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Abstract. Survival functions of the form p( t )=exp[ - (2 t ) r ] ,  ? > 0  can be 
generated by deterministic nonlinear, asymptotically stable (chaotic) dynam- 
ical systems. These systems thus provide an alternative to stochastic interpre- 
tations of failure time data. We use this approach to analyze cancer patient 
survival statistics. In this manner we are able to obtain fresh insights into the 
implications of negative and positive clinical trials. 
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1. Introduction 

An important index for describing the progression of a disease and its response 
to therapy is the patient survivorship function, S(t) (Lee 1980). As shown in Fig. 
1, this function can be determined by plotting the fraction of the number of 
patients surviving longer than a time t as a function of t. For many patients, 
including those with cancer, both exponential (Fig. la) and non-exponential 
(Fig. lb,c) forms for S(t) have been observed (Burch 1976). S(t) is used to 
determine the 50th percentile (i.e., the median) and other percentiles of survival 
time and to compare survival data from two or more patient groups. 

The interpretation of data obtained from clinical trials intimately depends on 
the interpretation given to quantities such as S(t). It is typically assumed that 
S(t) reflects the operation of underlying stochastic processes (Kalbfleish and 
Prentice 1980; Lee 1980). From this assumption it follows that inferences drawn 
from clinical trials involving large groups of patients can be directly extrapolated 
to therapeutic decisions made at the bedside on individuals. It is quite surprising, 
given the enormous implications of these 'life and death' decisions, that the 
stochastic origin of S(t) has been so rarely questioned. 
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Fig. la-d. Patient survival for a lung cancer (Roswit et al. 1968), b chronic myelogenous leukemia 
(CML) (Wintrobe, 1976), and e breast cancer (1963 California Tumor Registry from Burch 1976). 
The survivorship functions, S(t), were calculated from (2.6) and the hazard functions, h(T), in d were 
calculated from (2.7) and are represented by the solid lines. Values of Y in a-e were, respectively, 1.0, 
1.5 and 0.6 and of ,l were, respectively, 0.17 month -1, 0.3 year -~ and 0.09 year -~ 

Over the last two decades it has become recognized that simple, nonlinear 
deterministic equations can produce complex, aperiodic solutions often referred 
to as chaotic (Devaney 1986). These observations have blurred the traditional 
distinctions made between stochastic and deterministic processes. Indeed for any 
given one-dimensional probabili ty density it is possible to construct an infinite 
number  of  deterministic dynamical systems whose iterates are chaotic and which 
have the prescribed density (Lasota  and Mackey 1985). Thus, for example, the 
observation of  an exponential survivorship function (e.g., Fig. la) is not suffi- 
cient to identify its origin as an underlying Poisson process. 

Deterministic models for population survival provide an alternative to 
stochastic interpretations (Lasota  and Mackey 1980). With these models it is 
possible to directly compare the effect of  treatment on an individual to that of  a 
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population and to examine the efficacy of treatment strategies. Thus in principle 
it is possible to gain analytical insight into the results of clinical trials. 

Here we show that deterministic finite difference equation models can be 
constructed to reproduce all of the types of survivorship functions S(t) shown in 
Fig. 1. We then use these models to examine the effects of various treatment 
strategies on patient survival. Our observations provide a number of new insights 
into the nature of clinical trials. 

2. Survival statistics: basic considerations 

Survival times, T, are usually considered to be random variables and hence to 
have a distribution (Kalbfleish and Prentice 1980; Lee 1980). It is customary to 
define the cumulative distribution function, ~(t), as the probability that an 
individual dies before time t, 

• (t) = Prob(T < t), (2.1) 

and the density function, c~(t), as the probability of death in a small time interval, 
where 

d~(t) (2.2) 
dp(t ) -  dt 

The survivorshipfunction, S(t), cf. Fig. 1, provides an estimate of the probability, 
p(t) = 1 - ~(t), that an individual survives longer than a time t, i.e. 

p(t) = Prob(T > t), (2.3) 

and thus can be used to estimate q~(t) and thus ~b(t). Having p(t) and ~b(t) it is 
possible to evaluate the probability of death per unit time, or hazard function h(t), 

tk(t) 
h( t) - p( t) " (2.4) 

The hazard function plays an important role in survival data analysis since it 
gives the risk of dying per unit time. 

For diseases that display exponential survival statistics (a typical example is 
that of lung cancer in Fig. la), the probability p(t) that an individual survives 
longer than a time t can be simply expressed by the equation 

p(t) = exp( - 20, (2.5) 

where 2 is a constant with the dimensions of time - ~ that is characteristic of the 
progress of the disease, and t = 0 is taken to be the time of diagnosis. (Alter- 
nately one can interpret p(t) as given by (2.5) as the fraction of a large 
population surviving longer than time t.) In this case it is easy to show that 
~b(t) = 2 exp( - 20. Furthermore, h(t) = 2 and the risk of dying remains constant 
throughout the course of the disease. 

However, it is often the case that survival statistics do not obey the simple 
exponential behaviour of (2.5). Two typical examples are shown in Fig. lb,c. 
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In Fig. lb we show the survival statistics for chronic myelogenous leukemia 
(CML), while Fig. lc illustrates the survival from breast cancer. As the statistics 
are plotted in a semilogarithmic manner, it is manifestly obvious that neither are 
described by simple exponential decay functions of the form given by (2.5). A 
convenient way in which to describe non-exponential forms of S(t) is to use the 
expression 

p(t) = exp[ - (20 ~], (2.6) 

where 7 is a positive constant. For the data of Fig. lb,c, the solid line that is 
drawn in each of the figures is the graph of the best fit of the function given by 
(2.6). For breast cancer, y ~ 0.6, while for CML ~ --- 1.5. Clearly, when ~ = 1, 
(2.6) coincides with (2.5). 

The choice (2.6) for P(0 yields the Weibull probability density which has an 
interesting interpretation. Namely, the evolution of the disease is governed by a 
stochastic process in which the probability of dying per unit of time is a function 
of  the length of  time that the disease has been in operation; in particular 

h(t) = probability of dying per unit time = 2y0.t) r -  1 (2.7) 

Thus, for ~ --- 1 the probability of  dying is constant per unti time. For y > 1 the 
probability of dying per unit time is an increasing function of the length of time 
the disease has been present (CML in Fig. ld), and when 0 < y  < 1 the 
probability of dying per unit time is a decreasing function of the length of time 
the patient has had the disease (breast cancer in Fig. ld). 

Alternately a non-exponential p(t) can be considered to represent the sum of 
n exponential processes, i.e. p(t) = ~7~ 1 ai exp( - 2 i t  ) where ~7~ 1 ai = 1. Multi- 
ple exponentials arise in models in which there exists distinct sub-populations 
(Burch 1976) or in which disease progression occurs through the operation of 
multiple Markov processes, e.g. multiple hit theories of disease (Kalbfleish and 
Prentice 1980). While such a procedure will surely given an adequate fit to data 
like those shown in Fig. lb,c if n is sufficiently large, it is at the expense of 
introducing many more parameters since, for n exponential processes, 2 n -  1 
parameters must be determined. 

For all of the situations we have considered above, the interpretations of the 
survivorship function S(t) have been predicated on the fundamental assumption 
that the evolution of the disease of interest proceeds as a stochastic process. 
However, recent results from the application of ergodic theory to the behaviour 
of nonlinear dynamical systems (Lasota and Mackey 1985) gives the possibility 
of a totally different and deterministic interpretation of a variety of patient 
survival statistics. In Sects. 3 and 4 we develop this new interpretation. 

If this new approach gave nothing more than a different interpretation of 
existing data, then one might question its usefulness. However, in Sect. 5 we use 
this new interpretation of the statistics of patient survival to: (I) show how two 
very different classes of treatment may show profound differences for patient 
survival; and (2) give new insight into the results of clinical trials of disease 
treatment protocols. 
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In developing the concepts necessary to understand our deterministic point of  
view, we start by first placing our ideas within the general context of  aging. 

We assume that, given a level of  investigative skill far in excess of  that 
currently available, each individual could, at any given point in time, be 
characterized by a battery of  anatomical, biochemical, cytochemical, physio- 
logical, and psychological tests. If  we assume that there are M such tests, that 
every one is administered at each of  the equally spaced times to, q ,  t2 . . . . .  and 
that the ith test yields a value z~(tj) at time tj, then the evolution of  a given 
individual from birth will be described by the sequence of  M vectors 
z(b) = ( z l ( t j ) , . . .  ,zM(b)) for j = 0 ,  1 . . . . .  The vector z(t j )  evolves in an M 
dimensional space as life proceeds, and we assume that this evolution is 
completely deterministic in that the state of  an individual at time tj completely 
determines the state at the next time, b+ 1 through a rule U that may be written 
in the form 

Zj+ l = U(zj) ,  (3.1) 

where we have set z( t j )  = z j  to simplify the notation. The set of  values {zj}j>o 
defines the life trajectory of  an individual. 

Furthermore, we assume that the death of  an individual occurs whenever the 
trajectory {zj}j>0 enters certain regions of  the M dimensional space. For  
concreteness, one might visualize this process as in Fig. 2 where we show a 
representative trajectory winding its way in a complex manner through a block 
of  Swiss cheese. At any point in time, if the trajectory exits from the cheese into 
one of the holes, we associate this event with the death of  the individual whose 
trajectory we are following. Conceptually, one would expect that these holes are 

2_ D 

e 

z3(t) 
z2(t) 

Fig. 2. Representation of the course of a life trajectory, z(t), through a three-dimensional space 
whose axes represent the results of three tests z=(t), Z2(t ) and z3(t ). The black regions ("holes") 
represent values of z(t) which are associated with the death of an individual 
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functions of the age of the individual, some or all of them being relatively large 
at birth, and then decreasing as the individual approaches maturity only to again 
gradually increase in size as middle age is approached. Since the likelihood of 
death is, to a rough approximation, proportional to the volume of the space 
occupied by the holes, we would expect that the hazard function would initially 
decrease and then again increase as an individual ages (the so-called "bathtub" 
type of hazard function, cf. Lee 1980). The acquisition of a disease within this 
conceptual framework could be viewed in one of two ways. Either the disease 
increases the size of one or more preexisting holes, or it creates a new hole(s). 
The time T at which the trajectory {zj.}j > o enters one of the holes is defined as 
the survival time. 

The multidimensional model for survival given by (3.1) and illustrated in Fig. 
2 can be simplified to a one-dimensional model as follows. The results of each 
clinical test, zi(tj) can be assigned a numerical value and the results of all M tests 
summed (with appropriate weighting) to give a number or score xj.. For heuristic 
reasons, we assume that this single statistic is available at equally spaced times 
to, t l , . . .  (or ty =itS, where ~ is the sampling interval), that it is normalized so it 
always takes on values between 0 and 1, and that its evolution is governed by the 
equation 

Xj+ 1 = V(Xj).  (3.2) 

In writing (3.2), as was the case with (3.1), we are exp!Jcitly assuming that the 
state xj of the individual at a time tj completely determines the state xj+ 1 at time 
tj+l" 

Prediction of survival from either (3.1) or (3.2) will, in general, be very 
difficult since the course of the trajectory will typically be quite complex and may 
show many erratic fluctuations (cf. Fig. 2). These fluctuations arise because many 
of the quantities which comprise either zj or xj can vary in a seemingly 
unpredictable manner, e.g., tumor growth (Speer et al. 1984; Steele 1977). Here 
we will show that when either (3.1) or (3.2) has a property called asymptotic 
stability (Lasota and Mackey 1985), then it is possible to analytically calculate 
the fraction of individuals p(t) surviving to time t. 

The concept of asymptotic stability is illustrated in Fig. 3 by two numerical 
experiments. In the first experiment (Fig. 3a) we imagine that we have identified 
a "typical" individual whose index x has a value of  Xo at time to. We use the rule 
given by (3.2) to calculate successive values Xx, x2, • • •, x , , . . ,  of the index x and 
then construct a histogram of all the values obtained through this procedure. 
This histogram, jT(x), simply approximates the density of the distribution of the 
index values for an individual during the course of their life. The result that we 
obtain will be totally independent of the individual we selected to follow, i.e., 
independent of  the initial value Xo. However, the resulting histogram)7(x) will be 
quite dependent on the specific form of the rule V. In Fig. 3a we illustrate the 
resulting jT(x) obtained by using this procedure for the quadratic rule 
V(x) = r x ( 1 - x )  with r =4 ,  i.e. (3.2) becomes 

xj+~ = 4xj(1 -- xj). (3.3) 
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Fig. 3a-c. A graphic illustration of the property of asymptotic stability, a Iterate map; b iterate 
density; c limiting density. See the text for further details 

In the second type of experiment (Fig. 3b) we identify a large number (say 
No) of individuals, and assume that at time t = 0 each has a slightly different 
value of the index. We can label these different index values by x0 ~ . . . . .  x~ vo, 
and a histogram constructed from these initial values as fo(x). One time 
step later, these No individuals will have No new x values given by 
xl  = V(x~) . . . . .  x ~  -o = V(xoNO), with a corresponding histogram given by f~(x). 
Repeating this n times we finally have the set of No values given by,, x ~ , . . . ,  xffo 
with the corresponding histogram f~(x). As before, the histogram f~(x) approxi- 
mates the density of the distribution of the index values for our entire population 
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at the nth time we collected our data. In Fig. 3b we show~(x) determined using 
(3.3) for two initial densities, J~(x). 

Two comments are in order. First note that the histogram of Fig. 3a and the 
final histograms of Fig. 3b are approximately the same. This is because they were 
constructed using a rule [i.e., (3.3)] that is ergodic. Thus averages across a large 
population and long time averages along the trajectory of a single patient are the 
same. All asymptotically stable rules U (3.1) or V (3.2) are ergodic, but not all 
ergodic rules are asymptotically stable (Lasota and Mackey 1985). 

Secondly, the essence of asymptotic stability is illustrated in Fig. 3b, i.e., the 
rule producesthe same density of the distribution of population index values 
after n steps, f,(x), regardless of the initial density j~(x) of index values. We use 
f ,  (x) to denote this limiting density of asymptotically stable systems. 

The limiting density f.(x) can be determined analytically by solving the 
equation 

PFpf,(x) = f .  (X), (3.4) 

for f .  (x) where 

d 
I f(u) du (3.5) PFpf (X)  = -~X dv  -l([a,xl) 

is the Frobenius-Perron operator (Lasota and Mackey 1985) and V-l([a, x]) is 
the counterimage of the interval [a, x] under the operation of V. In the case that 
V(x) is given by (3.3) 

1 
f .(x) nx//-~_ x) (3.6) 

In Fig. 3c we have plotted f ,(x) given by (3.6). As can be seen there is a close 
correspondence between the form of f . (x ) ,  f(x) (Fig. 3a) and jT(x) (Fig. 3b). In 
the discussion which follows we assume that U(x) or V(x) are asymptotically 
stable systems as illustrated by the observations in Fig. 3, 

4. A one-dimensional, single hole model of survival 

To illustrate how the property of asymptotic stability allows us to calculate the 
survival fraction, p(t), we choose a simple one-dimensional system with a single 
hole. This is not restrictive since the analysis carries through in an entirely 
analogous fashion for the multidimensional model with multiple holes. The 
mathematical background for our considerations is partially developed in Piani- 
giani and Yorke (1979), Lasota and Mackey (1980), Pianigiani ( 1981), Lasota 
and Yorke (1981), and Jablonski (1983a,b). 

For the case of the single index x evolving according to the rule V of (3.2), 
we assume that death occurs when the index xj falls in some subinterval [a, b] of 
the interval [0, 1], i.e., when 

O<a <~xj <~b < l, 
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then we take 

Xj+ 1 =0 ,  (4.1) 

and associate this situation with the occurrence of  death. Combining (3.2) and 
(4.1), the full evolution of  the dynamics of  an individual is given by 

0, for x e D 
xj+ 1 = V(xj), otherwise, 

(4,2) 

where D denotes the inteval [a, b]. Our task is to use the asymptotic stability of  
V to calculate the density of  the distribution of the survival times T at 
which individuals die under the assumption that individuals evolve according to 
(4.2). 

Assume that we have No individuals at time to, and that the dynamics of  each 
evolves according to (4.2). Let Nj be the number still alive at time tj so it is clear 
that 

the number dying between tj and tj+ 1= Nj - N j +  1. (4.3) 

However, from the way in which death occurs as described by (4.2) it is also clear 
that 

F ^ 
the number dying between tj and b+ i = Nj fj(x) dx = Nj (x) dx, (4.4) 

since it is only by the index xj satisfying a ~< xj ~< b that a patient may die. 
Equating (4.3) and (4.4) gives 

-- Nj+~ = Nj f fj(x) dx. (4.5) 
3/, 

If we set 

I"  
= j (x) dx, gj 

for convenience, then (4.5) may be written as a finite difference equation 

(4.6) 

mj+l = Nj[1 -gj] ,  (4.7) 

which may be solved iteratively to give 

j - - 1  

Nj = No I-I [1--g,] .  (4.8) 
i = 0  

From this last equation we immediately have that the fraction of  the original No 
patients surviving to a time greater than tj, p(tj) is given by 

j - - 1  

p(t:) = l--[ [1--g;] .  (4.9) 
i = 0  

An approximation to the surviving fraction p(tj) given by (4.9) serves to 
illustrate the types of  survival statistics that our approach is able to accommo- 
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date. First note that if the g~ are small, g; ~ 1, then to a good approximation (4.9) 
can be replaced by 

I } p(tj) =exp  - ~ g~ . (4.10) 
l i=0 

Secondly, realize that for any asymptotically stable system, as shown by the 
quadratic rule used to obtain the densities f (x )  and f , (x)  of Fig. 3, it is always 
the case that j ~ ( x ) - , f . ( x )  very rapidly. Thus g~ as defined by (4.6) can be 
approximated by 

~- ~o f  .(x) dx. (4.11) gi 

From the mean value theorem of calculus this can be further approximated by 

gi = f ,  (xc)#(D), (4.12) 

where x~ is some point in D = [a, b] and #(D) = b - a simply denotes the length 
of the interval D. 

With these approximations, substituting (4.12) into (4.10) immediately gives 

p(tj) = exp( -2 t j ) ,  (4.13) 

where 2 =f.(x~)It(D) + higher order terms. Thus, (4.2) predicts that the surviv- 
ing fraction of a large population of N O patients is an exponentially decreasing 
function of  the time from diagnosis. 

A slight modification of this model gives even more interesting survival 
statistics. Thus, if we assume that the death interval D is not constant with 
respect to" time, but is a function of the length of time that the disease has been 
in operation, then (4.2) becomes 

0, for x ~ Dj (4.14) 
:9+ 1 = S(xj), otherwise. 

All of the above calculations carry through in precisely the same fashion, with 
the end result that (4.12) is replaced by 

Suppose we write 

gi - f ,  (xc)/t( D,)- (4.15) 

#(Di) = #init (D)h(i), (4.16) 

where #init(D) is the initial size of the interval D and h(i) is a monotone function 
of i with h(0) = I. As a concrete example we pick 

h(i) = (ei + 1) =, (4.17) 

where ~t > 0 when D is expanding and - 1  < ct < 0 for D shrinking, and e 
controls the rate of expansion or contraction of the set D. Then it is a 
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straightforward exercise to show that for a large number No of  individuals, the 
fraction surviving at time t is given by 

p ( t )  = exp[ - (20 r], (4.18) 

where 7 = 1 + ~ and 2 r =f,(Xc)lAinit(D)£ ~'- 1/7 + higher order terms. It is clear 
that the exponential survival predicted by (4.13) for a constant interval D is 
simply a special case of  (4.19) when ~ = 0. Distributions of  the form (4.18) when 

# 1 are often called f r a c t a l  (Liebovitch et al. 1987; Shlesinger 1987). 

5. Results 

To illustrate the concepts of the previous section, we combine (3.3) and (4.14) to 
give 

0, for x e Dj (5.1) 
x j  + 1 = V ( x j )  = 4 x j  ( 1 - x j ) ,  otherwise, 

where Dj is a single subinterval of [0, 1] with Do = [a, b] whose boundaries may 
change with time. For  simplicity we take D to be centered at xj = 0.5 as shown ,r 
in Fig. 4. We consider three cases: 

Case 1 

Case 2 

Case 3 

#(Dj) = b - a, for all j, (Dj constant), 

!a(Dj)  = (b - a) (e j  + 1) ~, ~t > 0, (Dj increasing), (5.2) 

/z(Dj) = (b - a)(Ej + 1) ~, - 1 < ~ < 0, (Dj decreasing). 

¥ 
4-¢ 

X 

D 

a b 

X t 

Fig. 4. Graphical representation of  the model 
for population survival given by (5.1) when D 
is constant (5.2). The subinterval D is cen- 
tered at x t = 0.5 and from (3.6), f , ( 0 .5 )  = 2/~ 
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Fig. 5a-d.  Comparison of  computer simulations (solid lines) of S(t) for a population of 1000 subjects 
whose evolution is governed by (5.1) and (5.2) to S(t) ( O )  measured for a lung cancer, b CML, e 
breast cancer and d bladder cancer (7 = 0.5). Data in a - e  is the same as in Fig. 1 and in d is taken 
from the 1963 California Tumor Registry (cited by Burch 1976). The results of  these simulations are 
represented as the mean plus/minus two standard deviations of 11 trials. The value of #i,it(D) was 
estimated from the initial slope of the measured S(t) and were, respectively, 0.16, 0.04, 0.069 and 0.13. 
The value of  E was determined so that (5.1) and (5.2) gave the observed ~ and were, respectively, 0, 
0.551, 0.395 and 0.847 

Figure 5 compares the results of  computer simulations for survival of  a 
population of  1000 subjects whose evolution is governed by (5.1) and (5.2) to 
patient survival measured for four types of cancer. In these simulations the 
evolution of  each subject is given by (5.1), a different subject corresponds to a 
different initial value, x0, chosen randomly on the interval (0, 1) excluding values 
in Dj, and the values of  ~ and ~init(Dj) were estimated from the clinical 
observations (see legend). The results of  the computer simulations have been 
represented as the mean plus/minus two standard deviations of  11 trials (solid 
lines in Fig. 5). As can be seen, 7 = 1 occurs when D is given by Case 1 of  (5.2) 
(Fig. 5a), y ~ 1.5 occurs when Dj is given by Case 2 with ~ = 0.5 (Fig. 5b), 
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? = 0.6 occurs for case 3 when ~ = - 0 . 4  (Fig. 5c), and ? = 0.5 occurs for Case 
3 with ~ = - 0 . 5  (Fig. 5d). Moreover, in all cases there is good agreement 
between the results of  the computer simulations and clinical observations. 

The model for population survival given by (5.1) and (5.2) can be used to 
assess the effect of  different treatment strategies on patient survival. Specifically, 
we consider two possibilities: (1) the treatment alters xj but not Dj; and (2) the 
treatment alters Dj but not xj. The effects of  these two treatments are qualita- 
tively similar for all of  the choices of  Dj given by (5.2). Therefore we illustrate 
our results here only for the case when D is time independent (Case 1). 

Figure 6a,b shows the effect of  a treatment which alters xj but not D, which 
we take to be D = [0.45, 0.55]. In this simulated clinical trial, the control group 
corresponds to 1000 initial points chosen randomly on the interval [0.9, 1) and 
the treatment group to 1000 points chosen randomly on (0, 0.1]. In Fig. 6a we 
show that treatments (i.e., initial conditions) which differ by as little as 1 part in 
105 can have dramatic effects of  a patient's survival, either prolonging or 
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Fig. 6a-d .  An illustration of individual life trajectories and population responses to treatments (Rx) 
resulting in a negative clinical trial (a,b) and a positive clinical trial (c,d); I ,  treated; O, untreated. 
See the text for a detailed explanation and discussion 
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shortening the survival compared to no treatment! In contrast, the population 
survival is not significantly altered by this treatment strategy (Fig. 6b). Thus it is 
not possible from the results of a negative clinical trial to infer whether or not a 
given treatment of this type would be of benefit. 

Figure 6c,d shows the effect of a treatment strategy which alters D, but not 
xj. In this case we assumed that therapy reduced the size of D by one-half so 
D = [0.475, 0.525], and used the same initial conditions for the control and 
treatment groups. This treatment strategy has profound consequences for the 
population survival statistics, but the amount of benefit varies significantly 
between patients. The median survival of the treated population is longer than 
the untreated population. Thus it is possible from the results of a positive clinical 
trial to infer that a patient will benefit from a given treatment; however, it is not 
possible to predict how much benefit the individual can expect. 

6. Discussion 

In the analysis of clinical trials, survival times are traditionally considered to 
have a stochastic origin. This assumption has yielded a large number of 
analytical tools which form the cornerstone for interpreting the outcomes of 
clinical trials (of. Lee 1980). Indeed there would be little point of conducting 
these trials without mathematical methods to test, for example, the significance 
of difference between treatment and control groups. The main disadvantage of 
this approach is that little insight is offered prior to the onset of the trial as to 
its probable outcome. It would clearly be advantagous to be able to utilize 
information about, for example, tumor biology to predict outcomes. In this 
way needless clinical trials could be avoided, resulting in a saving of both time 
and money. 

Here we have shown that it is possible to construct a completely determinis- 
tic model for patient survival consistent with the measured patient survivorship 
functions (compare Figs. 1 and 5). Thus the observation of either exponential 
or non-exponential survivorship functions does not distinguish whether the 
underlying process(es) is (are) stochastic or deterministic. An advantage of a 
deterministic approach to patient survival is that it is possible, at least in 
principle, to directly incorporate information about tumor biology by appropri- 
ate choice of U (3.1) or V (3.2) and then to obtain some insight into the effects 
of different types of treatment strategies on the outcome of a clinical trial. 

The efficacy of a proposed treatment for cancer is typically evaluated by 
undertaking a clinical trial. A prolongation of median survival of the treated 
group indicates a favorable, or positive outcome, whereas no change in median 
survival indicates an unfavorable, or negative outcome. We have shown that a 
negative clinical trial would occur when a treatment changes only the life 
trajectory (i.e., alter xj but not Dj), whereas a positive outcome occurs when 
the treatment alters the risk of dying (i.e., alters Dj but not xj). 

A major objective of a clinical trial is to obtain results which can be applied 
to the treatment of individual patients at the bedside. There are numerous 
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anecdotal reports of  patients who appear to benefit from treatments of  question- 
able value (i.e., negative clinical trials), and of  patients who die unexpectedly 
while taking beneficial medications (i.e., positive clinical trials). We suggest that 
results of  this type are related to the chaotic nature of  the life trajectory. 
Moreover, our results emphasize the problematic nature of  attempts to extra- 
polate results from a clinical trial. In the case of  a negative clinical trial, we 
cannot advise an individual patient whether a treatment will be harmful, 
beneficial, or neither. Furthermore, having received this treatment it is not 
known whether it had an effect. On the other hand, a positive clinical trial 
indicates that at worst a patient can expect no benefit (Fig. 6b). 

In our model for patient survival we assumed that the life trajectory for a 
patient moved chaotically through a multidimensional space and furthermore 
that it was asymptotically stable (Sect. 3). These two assumptions permit the 
determination of  a stable density function from which all of our results follow. 
There an infinite number of  discrete maps which are chaotic and asymptotically 
stable (Lasota and Mackey 1985). Moreover, trajectories which meet these 
conditions can also be generated by continuous time models (e.g., the metastable 
chaos exhibited by the Lorentz equations (Yorke and Yorke 1979)). Thus we 
expect that the conclusions we have drawn will be generally applicable. In 
addition, the analysis of  failure times arises in a number of  other clinical 
contexts, e.g., seizure recurrence (Milton et al. 1987), graft and transplant 
rejection (Kalbfleish and Prentice 1980), as well as in a variety of  industrial and 
engineering applications. It is quite likely that a deterministic approach to the 
analysis of  failure times as advocated here may also yield useful insights into 
these situations as well. 

Our observations suggest that the identification of  treatments which alter Dj 
would be advantageous. However, not enough is presently known about the 
mechanisms of  anti-cancer drugs to be able to determine the nature of  such 
agents. As more becomes known about tumor cell biology and the progression of  
cancer, it should be possible to better determine the functional forms of  the 
maps, U (or V) which determine the life trajectory. In this way we expect that 
deterministic models for patient survival will come to play a greater role in the 
design and evaluation of  clinical trials. 
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