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We prove analytically that additive and parametric (multiplicative) Gaussian 
distributed white noise, interpreted in either the It6 or Stratonovich formalism, 
induces global asymptotic stability in two prototypical dynamical systems 
designated as supercritical (the Landau equation) and subcritical, respectively. 
In both systems without noise, variation of a parameter leads to a switching 
between a single, globally stable steady state and multiple, locally stable steady 
states. With additive noise this switching is mirrored in the behavior of the 
extrema of probability densities at the same value of the parameter. However, 
parametric noise causes a noise-amplitude-dependent shift (postponement) in 
the parameter value at which the switching occurs. It is shown analytically that 
the density converges to a Dirac delta function when the solution of the 
Fokker-Planck equation is no longer normalizable. 

KEY WORDS: Stochastic differential equations; Fokker-Planck equation; 
Hopf bifurcation; Liapunov functions; global stability; noise-induced transitions. 

1. I N T R O D U C T I O N  

The effects of addi t ive  and  pa rame t r i c  (mul t ip l ica t ive)  noise in non l inear  
dynamica l  systems have been the object  of intense study. (1) Systems tha t  
d i sp lay  b i furca t ions  in dynamics  in the absence of noise have received the 
mos t  a t tent ion ,  in pa r t  because  noise effects in these systems qual i ta t ive ly  
mimic  first- and  second-orde r  phase  t ransi t ions.  (1) 

The  presence of noise in combina t i on  with dynamics  leads to a s i tua t ion  
in which one m a y  descr ibe the g loba l  behav ior  of the system by the evolu t ion  
of densities. Tha t  evolu t ion  is descr ibed by the F o k k e r - P l a n c k  (parabo l ic )  
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partial differential equation. The steady-state solutions to the Fokker- 
Planck equation are known as stationary densities. 

Most studies (2-4) indicate that additive noise, a term usually taken to 
imply that noise amplitude is independent of the state variable(s), leads to 
a bifurcation in the qualitative form of the stationary density at precisely 
the same parameter value at which the bifurcation occurred in the noise- 
free system. However, parametric noise, in which the noise amplitude 
depends on the state variable(s), induces different behaviors in the stationary 
density. Usually (5-7) parametric noise induces a noise-amplitude-dependent 
postponement in the parameter value at which these qualitative changes in 
the stationary density take place relative to the noise-free system, though 
one study (s) indicates the possibility of an advancement in the bifurcation 
parameter depending on the relative values of the noise correlation time 
and the system response time. 

In spite of the intense interest in the changes that additive and 
parametric noise give rise to in stationary densities, there has not-to our 
knowledge-been any proof of the global convergence of the time-dependent 
solutions of the Fokker-Planck equation to the (generally unique) stationary 
density. In this paper we consider two prototypical systems in the presence 
of additive and parametric noise, and use a recent result to prove the 
global asymptotic stability of the solutions of the Fokker-Planck equation. 

2. PRELIMINARIES 

2.1. The Model Systems 

In our investigation of the effects of additive and parametric noise, we 
will consider two specific systems. 

Superer i t iea l  Sys t em.  The two-dimensional oscillator system 

dr 
dt r(c r 2) 

(1) 
dO 
- - =  2re 
dt 

in (r, 0) space is an example of a system with a supercritical Hopf bifurcation. 
For c < 0 the origin r ,  = 0 is the globally stable steady state, while for c > 0 
all solutions are attracted to the limit cycle defined by r = x/-~. 

Here we consider the effects of noise in the analogous one-dimensional 
system 

dx  
d t  = x (c  - x 2) (2) 
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obtained by ignoring the angular coordinate 0 in Eq. (1), and designate 
this the supercritical system. This equation appears, for example, as the 
reduced amplitude equation for systems undergoing a supercritical Hopf 
bifurcation/2 4,6,9,1o) For  Eq. (2), it is simple to show that when c < 0 ,  all 
solutions are attracted to the single steady state x ,  =0.  Further, when 
c > 0, the steady state x ,  = 0 is unstable and x(t)  ~ x ~  if x(0) = Xo > 0, 
while x(t)  -~ - ~ for Xo < 0. 

S u b e r i t i e a l  S y s t e m .  A second simple oscillator system 

dr 
dt r ( c+2r  2 - r  4) 

dO (3) 
- - =  2z 
dt 

has a subcritical Hopf  bifurcation at c = - 1 ,  as have other systems studied 
in the presence of noise. (2'5) 

In analogy with the previous case, we treat the effects of noise in the 
one-dimensional system 

dx 
- x ( c  + 2 x  2 - x 4 )  (4)  

dt 

which we call the subcritical system. The solutions of Eq. (4) have the 
following behavior. For  c < - 1  all solutions x ( t ) ~ O  regardless of the 
initial condition x o. However, for - 1 < e < 0 there is tristability in that 

t 0  [1 + + 
- + ( l + c ) V 2 ]  m for x o < - x , ,  - x ,  < X o < - X ,  

x(t)  ~ for - x ,  < x0 < x ,  (5) 
+ [.[1+(1+e)1/2] 1/2 for x , < X o ,  x ,  < x o < x  + 

+ where x ,  = [ 1 + (1 + c)1/2 ] 1/2 and x ,  = E 1 - (1 + c) 1/2 ] 1/2 For c > 0, the 
steady state x ,  = 0 becomes unstable and this tristable behavior gives way 
to a bistability such that 

x ( t ) _ _ r { - [ l + ( l + e ) l / 2 ] l / 2  for Xo<0 
[1+(1+c)1/2]  m for xo>O (6) 

2.2. Densities and the Fokker-Planck Equation 

In considering the effects of noise in systems like (2) or (4), we may 
think of the general one-dimensional differential equation 

dx 
dt - g(x) 
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and the corresponding stochastic differential equation 

dx 
dt g(x)+a(x)~ (7) 

where ~ is a (Gaussian-distributed) white-noise perturbation with zero 
mean and unit variance, and ~r(x) is the amplitude of the perturbation. 

Under some standard regularity conditions, the process x(t), which is 
the solution of the stochastic differential equation (7), has a density function 
u(t, x) defined by 

b 

prob{a<x(t)<b}=fa u(t,z) dz, a ,b~R 

It is well known that the density u(t, x) satisfies the parabolic differential 
equation (Fokker-Planck equation) 

au l c~2[a2(x)u] ~[G(x)u] 
~t 2 0x 2 Ox 

(8) 

where the function G is given by 

G = g (9a) 

when the It6 calculus is used to interpret (7), or 

1 al-G:(x)] 
G = g-~ 4 c~x (9b) 

when the Stratonovich calculus is used. (1) The Fokker-Planck equation can 
also be written in the equivalent form 

au aS 
at - ax (10) 

where 

1 a[~2(x)u] 
S= + Gu (11) 

2 Ox 

is called the probability current. 
As usual, we say that an L 1 function f is a density i f f  is nonnegative 

and its integral over its domain is identically equal to 1, i.e., it is 
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normalized. Given an initial density f (x )  = u(0, x) and the solution u(t, x) 
of (8), we may write this solution formally as 

u ( t , x ) = P J ( x )  

where Pt is a Markov operator, i.e., Pt is a linear operator and for every 
density f, P J i s  also a density. Thus, the Fokke~Planck equation governs 
the evolution of the flow of densities {Pt f} .  

When stationary solutions of (8), denoted by f , ( x )  and defined by 
P , f ,  = f ,  for all t, exist, they are given as the generally unique (up to a 
multiplicative constant) solution of 

1 a2[~=f,] a[Of,] 
m m 

2 ~x 2 ~x 
- - - 0  (12) 

Integration of Eq. (12) by parts with the assumption that the probability 
current S vanishes at the integration limits, followed by a second integra- 
tion, yields the solution 

K = exp [ ;  x (13) 

This stationary solution f ,  will be a density if and only if there exists a 
positive constant K >  0 such that f ,  can be normalized. 

3. A D D I T I V E  N O I S E  

For the supercritical system (2) and the subcritical system (4) in the 
presence of additive noise, the corresponding stochastic differential equations 
are of the form 

dx 
-~ = g(x) + ~ (14) 

where ~ is a positive constant and 

, , f x ( e - -  x2) ,  
gtx) = )x(c + 2x 2 - x4), 

supercritical 
subcritical (15) 

Thus, in the additive noise case, reference to Eqs. (14) and (15) makes it 
clear that there is always a positive probability that x(t) may take on 
negative values starting from a positive position and vice versa. Therefore 
it is natural to consider this problem for - ~ < x < ~ .  

Furthermore, since the noise amplitude a is constant with additive 
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noise, Eqs. (9a) and (9b) make it clear that the corresponding Fokker-  
Planck equations are identical in the It6 and Stratonovich interpretations. 
Specifically, they take the forms 

~u 1 ~a2 02u 0 E x ( c _ x 2 ) u ]  (16) 
Ot z ~x 2 Ox 

and 

~U 1 ~2U 
--Ot = 2 ~ Ox 2 Ox [x(e + 2x 2 -  x4)u] (17) 

in the super- and subcritical cases, respectively. 

3.1. Stationary Solutions 

It is straightforward to show that the stationary solution (13) to the 
Fokker-Planck equation (12) is given by 

f , ( x ) = KI e#x2(2C x2)/4c (18) 

for the supercritical system, where fl = 2c/r 2, and by 

f , ( x )  = K2e ~x2(3c + 3x2_ x4)/6c (19) 

for the subcritical system. It is easy to show that the normalization 
constants K1 and/s  always exist and thus the f , ( x )  defined by (18) and 
(19) are stationary densities. 

In Fig. la we show the stationary density given in Eq. (18) for the 
supercritical system as a function of the parameter c. As might be expected 
on intuitive grounds, for c < 0 ,  the stationary density f , ( x )  has a single 
maximum centered at x = 0, the location of the globally stable steady state 
of the unperturbed system (2). Once c > 0 ,  the stationary density f , ( x )  
shows two maxima centered at x = _+ w/7, the locally stable steady states 
of (2), and a local minimum at the unstable steady state x = 0. 

Figure lb shows the stationary density for the subcritical system, 
again as a function of c, given in Eq. (19). For  c <  - t ,  the stationary 
density f , ( x )  has a single maximum located at x = 0 ,  the globally stable 
steady of the unperturbed system (4). For - 1 < c < 0, where the tristable 
behavior of (4) occurs, the stationary densities still have an absolute 
maximum at x = 0, but also display maxima at x = +[1  + (1 + c)1/2] 1/2 that 
become progressively more prominent as c increases. Finally, for c > 0 the 
stationary density has absolute maxima located at x = _+ [ 1 + (1 + c) m ] 1/2 
and a local minimum at x = 0. 
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Fig. 1. Globally stable stationary densities in the presence of additive noise, as functions of 
x and the parameter c, for (a) the supercritical system (2) and (b) the subcritical system (4). 
To aid in visualization, in each part the insert shows the location of the maxima in the 
stationary density as a solid line in the (c, x) plane. The dashed line in the insert of (b) 
corresponds to the minimum in the density. 
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3.2. Asymptotic Stability of the Stationary Solutions 

We now turn to a consideration of the stability of the stationary 
densities determined in the previous section. 

We first define the property of stability by saying that Eq. (8) is 
globally asymptotically stable if 

lim u(t, x ) =  lim P t f ( x ) = f , ( x )  
t ~ c o  t ~ c o  

for a//initial densities f ( x ) ,  i.e., P , f  converges to f ,  in L 1 norm/11) We will 
alternately say that f ,  is globally asymptotically stable under this 
circumstance. 

For parabolic equations whose solutions are given by an integral 
operator with a sufficiently smooth kernel, it is possible to prove their 
global asymptotic stability via a Liapunov function approach. Both 
Fokker-Planck equations (16) and (17) are quite regular from this point 
of view, since they are uniformly parabolic (o -2 is a positive constant) and 
xg(x) < 0 for sufficiently large x. These properties ensure that the solutions 
of Eqs. (16) and (17) will decay at least exponentially as x ~ •  

We define a Liapunov function V: R ~ R as a C 2 function with the 
following properties: 

1. V(x)>>. 0 for all x. 

2. limx ~ +0o V(x )=  oo. 

3. V(x)<~pe ~l~l and IdV/dxt<~pe ~lxl for some positive constants p 
and 6. 

It has been shown Cl1'12) that the existence of a Liapunov function V 
satisfying 

(r 2 #2V ~3V 
+ g(x) ~ <~ . ~  V(x) + ~ (20) 

where ~ and fl are positive constants, implies that the Fokker-Planck 
equation (8) is globally asymptotically stable. 

Let V(x )=  x 2, so V is a Liapunov function, and consider the super- 
critical system with additive noise. Inequality (20) becomes, in this case, 

20"2+ ( 2c + o~ ) x2 - 2x 4 ~ fl (21) 

This is clearly satisfied for arbitrary fixed c~ > 0 and sufficiently large/~ > 0, 
thus proving the global asymptotic stability of the Fokker-Planck equation 
(16) for additive noise applied to the supercritical system (2). 
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Retain V ( x ) =  x 2 for the subcritical system (4) with additive noise. An 
entirely analogous argument suffices to show that positive constants ~ and 
fl can be found such that inequality (20) is satisfied, thus establishing the 
global asymptotic stability of Eq. (17). 

Hence, the entrance of white noise perturbations to either the super- 
critical or subcritical systems (2) and (4) in an additive fashion always 
leads to globally asymptotically stable behavior. 

4. P A R A M E T R I C  NOISE 

Both the supercritical and subcritical systems contain a single 
parameter c, and in this section we investigate the effects of noise in this 
parameter by replacing c with 

c + ~  

where 0" > 0  is a constant. As a result of this assumption, the stochastic 
differential equation (7) takes the form 

dx 
-ff[ = g(x) + ax~ (22) 

where g(x) is given by Eq. (15). From Eq. (22) in conjunction with (15) 
it is clear that x ( t ) =  0 is always a solution. Therefore, for any Xo > 0 the 
solution x(t) will always be positive. For  Xo < 0 we will have x(t)  < 0. Thus, 
in contrast to the situation with additive noise, in the presence of 
parametric noise we need only consider - oo < x ~< 0 or 0 ~< x < ~ .  As the 
results are symmetric, we take 0 <~ x < oo. 

With parametric noise, it is no longer the case that the Fokker-Planck 
equation corresponding to (22) will be the same for the It6 and 
Stratonovich interpretations. (1) Hence, assume first that we are using the 
It6 calculus, and replace c by c~ to denote this distinction. Then, using (8) 
and (9a), we obtain the corresponding Fokker-Planck equations 

Ou= 1_ ~2 ~2[ xzu] 8 [x(c~ - x2)u], supercritical (23) 
Ot 2 ~x z 8x 

and 

O/g = 1 0" 2 (~2 [-X2b/] 8 [x(c I + 2 x 2 _  x4)u], subcritical (24) 
Ot 2 Ox 2 8x 
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4.1. Stat ionary Solut ions 

Supercritical System. For  paramet r ic  noise in the supercritical 
system it is a s t ra ightforward appl icat ion of Eq. (13) to show that  the 
s ta t ionary  solution f , ( x )  of the F o k k e r - P l a n c k  equat ion (23) is given by 

f ,  (x)  = K x  ~ e - x2/o2 (25) 

where 7 = ( 2 c J  a2) - 2. 

With paramet r ic  noise, a s ta t ionary  density will not  exist for some 
pa ramete r  values. In order  that  f ,  be a density, it must  be integrable on 
R +, and f rom (25) this is only possible if 7 > - 1 ,  or  

1 2 ( 2 6 )  C I > 70" 

Thus, in sharp  contrast  to the results for additive noise, for paramet r ic  
noise a s ta t ionary  density f , ( x )  in the supercritical case exists for only a 
limited range of values of the pa ramete r  c~ as defined by inequali ty (26). 

In Fig. 2 we show the graph of the s ta t ionary  densities f , ( x )  given by 
Eq. (25) for the range of ci values for which it exists. For  a2/2 < c~ < a2 the 

3 

0.6 

Fig. 2. Globally stable stationary densities for the supercritical system (2) with parametric 
noise under the It6 interpretation. For clearer viewing, the density for 0 ~< x is reflected as a 
mirror image to x < 0 and also displayed. The inset shows the location of the maxima (solid 
line) and minima (dashed line) of the densities in the (cl, x) plane, and the location of the 
globally stable steady states (dotted line) in the absence of noise. 
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density has a single maximum at x = 0. However, once c~ > 0-2, the stationary 
density f , ( x )  has a local minimum at x = 0  and a maximum at 
x = (ci - o2) 1/2. Thus, with parametric noise there is not only a shift in the 
value of the parameter c~ at which there is a transition between the stationary 
density having a maximum at x = 0 and a nonzero value of x, but there is 
also a shift in the nonzero location of the maximum in the stationary 
density below that of the globally stable steady state in the absence of noise 
(x = x~C~) toward zero. It is only as c~ becomes large that the location of 
the density maximum starts to approximate ~ i -  

All of these calculations and conclusions are precisely the same if the 
Stratonovich interpretation is used in place of the It6 formulation. One 
must only replace c~ everywhere by Cs = c~ + (0-2/2) for the formulas and 
conclusions to be applicable to the Stratonovich case. 

S u b e r i t i e a l  S y s t e m .  As in the previous section, it is an elementary 
consequence of Eq. (13) that the stationary solution of the (It6) Fokker-  
Planck equation for the subcritical case with parametric noise is given by 

f ,  (x) = Kx~e x2(4 x2)/2o2 (27) 

where 7 is as before. For  the f , ( x )  defined in (27) to be a stationary 
density, precisely the same conditions must hold as for the supercritical 
system of the previous section. Namely, f ,  (x) will be stationary density of 
the Fokker-Planck equation if and only if inequality (26) is satisfied. 

Figure 3 graphically presents the stationary density given by (27) for 
the range of ci for which inequality (26) is satisfied. The density for the 
subcritical system in the presence of parametric noise has two qualitatively 
different behaviors as the parameter ci is varied. The appearance of either 
of these behaviors depends on the noise amplitude a. 

For  noise amplitudes satisfying 0 < 0-2 < 2, a new feature unobserved in 
the supercritical system appears as shown in Fig. 3a. Namely, for f ,  
defined by (27) and this range of a, as c~ is increased past 0-2/2, f ,  may be 
normalized, and the resulting stationary density has a maximum located at 

x = [1 + (1 + c~ - o 2 ) m ]  ~/2 (28)  

and a singularity at x = 0 which only exists for a2/2 < c I < 0 "2. [The condition 
0 < 0-2< 2 may seem dimensionally incorrect at first glance. However, it is 
simply a consequence of the choice of parameters in Eq. (3).] 

However, as illustrated in Fig. 3b, fo r  higher noise amplitudes such 
that 0-2> 2, for a2/2 < c I < 0 - 2 -  1 the density f ,  has a single maximum 
located at x = 0. As ci is increased, once 0 -2 - 1 < q ,  then f ,  has a relative 
maximum at x = 0 and a second maximum located at the same location 
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0 ) - - -  

b. 
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- 3  1 1 1 1 1 1  

-i 2 5 

C=O 
1.6 

Fig. 3. Globally stable stationary densities for the subcritical system (4) in the presence of 
parametric noise (It6 interpretation), reflected across the x axis as in Fig. 2. In (a) the 
qualitative situation for 0 < a 2 <  2 is depicted using a 2 =  1, while (b), with cr 2=  3, illustrates 
the qualitative features found when 2 < a 2. In both (a) and (b), the types of lines in the inserts 
have the same meaning as in Fig. 2. 
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[-see Eq. (28)] as for a2<  2. For  all values of 0 "2, a s  ci is increased, the 
location of this maximum tends toward the value of the nonzero steady 
state x = [1 + (1 + ci)1/2] 1/2 of the unperturbed system (4). 

As before, one need only replace c~ by Cs to obtain the corresponding 
Stratonovich results, 

4.2. Asymptotic Stability with Parametric Noise 

In trying to prove that the stationary densities induced by parametric 
noise are globally asymptotically stable, we no longer have immediately 
available the Liapunov function technique that we were able to apply so 
easily in the case of additive noise. This is because with parametric noise, 
the coefficient a2x2/2 vanishes at x = 0  and the uniform parabolicity 
condition is violated at x = 0. This fact is crucial. 

However, by a straightforward change of variables, we may transform 
the Fokker-Planck equations (23) and (24) to circumvent this problem, 
and then again apply the Liapunov function argument. 

Define a new variable y = In x and a new density ft by 

ft(t, y ) =  e2Yu(t, e y) (29) 

With these changes, the Fokker-Planck equations (23) and (24) take the 
form 

c?ft 1 a2 c~ft ~? 
[~ (y )~]  (30) ~?t - 2 0y 2 @ 

where 

r c 1 2 I - -  ~ G  - -  C 2 y ,  

g(Y)  = (c i  -- ~a 2 + 2e 2y -- e 4y, 
supercritical 
subcritical (31 ) 

As in the case of additive noise, the uniform parabolicity condition is 
now satisfied and further y ~ ( y ) < 0  for sufficiently large y whenever 
ci > ae/2, which is the range of concern here. Thus, if we are able to find 
a Liapunov function V which satisfies (20), the asymptotic stability of 
Eq. (30) will be demonstrated. 

Set q =  2~/(c~-a2/2) ,  where c~ > 0 is the same as in inequality (20). 
Clearly ci > a2/2 whenever a stationary density of (30) exists, so take q > 0. 
It is evident that 

V(y)  = cosh(qy) 

is a Liapunov function. It is easy to show by a straightforward calculation 
that there are a > 0 and fl > 0 such that (20) is satisfied in the new variable 

822/60/5-6-15 
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y when g(x) is replaced by ~(y) as defined in Eq. (31). Thus, we know the 
stationary solution of (30) is globally asymptotically stable, which, by the 
change of variables (29), in turn implies the global asymptotic stability of 
the stationary solutions of (23) and (24). The same conclusions hold for the 
Stratonovich interpretation. 

4.3. Behavior in the Absence of Asymptotic Stability 

The results of the previous section give no insight into the effects of 
parametric noise for values of the parameter c~ when globally stable 
stationary densities do not exist, i.e., when 

C I < 10"2 (32)  

This section explores the system behavior for values of the parameter c~ 
satisfying inequality (32) using techniques from the theory of diffusion 
processes. In this approach, we are returning to the original stochastic 
differential equation (7) and its specific form (22). We consider these 
equations for 0 ~< x < oo. We first show that each trajectory x(t) of (22) 
converges to zero as t--. oo with probability 1. We then use this result to 
show that the densities u(t, x) converge to the Dirac delta function as 
t - +  o0. 

In the qualitative theory of one-dimensional stochastic differential 
equations like (7), the functions s(x) and k(x), defined by 

~ g(x) 
s(x)=[i j  e mY) dy where H ( y ) = 2 d ~  0.2(x)dX (33) 

and 

f 
x 

k(x) = -H(Y)m(y) dy 
1 e 

fY 1 where m(y) = 2 e H(x) dx (34) 
1 0.2(X) 

play a crucial role. (13) The function k(x) allows us to evaluate the time 
interval over which the trajectory is defined and strictly positive. That is, 
if 

k (0 )= o o  and k(oo) =oo (35) 

then every solution of (7), starting from a finite positive initial value 
x(0) > 0, is defined for all t/> 0 and satisfies 

0 < x ( t ) <  oo for t>~O 
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with probability 1. Further, by the use of the function s(x), we can describe 
the behavior of x(t) more precisely. Namely, if k(x) satisfies (35) and 

s (0 )>  - o %  s(oe) = oe (36) 

then for every trajectory starting from a finite initial value x(0) > 0 we have 

prob( lim x(t) = 0) = 1 (37) 
t ~ o o  

and 

where 

For Eq. (22) with g(x) given by (15) we have 

s(x)=f[ y-(2c/~2)er(Y3 dy, m(x)=~ f( y (2c/~2) 2er(y) dy 

k(x) = f] y (2~/~2~er(y)m(y) ely 

t ~  (y2 _ 1), 
r ( y ) =  ( 1 4  3)  

[o -2 i y - 2 Y 2 + ~  , 

supercritical 

subcritical 

With these functions, it is easy to verify that for 2C/ff 2 < 1 both conditions 
(35) and (36) are satisfied. Thus, we have proved the validity of (37) for ci 
satisfying (32). 

To determine the behavior of the densities u(t, x) from (37), we will 
use the following standard technique. Let x(t) be an arbitrary solution of 
(22). Choose an e > 0 and a sequence of positive numbers tn --, oe. Consider 
the sequence of events 

and define 

An= {x(t,)<e} 

n = l  k>~n 

The event A holds when there is an integer n 1> 1 such that x(tk)< e for 
k ~> n. This is always satisfied when x(t) ~ 0 as t --, oe. Thus, condition (37) 
implies p rob (A)=  1 and consequently 

l i m  prob Ak = 1 
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Finally, since prob(An)~> prob(Nk~>~n A~), we obtain 

lira prob(An)= 1 (38) 

On the other hand, from the definition of the density u(t, x) it follows that 

prob(An)= u(tn, y) dy (39) 

Since the sequence t, was arbitrary, conditions (38) and (39) imply that 

f2 tlim~ u(t, y) dy -- 1 for e > 0 (40) 

Thus, for c~ satisfying (32) the densities u(t, x) converge to a Dirac delta 
function as t--* oe. 

These results, and in particular Eq. (37), were obtained using the 
properties of stochastic differential equations interpreted in the It6 sense. 
However, the partial differential equations (23) and (24) may be considered 
as independent objects. Thus, if the solutions satisfy (40) for ci < �89 2, then 
the same behavior is preserved when c I is replaced by Cs. 

5. S U M M A R Y  A N D  C O N C L U S I O N  

In this paper we have shown analytically that additive and parametric 
(multiplicative) noise, interpreted in either the It6 or Stratonovich 
formalism, induces global asymptotic stability in two systems, one of which 
has received attention as the Landau equation. 

In both systems without noise, variation of the parameter c leads to a 
switching between a single globally stable steady state and multiple locally 
stable steady states. With additive noise this switching is mirrored in the 
behavior of the extrema of globally stable probability densities at the same 
value of c. However, parametric noise causes a noise-amplitude-dependent 
shift (postponement) in the value of c at which the switching occurs. 

Under suitable restrictions these results can be extended to more 
general polynomial forms g(x) in which there are multiple bifurcations in 
the absence of noise. Further, it will be interesting to examine the situation 
where colored noise is used, as opposed to the white noise considered here. 
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