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A B S T R A C T  

To address the possibility that proliferative disorders may originate from interac- 
tions between multiple populations of proliferating and maturing cells, we formulate a 
model for this process as a set of coupled nonlinear first order partial differential equa- 
tions. Using recent results for the asymptotic behaviour of the solutions to this model, 
we demonstrate that there exists a region of coupling coefficients, maturation rates, 
and proliferation rates that will guarantee the stable coexistence of coupled cellular 
populations. The analysis shows that increases in the coupling between populations 
may ultimately lead to a loss of stability. Furthermore, the analysis indicates that 
increases (decreases) in the maturation and/or  proliferation rates above (below) crit- 
ical levels will lead either to instability in the populations or the destruction of one 
population and the persistence of the other. 

K e y w o r d s .  Hematological diseases, first order partial differential equations, stability 

1. I N T R O D U C T I O N  

Hematological diseases have long served as model systems for the study of pro- 
liferative disorders in many tissues. Historically, this can be traced to the fact that 
it is relatively easy to monitor the number of mature end stage hematological cells, 
and as a consequence much information is available about the dynamics of these cells. 
Furthermore, because of the relative ease with which hematological systems may be 
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manipulated in vivo and studied in vitro there has been an explosive expansion in our 
knowledge of these systems (Metcalf, 1988). 

In spite of the obvious differences at a functional level between various cell types, 
it has always been the hope that better understanding of the processes of differentia- 
tion, proliferation, and maturation within the hematological cell lines will give general 
precepts that can be exported to aid in the understanding of other tissue dynam- 
ics. Previous efforts to understand the dynamic origin of proliferative hematological 
disorders have focused either on destabilization of the control of pluripotential stem 
cell numbers (Mackey, 1978, 1979), or on the destabilization of a peripheral control 
loop (King-Smith & Morley, 1970 and Schmitz et al. 1989 are representative). These 
modeling studies (Milton & Mackey, 1989) have concentrated on the control of prolif- 
erative dynamics in these populations, and the appropriate models are usually framed 
as nonlinear differential or differentiM-delay equations (see Mackey & Milton, 1990 for 
a recent review). While there are formidable problems associated with the study of 
these equations, there are at least results giving necessary and sufficient conditions for 
the local stability of steady states. 

However, there is evidence (see the next section) that there are significant in- 
teractions between various subpopulations of stem cells that ultimately give rise to 
mature circulating erythrocytes and white blood cells. This raises the alternative pos- 
sibility that hematological diseases might occur because of a loss of stability in these 
interacting committed stem cell compartments in which there are powerful nonlinear 
interactions between cells that are both proliferating and maturing simultaneously. In 
this situation modeling problems change dramatically, because the mathematical mod- 
els are most appropriately framed as nonlinear systems of first order partial differential 
equations. For partial differential equations appropriate for these problems, few stabil- 
ity results are available. This stems from the fact that in biologically realistic models 
the velocity of maturation is often estimated to be zero in the least mature cells of a 
given cell line. However, the results of Lasota (1981) and Brunowsk~ (1983) offer some 
insight into the stability of equilibria of single cellular populations under this condition. 

In this paper (section 2) we formulate a general model for the behaviour of multiple 
cellular populations undergoing both maturation and proliferation and coupled through 
the mutual interdependence of their proliferative activities. Though our considerations 
are general, our formulation of this problem is guided throughout by the known dynamic 
behaviors of various hematopoietic cell lines. 

Loskot (1991) has given sufficient conditions for the local asymptotic stability of 
equilibria of coupled partial differential equations. These are presented in section 3 
for our model, specialized to two coupled populations. In section 4 we use his results 
to examine the role of various biologically meaningful parameters in guaranteeing this 
stability condition. We show that bounds on maturation rates are just as important 
for the stability as bounds for the proliferation rates. 

2. T I t E  M O D E L  

2.1. Phys io log ica l  cons ide ra t i ons  

The mammalian hematopoietic system, with its diversity of cell types, regulators, 
and kinetic behaviors, offers an ideal biological model with which the considerations of 
this paper can be motivated. 



It is generally accepted that there is a population of pluripotential stem cells 
(PPSC) within the bone marrow that give rise to primitive stem cells committed to 
the production of erythrocytes, platelets, white blood cells, and lymphocytes. The 
committed stem cells for the erythroid series (CSC-E) are assayed in vitro by the 
primitive and mature burst forming units (BFU-E) and colony forming units (CFU-E). 
The committed stem cells for the white blood cells (CSC-G) have the colony forming 
units/granulocyte-macrophage (CFU-C) as their in vitro analogs (Quesenberry and 
Levitt, 1979). 

Within the erythroid system there is a well established long range negative feed- 
back humoral control mediated by erythropoietin. A fall in the number of circulating 
red blood cells is followed by a decrease in tissue p02 levels. This, in turn, stimulates 
the production and release of renal erythropoietin whose action is to increase the flux of 
cells from the PPSC into the CSC-E and/or the proliferative rate within the CSC-E. A 
similar control mechanism, mediated by the putative regulator granulopoietin (whose 
in vitro analog is colony stimulating factor, CSF), operates for the white blood cells. 

In addition to these long range control mechanisms there seem to be local regu- 
latory mechanisms over the proliferative rates within the PPSC, the CSC-E, and the 
CSC-G such that the proliferative rate is maximal at low cell numbers and monotoni- 
cally decreases as cell numbers rise. 

There is a host of in vivo data whose most conservative interpretation is that 
there exist significant interactions between the committed erythroid and granulocytic 
stem cells as well as the committed stem cells for the lymphocytes and ptatelets. 

One piece of evidence comes from the secondary compensatory changes observed 
in white blood cells and their precursors in the presence of hypoxia and hyperoxia 
(Brookoff gz Weiss, 1982; Iscove, 1977; Metcalf, 1969; Peschle et al. 1977; Smith 
et al. 1980a,b). Under experimental maneuvers expected to increase (decrease) the 
erythropoietin drive to the CSC-E, there is an accompanying decrease (increase) in 
the number of circulating white blood cells as well as their primitive precursors. This 
would indicate that an increased (decreased) proliferative activity in one population 
gives rise to a decreased (increased) proliferative activity in another. 

There is strong in vitro evidence that this coupling of proliferative activity be- 
tween cell populations is mediated by cell numbers. Van Zant and Goldwasser (1979) 
have shown that there are strong competitive interactions between erythropoietin and 
CSF in their actions on erythroid and neutrophil colonies growing in the same environ- 
ment. Increased EPO (CSF) levels at constant CSF (EPO) concentrations lead to an 
increased erythroid (neutrophil) proliferation and a decreased neutrophil (erythroid) 
proliferation. These effects increase as cell population numbers increase, thus implying 
that there exists some sensing mechanism in each population that is responsive t<) the 
numbers of cells in other proliferative populations. 

2.2. T h e  m o d e l  

From the comments of the previous section we may now turn to a mathematical 
formulation of our model of coupled cellular populations. A similar model for a single 
cellular population has previously appeared (Lasota et al., 1981). 

We characterize every cell of the population by two internal variables: a, the age 
of the cell in the celt cycle, and m, the maturation level of the cell. At birth, cells 



have age a = 0 and their  age increases with a velocity Vo until  cell division occurs 
at age a = at).  In te rms of ma tu ra t ion ,  cells are assumed to first become identifiable 
members  of the popula t ion  under  considerat ion at a ma tu r a t i on  level m = m0. These 
cells ma tu re  at a velocity V,,, until they reach the ma tu ra t ion  level m = rnl of a 
total ly  ma tu re  cell. During this entire process of ma tu ra t ion ,  the cells proliferate. It is 
impor t an t  to emphasize  that  this process explicit ly allows cellular movement  through 
the cell cycle to proceed hand in hand  with cellular matura t ion .  The sufficiency of this 
hypothesis  to explain existing hematopoie t ic  cell kinetic da ta  has been demons t ra ted  
by Mackey and Dgrmer  (1982). 

For the i ~h popula t ion  of cells, we denote the number  of cells of age a and mat-  
ura t ion level m at t ime t by ni( t ,m,a) .  By our above descript ion of the assumed 
progression of cells through the age-  ma tu ra t i on  space, ni(t, m, a) must satisfy a con- 
t inui ty equat ion of the form 

o~ o(v;,~) o(v;,.,~d 
+ + ' - - 0  (1) 

Ot Om Oa 

along with the mitot ic  condit ion 

v,,,(t,m, 0)hi(t, m, 0) =- 2v,,~(t,.~, a~)ni ( t ,m,  aD). (2) 

At any given t ime t and ma tu ra t i on  level m the total  number  of cells of all ages is 
s imply 

~ a l )  

Ni( t ,m)  -- n i ( t ,m,a)  da. (3) 

If the velocity of ma tu ra t ion ,  Vm~, is independent  of cellular posit ion within the cell 
cycle, then equat ion (1) may  be in tegra ted  over cellular age a and the result combined 
with (2) and (3) to yield a corresponding continuity equation for Ni: 

ONi ONi [ OV, n ] 
0~/~ + V;,,, 0.~ - p ~ ( t , . ~ , N ) -  2 3  N~. (4) 

In (4), the relative proliferation rate pi is defined by 

vo~(~, m, ~.)~(~,m, ~ )  
pi(t,m,N) = Ni(t,m) 

The vector N = (Ni) is included in the argument  of the relative proliferation rate  p; 
because it is through the dependence of pi on the numbers  Nj tha t  coupling is achieved. 

From the exper imenta l  evidence summarized  in the previous section, if we had 
two popula t ions  of in teract ing cells then an expansion in the numbers  N1 of cells in 
popula t ion  1 would lead to a decrease in the proliferative rate  of popula t ion  2, and 
vice versa. Fur thermore ,  in terms of the au toregula tory  control of a given populat ion 
by itself, it is a common observat ion (Mackey, 1978; Mackey & Milton, 1990) that  
within a popula t ion  the relative proliferative ra te  is a monotone  decreasing function 
of the number  of cells in the populat ion.  Both of these exper imenta l  observat ions are 
cap tured  by making  the specific assumpt ion  tha t  the profiferative act ivi ty in the i th 
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popula t ion  of cells is a monotone  decreasing function of some weighted average of all 
cell types.  Thus,  we assume that  

p i ( t , m , N )  = u i (m)  i (rn) 

0;: ~ (rn) + j B i j ( r n ) N  2 
(5) 

where the Bij a r e  weighting coefficients. 
In this paper  we assume that  the ma tu r a t i on  velocity I/;,,~, as a function of mat-  

urat ion level m, is given by 

¢4,,~(t,m) = ~ ( ~  - ~ , , ) ,  m ~ [m, , ,ml] ,  (6) 

where ri > 0 is constant .  Fur ther ,  it is assumed tha t  the functions ui, Oi, and Bi j  are 
all C 2 and nonnegat ive,  and tha t  the/3i  are positive constants .  These assumpt ions  are 
consistent  with the known physiology. Equat ions (4) through (6), in addi t ion to the 
init ial  condit ion 

Ni(0,~n) = ~+(m), (7) 

which we also assume to be at least C 1, complete  the specification of our model.  
Two of the pa rame te r s  appear ing  in the model  are superfluous and may  be elim- 

inated by a judicious choice of variables. To this end we first define a dimensionless 
m a t u r a t i on  variable x by 

7Tt - -  77~1) 
3? - -  

TyL 1 - -  7KL 0 " 

Thus for each popula t ion ,  x E [0, 1]. Secondly we scale the popula t ion  numbers  N i by  
B i i ( x  O) ---- Bii(O), sett ing ui = Bi i (O)Ni ,  and define 

" ~ ( x ) -  Bj~ (O) '  

With  these conventions, equations (4) th rough  (6) may  be t ransformed and com- 
bined to yield 

OUi O~i 
0~- + ~ i x ~  = ul 

0 3 i [ (~) 

with the associated initial  condit ions 

~ i ( 0 , ~ )  = v ; ( x ) ,  i = 1 . . . .  , ~ .  (9) 

The coefficients otij(x) [remember tha t  aii(O) = 1 for all i] may be in te rpre ted  as 
coupling coefficients measur ing the s t rength  of the influence of the j th  popula t ion  on 
the proliferative act ivi ty  of the i th populat ion.  



3. A S T A B I L I T Y  R E S U L T  

Recently Loskot (1991) has studied the stability of solutions of equations like our 
equation (8). Specifically he has examined the system 

Oui Oui 
Ot + c i ( x ) ~  = f i ( x , u ) ,  i = 1 , . . .  ,n,  (10a) 

where u = ( u l , . . .  ,u,,), with the associated initial condition 

l i m u i ( t , x )  = vi(x) ,  i = 1 , . . .  , n  (lOb) 

for t > O, x E (0,1]. He assumed that 

Cl(a)  ci and f l  are C ~ functions defined for 0 < x < 1 and u ff R ' ;  
Cl(b)  ci(x) > Ofor x E(0 ,1 ] , c i (0 )  = 0 ,  andc ' i (0 ) > 0 ;  and 
Cl(c)  0,,j fi are bounded for all i and j .  

Conditions C1 guarantee the existence of a unique classical C 1 solution to the system 
(10). 

Furthermore,  we introduce the following conditions. 

C2(d) There is some equilibrium point u~q such that  f(0,  u~q) = 0; and 
C2(e) If the matrix A = (aq)  is defined with aid = O,,jf~(O,u~q), then the 

diagonal matrix B = (bi), b; = 1/di(0), is such that  C = B A  is a 
negative definite matrix, i.e., < B A z ,  z > < -rnlz l  ~ for some m > 0. 

THEOREM 1. (LosKOT, 1991). 
I. Conditions C1 plus C2 imply the existence of  a unique solution w(x )  to the 

equation 
dwi 

c i ( x ) - ~ -  z = f i ( x , w ) ,  0 < x _ < l ;  i = l , . . - , n  (11) 

with lim~.~, w(x)  = u,q, so w(z )  is a stationary solution of  (lOa); and 
2. For every e > 0 there is a 6 > 0 such that for every initial C a function v(x) ,  

0 < x < 1, satisfying 
Iv( " ) - w ( ' ) l  <- 8, 0 < x _ <  1 

there is a unique solution u ( t , x )  of (lOa, b) det]ned for 0 < a~ < 1, t > 0. Moreover, 
this solution satisfies 

Lu(t , . )  - ~ ( ~ ) l  <_ ~, 0 < . < _ 1 ,  t > 0  (12a) 

and 
lira lu(t,~) - w(~)l = 0 uniformly for 0 < ~ < 1. (12b) 

t ~ o o  

Thus, w(m) is a locally asymptotically stable solution of (lOa). 

It is impor tant  to observe that  the conditions necessary for this stability only 
involve properties of the functions f i ( x , u )  and ci(z) at the boundary  • = 0, i.e., the 
values of O,,~ fi(0, u~q) and c~(0). Further,  if the cell populations described by (10a,b) 
are uncoupled from one another, i.e. f l  is given by f i (x ,  ui),  then the results of Lasota 
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(1981, Theorem 2) show that  the solutions of (10a,b) are globally asymptotically stable 
if v(0) > 0. 

Observe that  if w(x) is a solution of (11) and w(z) is continuous at z = 0, then 
using the condition c~(0) = 0 it is easy to show that f~(0, w(0)) = 0. In this proof we do 
not use any regularity conditions on the fi ,  but only the boundedness of the composed 
functions f i ( z , w ( z ) ) .  Thus if a u~q that  satisfies f ( O , u ~ )  = 0 is unique, we know that 
u~q = w(0). In the next section we will apply these results to equations (8). 

However, before discussing these equations a simple example of the significance 
of condition C2(e) will be illuminating. 

Consider the first order equation 

Ou Ou 
O~t + x ~ z  =bu ,  u(0, z) = v ( z ) ,  x e [0,1], (13) 

which has the solution 
u ( t , z )  = ebtv(xe- ' ) ,  (14) 

Condition C2(d) is evidently satisfied by ~ = 0. If b is negative, then (13) certainly 
satisfies condition C2(e). Furthermore, the solution of the stationary equation 

dw bw 
- , ~ ( o )  = ~ - -  o (15)  

dx x 
is nonincreasing in absolute value [since (b/z)  is negative] and therefore uniquely equal 
to 0. On the other hand, assume b to be positive in which case condition C2(e) is 
violated. 

Consider now the stationary solutions w(:c) of (15) with b > 0. A simple com- 
putat ion shows that  w(z) = pz b satisfies (15) with w(0) = 0, where p is an arbitrary 
positive constant.  Thus with the loss of condition C2(e) being satisfied we have lost 
the uniqueness of the stat ionary solution w(z) .  

This loss of uniqueness of w(z) has further consequences for the solution (14) of 
(13). Assume that the family of initial conditions satisfies 

Vp(~g) I arbitrary z ~ [e,1]. (16) 

Now consider the situation in which the time t > ln(1/e). Then ze - t  < ex < e, since 
z C [0,1], and thus from (14) it follows that  the corresponding family of solutions is 
given by Up(t, x) = pz b. 

Take two different values, Pl and p~. Then it is possible to find vp, and vv~ from 
(16) such that  the corresponding difference in initial conditions satisfies 

%,(~) - v p ~ ( ~ ) l  _< 2 ~ l p ~  - p~l .  

Then from our previous considerations we have that  

]Up,(t, 1) - Up2(t , 1)1 = IP~ - P21- 

Therefore this nonuniqueness of stationary solutions implies a large instability in the 
eventual evolution of the system, since we may pick two initial conditions arbitrarily 
close to one another and find that  this difference has become greatly magnified at ~ = 1 
for large t. 

These comments  illustrate the following theorem which can be proved using the 
method of characteristics. 



THEOREM 2. Assume that the sys tem (lOa, b) satisfies conditions C1 and C2(d). Fur- 
ther assume that there are at least two different solutions w = (Wl, . . .  ,w,,) of the 
stationary system (11). Then there is a constant A > 0 such that for a// e > 0 there 
are two solutions u 1 and u 2 of  (lOa, b) satisfying the following conditions: 

1 . )  u l ( t , 0 )  = ' t t2(t,0) ~--- "U, cq ; 

2.) < and 
3.) sup ,  l u a ( t , x )  - u 2 ( t , x , ) l  >_ A for suNciently large t. 

4. A C O U P L E D  T W O  C E L L  P O P U L A T I O N  M O D E L  

Wi th  the previous mater ia l  in hand  we now tu rn  to a specific considerat ion of 
two popula t ions  of cells coupled through their  relative proliferation rates.  Denoting 
the popula t ions  by i = 1,2, from (8) we have 

Oul cgu~ { 0~' (~) - r l }  (17) 

and 

Ou2 Ou~ { 

with the initial  condit ions 

+ + 
(18) 

Ul(0, X ) = Vl(X ) and u2(0, x) = v2(x). 

According to the general  assumpt ions  in Section 2.2, we take all of the coefficients in 
equations (17) and (18) to be nonnegative.  More precisely, we assume tha t  r~ and fli 
are posit ive constants ,  tha t  Oi, al~, and a22 are positive C 2 functions,  and tha t  v;, a12, 
and a21 are nonnegat ive C ~ functions (all defined for 0 < m < 1). These assumptions  
imply tha t  the  right hand  sides of (17) and (18) are C 2 functions for 0 < x < 1, ui > 0. 
If the fl; are integers some of these condit ions can be relaxed; for example ,  it is enough 
to assume tha t  the Oi are nonnegative.  

We next tu rn  to a de te rmina t ion  of the equil ibrium solutions u~q of f /(0,  u) = 0, 
i = 1,2, required by the first of the (C2) conditions.  

4.1. Determination of steady states 
The equi l ibr ium solutions u~q = (Ul,~q,u2.~q) are de te rmined  from the solutions 

of fi(O,u~q) - 0, i = 1,2, or explicit ly from 

017' -- r 1 } (19) 
0 = u l  ul 0;~, + [~1 + ~ 1 2 ~ }  '~' 

and 



In writing equations (19) and (20) it is important  to remember that ~ ' i ( z ) ,Oi (x ) ,  and 
c%i(z ) ,  ( i , j  = 1,2) are all evaluated at x = 0, and that c~1(0) = c~22(0) = 1. Further 
we always write r, i for ui(0), etc. 

Equations (19) and (20) have four solutions u~q, which are easily found to be 

where 

and 

~ =(o,o), (o,~=), (~x,o), (<,a=), (21) 

[ 11"' [ u~ =01 u l - r l  , ~ =02  r ' 2 - r 2  , (22) 
k rl J k r2 J 

u l  - , ~ - ( 2 3 )  
1 - (~120~21 1 - -  C~120121 

In these solutions it is important  to note that ~i = gi if o12 = ct21 = 0 (no coupling) 
and that  the biologically meaningful situation of ul >_ 0 will only occur for r,i > ri. If 
we define 

02 /1i 
L =  - -  and K i  = - -  i = 1 2, 

r i  

then it is easy to show that  the ui will be positive if 

kz (K~ - 1) '~ (24) ( c e z l " ~ & ( K 1  1) ' ,  < K 2  < 1 +  (a12L)& I + \ L  / 

and if a12321 < 1. (If ct120~21 > 1, then this inequality must be reversed to ensure the 
positivity of the ui.) 

4 . 2 .  E x a m i n a t i o n  o f  l o c a l  s t a b i l i t y  c r i t e r i a  

We next turn to an examination of the condition C2(e) for the steady state so- 
lutions determined in the previous section. Of the four equilibrium solutions listed in 
(21), the last (~1,~2) is the most interesting and will he discussed in detail last. 

To consider the stability of the first three, observe that  by our comments at the 
end of section 3, every stationary solution starts from one of the solutions in (21). 

Suppose a solution starts from (0,0). Of course, ul = u2 = 0 is a solution, and 
if it is unique it is of little biological interest because it is trivial. If a second solution 
starts from (0, 0), then due to the lack of uniqueness none of the solutions starting from 
(0, 0) is asymptotically stable. 

Now consider (~1,0). In this case a stationary solution of (17) and (18) is given 
by the pair ( u l ( x ) , u =  = 0) where ul is a stationary solution of (17) with u2 - 0 
satisfying the initial condition lim,._t, u~(x) = ~ .  Equation (17) with u2 ~ 0 describes 
a single population of cells and has been studied by Lasota (1981) and Brunowsk} ' 
(1983). Precisely the same comments pertain to the third equilibrium solution (0,g2). 

To discuss the stability of the final, and most interesting, case of both populations 
of cells having positive steady state values, we first calculate the matrix A of condition 
C2(e): 

A =  ( -~1 ct12~1),  (25) 
--O:21f~2 --/£2 
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where 

and it is clear tha t  the ~i are always str ict ly positive in the biologically impor t an t  
s i tuat ion of posit ive cell numbers  at the s teady s tate  (fil ,fi2). 

To check the local s tabi l i ty  condit ion C2(e), first note tha t  the diagonal  ma t r ix  
B has the simple form 

B =  1 

r2 

so C = B A  is jus t  given by 

/gl _ 0~12 /~1  ) 

C ~ 7"1 7"1 
__ OL 2 1 / ' ~ 2  /~2 

1" 2 T 2 

For C = (Cij) to be a negative definite ma t r ix  it is necessary and sufficient tha t  
the elements  cij satisfy 

)2 (c12+c21 < 4 c l l c n ,  

or more  explici t ly [ ]2 
~2 ~1 + ~ 2 1 -  <~ 4 ~ 1 n 2  . ( 2 6 )  

O~12 ~'1 P2 J r l r2  

Define z = ~ l r 2 / n 2 r l ,  which is clearly non-negat ive and can be wri t ten  in the explicit 
form 

~l u2 vl -- rl [~ = 
z D 

A compl ica ted  but  e lementary  calculation shows that  (26) is equivalent to f ( z )  < 0 
where 

2(°q2°e21 -- 2) ( ° g 2 1 )  2 
f ( z )  = z 2 + a~ 2 z + ka12 " (27) 

The min imum of f ( z )  is easily to found to occur at 

2 - -  O~120:21  

Zmi n -- Og~2 --~ 

while 

O~412 ' 

Thus we conclude tha t  in order  for condit ion C2(e) to be satisfied it is necessary that  
the produc t  of the interact ion coefficients al~ and a~l satisfy 

a12a~1 < I, (28) 
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so that  f(Zmin) < 0. In this case it is also clear that  zmi, > O. 
Using these calculations we can state a result concerning the stability of the steady 

state solution corresponding to the point (~1, ~2)- Consider the steady state equations 

and 

r l ; E ~ -  x = W 1 / / I ( X ) 0 ~ , ( : ~  ) ~_ [OZll(X)ID 1 ~- ~12(X)'W2] fll 
-- /'1 } =~ f l ( x ,w )  (29) 

dw2 { 02~2(x) . - v 2 }  ~ f 2 ( ¢ , w ) ( 3 0 )  = w2 ) + E 21( )wl + 

with the initial condition 

lim wl(z )  = ~1, lira w2(z) = ~2. (31) 
x ~ 0  x~D 

From Theorem 1 we will derive the following. 

COROLLARY. I f  inequalities (24), (26), and (28) are satisfied (with Ki = v~/v; > 1) 
then the initial value problem (29)-(31) has a unique solution ( ~ ( x ) , ~ ( z ) ) ,  0 < 
z <_ 1. This solution is positive ( ~ ( z )  > 0,i  = 1,2) and gives a stationary locally 
asymptotically stable solution of 17), (18). 

PROOF: The proof will be carried out in two steps. 
I. First choose two numbers rnl and M1 such that  

0 < rnl < min(~il,~2), max(~l ,~2)  < M1. 

Since ml  is positive, it is possible to find C 2 functions f l ( z , w ) , i  = 1,2, defined for 
0 < z < 1, w ~ R 2 with bounded derivatives Ofl/Ozj and such that  

f i ( z ,w)  = f i ( z ,w)  for 0 < x  < 1, ral < w i < M 1 ,  i =  1,2. 

We consider the system (29)-(30) with f~ replaced by f~ and the same initial conditions 
(31). For this new system all the assumptions of Theorem 1 are satisfied and it has a 
unique solution (vO1,u52). Due to conditions (31) there exists an ~/ > 0 such that  

rnl < wi(z) < M1 for 0 < z <_ r/, i = 1,2. 

Consequently, for 0 < z < r/ we have f i ( z , ~ ( z ) )  = f d z , W ( z ) )  and (~l(z),~92(z)) is a 
solution of the original system (29)-(30). Now observe that in the strip 

r 1< z < 1, 0 <w i  i =  1,2, 

the functions (rix)-~f~(x,  w) are C 2 and satisfy the inequalities 

M 1 M 
- - - w i  < - - f i ( z , w )  < - - w i ,  i = 1,2, (32) 

r i l l  ~eri rirl 
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where M = maxi,~ ui(x). Thus the original system (29)-(30) has a unique solution 
(5~ ,5=)  in the interval  [q, 1] satisfying the initial  condit ions ~ ( z )  = ,~ (x ) .  Moreover, 
according to (32) this solution satisfies 

rnle -M('lr~)-'(a~-'l) < wi(x)  < /1~/1 e : l l ( '~ 'd- ' (x- ' ; ) ,  r / < x < l ,  i = 1,2. 

The functions 
{ ~i(z) 0<x_<~ 

3~(~)= ,5~(~) '7<~-<1, 
i = 1,2, give a solution of the original initial value problem (29)-(31). The solution 
( 3 1 , 3 2 )  satisfies the inequali ty 

m l e  M(,1,'i)-' < 3 i ( x  ) < MleM(,I~) 0 < x < l ,  i = 1 , 2 .  (33) 

Observe tha t  this solution of (29)-(31) is unique. This is a consequence of the fact that  
the functions ( r i x ) - ~ f i ( x , w )  are C 2 for x > 0, wi > 0 and the branching point  cannot 
occur for x > 0. Fur the rmore ,  nonuniqueness at x = 0 of the solution of the original 
problem (29)-(31) would imply the same proper ty  for the system with right hand sides 
fi which is impossible.  

II. Choose two numbers  rn2 and ]142 such that  

0 < m2 < ra t e  ]~l(~rl)-', M l e  M('l''')-I < M2, i = 1,2. (34) 

Again,  since m2 is positive it is possible to find C 2 functions f i ( x , w )  defined for 

0 < x < 1, w ~ R 2 with bounded  derivatives O?i/Owj and such that  

f i ( z , w )  = fi(az,w), 0 < m < 1, m2 < wi _< Jl</2, i = 1,2. (35) 

Now consider the systems (29)-(30) and (17)-(18) in which the original right hand sides 
= 

are replaced by f ; .  For these systems,  all assumpt ions  of Theorem 1 are satisfied and 
( 3 1 , 3 2 )  is the unique s ta t ionary,  locally asymptot ica l ly  stable solution. Observe that  
the posit ive number  e in condit ion (12a) may  be chosen small  and in par t icu lar  we may 
assume tha t  

e < m i n ( m l e  M('I') ~ - m2, M~ -/1.I1 e ~'( 'J ' ' )- '  ), 

where r = min(v i , r2 ) .  Wi th  such e, condit ions (12a,b) for the systems with the right 
= 

hand sides f i  imply  the same proper t ies  for the original systems | 

The graph of (27) is a concave up pa rabo la  with roots  zl ,  z2. From the forgoing 
discussion we know tha t  for all z ~ (z~,z2) the stabil i ty criterion C2(e) is satisfied. 
Clearly, the larger the difference 1 - oq2o~21 , the larger is the range z2 - zl of z over 
which condit ion C2(e) is satisfied. Since, for any value of z that  falls in the interval 
(z l ,  z2), we know tha t  the local asymptot ic  stabil i ty cri teria of section 3 are satisfied, 
we may  examine the effect~ of systemat ical ly  varying one pa rame te r  at a t ime on the 
s tabi l i ty  of the solutions. 
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From equations 23 and 25 it follows that  as the reciprocal coupling vanishes 
(c~12 -~ 0 and c~2~ --~ 0), the values hi converge to 

\ v i i  \ ri 

Since it is always assumed that  vi > ri ,  the g(i ) are strictly positive (a~ > 0). Thus, 
for every fixed t~i,Oi,Vi and vi > ri ,  there is a sufficiently weak coupling between the 
populations (a12 and a21 small) such that  the local stability condition (26) is satisfied. 

Alternately, as the coupling between the populations increases so a12a21 is close 
to 1, the local stability condition (26) may be easily violated. Thus one origin of the 
loss of stability in the coupled system may be a very strong or tight coupling. Further, 
a large aa2, for example, will lead to a dramatic decrease in the proliferative rate of 
the first population whenever the second population is large. 

With respect to the effects of changes in the speed of maturat ion,  ra, on the 
stability, note that  from (22) and (23) as rl increases and approaches vl from below, 
then ~2a may become small and even negative when aaz > 0. In this case either the 
solution ux( t ,  x) ,  u2(t ,  ~) will not be positive and stable or ul will be too small to ensure 
survival of the population. Thus increases in the maturat ion velocity r lead either to 
instability or to death. 

Conversely, when a12 > 0 a small rl (low maturat ion velocity) leads to a large ul 
and a small or negative ~22, again leading to either instability or death. 

Completely analogous comments hold for changes in the maximal proliferation 
rates vi except they work in a way opposite to the ri. 

Thus the stable coexistence of coupled cellular populations imposes quite strict 
requirements on all of the parameters,  in particular the maximal proliferation rates v 
and velocities of matura t ion r. 

5. C O N C L U S I O N S  

In this paper, using recent results for the asymptotic behaviour of the solutions to 
this model, we have shown that  there exists a region of coupling coefficients, matura-  
tion rates, and proliferation rates that  will guarantee the stable coexistence of coupled 
cellular populations. The analysis demonstrates that  increases in the coupling between 
populations may ultimately lead to a loss of stability. Furthermore,  the analysis in- 
dicates that  increases (decreases) in the matura t ion and /or  proliferation rates above 
(below) critical levels will lead either to instability in the populations or the destruction 
of one population and the persistence of the other. 
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