. 
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4. S U M M A R Y  

We have considered the flow of densities P~o under the action of the 
map (2) stochastically perturbed by noise. The evolution of the supports of 
the densities P~C 0 were studied, giving a general algorithm for obtaining 
supp{P%}. Analytic expressions for supp{p~Co} and supp{f*} can be 
obtained when /~ is such that the noise-free map (2) has period-(m+ 1) 
solutions. For these values of/~, the iterates PTo of the Markov operator 
(31) were shown to be asymptotically periodic over a restricted region of 
0 space and asymptotically stable over another. The states of a periodic 
cycle show a clear dependence on the initial density fo with which the 
system is prepared. In the stable regime, however, P~f0 strongly converges 
toward f *  independent of fo. Also, when P~fa is asymptotically periodic, 
the periodicity of these phase space averages is of the same time scale over 
which the states P~fo vary. For 0 in the asymptotically stable range, all 
periodic variations die out as P~fo approaches the equilibrium density f*.  

The noise-induced transition between asymptotic periodicity to 
asymptotic stability, as 0 is varied, is also discussed. The transition can be 
associated with a switch from several multiply coexisting equilibrium states 
in P~'o to one globally stable state f*.  Since the states P~; were assumed 
to represent thermodynamic states of a dynamical system, the transition 
would therefore mirror a change from periodic to stable properties of 
macroscopic observables for the system described by (1). 

An interesting feature to be noted is that the periodic and stable 
dynamics of P~Co are brought about by the addition of noise to the system 
(2). A noisy orbit or trajectory cannot yield precise information about the 
future evolution of a system. However, the density sequence {P~Co} can 
yield this information in the form of phase space averages. 
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