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Summary 

This paper briefly reviews the role of mixed feed back, neural delays , and neural noise in the genesis of complex 
oscillations in neurological feedback systems. The results are concretely discussed within the context of recur
rent inhibition in the mammalian hippocampus, and a hybrid version of the pupil light reflex with externally 
imposed electronic feedback. 

Introduction 

Fluctuating levels of neural activity are commonly observed in a variety of neural systems. 
For example, rhythmic patterns of neural discharge occur in association with the neural 
control of respiration, swimming and locomotion, whereas much more complex patterns 
are seen in the electroencephalogram ([1 - 5] and references therein). 

These experimental observations have, over several decades, spawned a variety of neural 
oscillator models (for reviews see [4, 6]). These are generally embraced by either pacemaker 
like models in which there exists spontaneous (autonomous) activity in a given neuronal 
population, mutually inhibitory models (half center model) in which two populations of 
neurons are inhibitory to one another and each have tonic excitatory inputs , or the sequential 
disinhibition (recurring cyclic inhibition) models which are elaborations of the mutually 
inhibitory models. 

Interestingly these network models have almost exclusively ignored a fundamental 
physiological fact. Namely, neurons communicating with one another do so with delays 
between the generation and receipt of a signal due to the finite conduction time of action 
potentials along the axons. A few investigators have taken note of this by including a pure 
delay in their models [7, 8] without analysis, while others have examined the consequences 
of incorporating delays either by a careful mathematical analysis of the dynamical proper
ties of the network equations [9 - 11], by numerical simulation [12- 15], by electronic 
analog simulation [16], or by combination of several of these techniques [11]. In [17] the 
pure delay was approximated by an " inertial" effect in the underlying network equations. 

Here we review the dynamic behaviour of simple recurrent inhibitory neural networks 
with delay. Recurrent inhibition is ubiquitous in the central nervous system and arises 
when a tonically active neuron excites a second resting neuron which then, in turn, inhibits 
the first (Fig. 1 ). Examples include the inhibition of a spinal motor neuron via an inter-
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neuron (Renshaw cell) [18, 19] and the inhibition of a hippocampal neuron via basket 
cells [7]. In the next section we show that the feedback in a recurrent inhibitory network 
can be of a "mixed" type, i.e. it can resemble negative feedback over some ranges of the 
state variable and positive feedback over others [20]. In contrast to neural networks with 
negative feedback , those with mixed feedback can exhibit exceedingly complex dynamics 
[10, 20, 21]. We illustrate this point in the third section by discussing the dynamics observed 
in experiments which involve the pupil light reflex in which the internal feedback normally 
present is circumvented and externally imposed feedback of mixed type is substituted. 

Recurrent inhibitory networks 

The dynamics of the neural network shown in Fig. 1 have been investigated previously 
in the context of the recurrent inhibitory interconnections in the hippocampus [10, 11] . 

Fig. I . A simple schematic representation of 
an excitatory-inhibitory neural network 

Briefly, if cell 1 (e.g. CAI pyramidal neuron) has an excitation level E(t) and a level of 
inhibition from cell 2 (e.g. basket cell) given by I(t), both measured relative to the resting 
potential, then it can be shown that the dynamics of the inhibitory potential are determined 
by the solution of the delay differential equation 

di K 
- = - rJ.l(t) + {3F -- , 
dt r K + pr; (1) 

where Fr = F(t - -r), -r is the time required to transmit information from the soma of cell 
1 back to the inhibitory synaptic connection of cell 2 onto the soma of cell 1, and 

F(t) = {; 
0

[ E(t) - J(t) - 8] 
E-1 ~(} 

E-1>0 
(2) 

is the instantaneous firing rate in cell I. For this problem to be well posed, we must specify 
an initial function F(i) for - -r ~ t ~ 0. 

In equation 1, rJ. is the reciprocal of the cell 1 membrane time constant which determines 
the rate of decay of the inhibitory potential I(t), K is a constant related to the equilibrium 
constant of the inhibitory transmitter-receptor complex, n is the number of inhibitory 
transmitter molecules required to activate one receptor, and /3 is proportional among 
other things, to the number N of inhibitory receptors on each cell from the cell 1 population. 

In equation 2, (} is the threshold potential for the generation of an action potential, and 
F0 is a constant related to the rate of change of the cell 1 firing frequency with respect to 
potential changes above threshold. To mimic the spike generating mechanism, we assume 
that an action potential is generated at a time t' after the last action potential where t' is 
given by the solution of 

(} 
E(t + ta + t') - J(t + ta + t') = ---,----,-,--] _ e - (l I - ta) f'cr ' 

(3) 
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Fig. 2. Illustrating the nature of the mixed feed
back function appearing in equation I as (a) a 
function of the firing frequency Fin the inhibitory 
cell, and (b) as a function of the driving potential 
E - l(t) 

where t is the time of the last action potential, ta is the absolute refractory time, and rr is the 
decay constant of the threshold within the relative refractory period. 

The feedback in equation l is given by the nonlinear term on the right hand side and is 
illustrated graphically in Fig. 2a. This term gives the rate of change of J(t) due to the combin
ed effect of the excitation of cell 2 by cell 1 and the resultant release of inhibitory transmitter 
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Fig. 3. Model predicted sequences of activity for the parameter values in the text derived for the hippocampal 
recurrent inhibitory situation. 
The voltage values in mV correspond to deviations from the resting potential (0 mV), and the vertical lines 
superimposed on the variation in the potential E - l(t) correspond to the times of generation of action 
potentials. The N values in the lower right hand corner of each frame correspond to the assumed number of 
inhibitory GABA receptors on the some of the CAI pyramidal cell after MACKEY and AN DER HEIDEN [11] 
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by cell 2. The amount of inhibitory transmitter released at the cell 2 to cell 1 synapse at 
time t is proportional to Fr, and [K/K + .f\'] is the fraction of cell 1 inhibitory receptor 
sites available to be activated by that transmitter. It is this nonlinear term, in combination 
with equation 2, that confers the "mixed feedback" character to this system. This is because 
at constant levels of excitatory drive E, increasing the inhibitory potential I from zero 
leads initially to an increase in this nonlinear term until a maximum value is attained; 
subsequent further increases in I lead to a progressive decrease in the nonlinearity until 
it becomes zero when I = E - 0. This gives rise to the "humped" function shown in Fig. 2 b. 

As an illustration of the dynamics predicted by this model we use parameter estimations 
for a recurrent inhibitory circuit within the hippocampus [11] in which cell I is to be indenti
fied with the CA 1 pyramidal cells and cell 2 with the basket cells. In this system, the ex
citatory drive is supplied by the mossy fibres, and the inhibitory transmitter is y-amino
butyric acid (GABA). The parameters for this system are: -r = 100 ms, cx - 1 = 10 ms, 
K = 1 Hz3, 0 = 4 mV, F

0 
= 2.25 Hz/mV, n = 3, and /3 = 2.4 TmV, where Tis the average 

number of GABA receptors per pyramidal cell. 
The range of dynamic behaviours that this model can display are shown in Fig. 3. There, 

assuming that the excitatory drive E from the mossy fibres is constant with E = I .6, we 
show the effect on cell I (the CAI pyramidal cell) of decreasing the number of GABA 
receptors at the inhibitory synapse from N = 1900 (top panel) in steps of 200 to a value 
of N = 500 (bottom panel). The vertical lines indicate the occurrence times of action po-
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Fig. 4. Histograms of the 
distribution of inters pike inter
vals for a rat CAI pyramidal 
cell (top, data courtesy of 
Prof. K. KRNJEVIC) and for 
the model of recurrent inhibi
tion (bottom, calculations 
courtesy of Mlle. N. MORIS

SETTE) 
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tentials with ta = I ms and -rr = IO ms. As is clear, successive decreases in the number 
of GABA receptors per cell lead to a progressive loss of the bursting behaviour seen at 
higher levels of N , until at N = 500 the CAI cell is predicted to be firing almost continu
ously but in an apparently random fashion. 

In Fig. 4 (top panel) we have plotted the experimentally observed distribution of inter
spike intervals recorded from a rat CAI pyramidal cell. This is to be compared with Fig. 4 
(bottom) where we have plotted the histogram of the model generated interspike intervals 
for N = 500 corresponding to the time series in the bottom panel of Fig. 3. In spite of the 
fact that there is a close qualitative correspondence between the histograms, there is a 
quantative discrepancy since the time axis of the data is normalized to 500 ms, while that 
of the model is normalized to 50 ms. 

In spite of the interesting behaviours produced by this simple model for excitatory
inhibitory networks, there are at least two facets that are physiologically unrealistic and 
which are important to incorporate. The first is related to the assumption that there is a 
single delay when, in reality , there is a distribution of delays because of the distribution of 
fibre diameters within the neuronal populations. This distribution will typically be zero 
up to some minimum delay corresponding to conduction through the shortest and largest 
portion of the fibre tracts, rise to a maximum , and then decay back to zero corresponding 
to conduction through the longest and slowest pathways. The second has to do with the 
well known fact that neuron activation is highly dependent on fibre size. Thus, smaller 
fibres with longer conduction delays are activated at lower activity levels than are the 
larger and faster fibres. The consequence of incorporating this, in conjunction with the 
distribution of delays, is to turn the description of the model into an integro-differential 
equation with state dependent delays. 

Clamped pupil light reflex 

Direct verification that delayed "mixed" feedback mechanisms can produce complex dy
namics in vivo has been hindered by the lack of suitable experimental paradigms. One ex
ception are experiments that have involved the 'clamped' pupil light reflex [14, 22, 23]. 
The pupil light reflex is a delayed negative feedback neural control mechanism which 
regulates the retinal light flux (equal to the light intensity multiplied by the pupil area) 
by changing the pupil area [21 , 24]. The time delay is ~ 300 ms [25]. In the clamped pupil 
light reflex (Fig. 5) this feedback loop is first " opened" by focusing a small light beam 
onto the center of the pupil in order to circumvent the shading effects of the iris on the 
retina [26]. The feedback loop is then reclosed with a clamping box which relates measured 
changes in pupil area to changes in retinal illumination [5, 22, 23, 26, 27]. 

The advantage of studying the clamped pupil light reflex is that by appropriate design 
of the clamping box, the reflex can be made unstable and the types of dynamical behaviours 
explored in a precisely controlled manner. The design of the clamping box for mixed feed
back is shown in the inset to Fig. 5. Precisely speaking this type of feedback is referred 
to as piecewise constant mixed feedback since the retinal illumination can have only one 
of two values, i.e. on or off. It clearly is an approximation of the smooth type of mixed 
feedback shown in Fig. 2. When pupil area exceeds a lower treshold , 01' the light is turned 
on and the pupil will constrict (negative feedback). However, whenever pupil area exceeds 
a higher area threshold, 02 > 01 , the light is turned off and the pupil can continue to dilate 
(positive feedback). Studies of pupil area oscillations that occur when the reflex is clamped 
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Fig. 5. Schematic diagram of 
the clamped pupil light reflex. 
The area comparator or 
" clamping box" converts pu
pil area variations into light 
intensity variations according 
to a specified feedback func
tion. In our study, the area 
comparator was used to syn
thesize piecewise constant 
mixed feed back, shown in the 
inset 

with piecewise constant negative feedback , i.e. when 02 ~ 01' have proven useful as a 
diagnostic test for the presence of optic nerve demyelination [25] and for quantifying the 
properties of the efferent arc of the reflex [23]. 

Figure 6 reviews the results of an experiment in which the pupil light reflex is clamped 
with piecewise constant mixed feedback [5, 22]. The experimental results have been compared 
to those predicted by the model 

dA ·_ {Aorr , 
- + ()(A - Aon, 
dt A. 

off, 

if Ar< 01 
if 01 < Ar < 02 

if Ar> 02 
(4) 

where r is the total time delay and A 0 n, A 0 rr, are constants which depend on physiological 
parameters and the intensity of the light beam and the background illumination [21, 22]. 
The left hand side of equation 4 follows from the experimental observation that the time 
courses for constriction and dilation can each be approximated by a single exponential 
[22]. The rate constants for pupillary movements differ for constriction (()() and dilation 
(()(d). The values of the constants r, ()(c, ()(d, A 0 n, A0 rr can be readily determined from ex
perimental measurements [23]. For equation 4 it has been possible to prove for simple 
initial conditions the existence of stable equilibria, of stable and unstable limit cycles, and 
Li and Yorke type chaos as well as mixing and exact motions as 01 and 02 are varied [20, 28]. 

The results in Figure 6 show that as the area thresholds are varied a variety of qualitatively 
different oscillations in pupil area are obtained. Experimentally obtained oscillations in
clude simple limit cycles (Fig. 6c), more complex limit cycles (Fig. 6d and e) and aperiodic 
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Fig. 6. Comparison of the changes in pupil area that occur as a function of time with imposed mixed feedback 
to those predicted by Eq . 4. 
The piecewise constant mixed feedback is shown in (a). The parameters r:t.c = 3.88 s - 1

, ad= 0.265 s - 1
, 

A
0

" = 15.5 mm2
, A

0
rr = 34.2 mm2 were obtained from a preliminary experiment with piecewise constant 

negative feedback which produces simple osci llations of the type shown in (c). The parameters are calculated 
from the slope and intercept of plots of the maxima and the minima of these oscillations as a function of the 
area threshold (data shown in b) (23]. The neural time delay is measured from the latency of the pupil response 
to a single pulse of light. The total delay in the experiment comprises this neural delay and the electronic 
processing delay (100 ms) and was 411 ms. The upper (02) and lower (0) area thresholds have been indicated 
by the " "at the right hand sides of the figure and were respectively: (c) 21.5 mm2

, 24.5 mm2
; (d) 21 mm2

, 

22 mm2
; (e) 18.9 mm2

, 19.5 mm2
; (f) 17.95 mm2

, 18.5 mm2
. After MILTON et a l. (5] 

oscillations (Fig. 6 f). Qualitatively simi lar solutions are produced by equation 4 for the 
parameter values measured experimentally. The best agreement occurs for the simpler 
oscillations, e.g. Fig. 6c and d. However, although equation 4 correctly predicts that com
plex oscillations should be observed for certain choices of 01' 0

2 
(Fig. 6 f), the predicted 

oscillations are periodic and qualitatively clearly different from those seen experimentally. 
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It has been suggested that this discrepancy between model and experiment may reflect 
the influence of multiplicative noise [5, 22]. In other words, the region in parameter space 
over which complex dynamics would be expected to be observed is relatively small com
pared to the magnitude of the fluctuations in certain of the parameters. Thus complex 
dynamics, such as those shown in Fig. 6f, may reflect a combination of different types 
of solutions in adjacent regions of parameter space and transients resulting from the per
turbations introduced by the noisy parameter fluctuations . Further, the observability of 
a given type of behaviour will depend not only on the area of parameter space over which 
it occurs, but also on the correlation time of the noise, i.e. on how fast the value of the 
noisy parameter(s) changes. 

The pupil area oscillations shown in Fig. 6c have the same overall morphology as the 
corresponding solutions of equation 4, but possess less detail. This likely reflects the in
ability of the slowest elements of the reflex arc to undergo rapid, sudden changes in direction. 
One approach for including the elasto-mechanical properties of the iris and its muscula
ture is to extend equation 4 to a second order delay-differential equation of the form 

dA 2 dA 
dt2 + /3 dt + aA = G(A) (5) 

dA 2 dA 
where the term --2 represents a mechanical inertial force , /3 - is a frictional , or damping, 

dt dt · 
force , aA is a restoring force, and G(Ar) is a delayed restoring force (equal to the right hand 
side of equation 4 for piecewise constant mixed feedback). Preliminary computer simulat
ions indicate that the solutions of equation 5 are in better agreement with the oscillations 
shown in Fig. 6e and that the regions of parameter space over which more complex dynamics 
are observed are extremely narrow [29]. 

Equation 5 commonly arises in the description of the delayed feedback control of the 
movement of mechanical or neuromuscular systems [30]. Potential applications include the 
sensory feedback control of upper and lower limb motor prosthesis [31] and the remote 
control of robotic arms in space [32]. However, very little is known about the properties 
of the solutions of equation 5. The existence of periodic oscillations has been proved for 
the special case when /3 = a + b and a = ab , where a, bare positive constants [33] . When 
/3 = 0, the solutions of equation 5 can be constructed geometrically and reveal a remarkable 
richness of different types of dynamical behaviours including a variety of unconventional 
bifurcation schemes [34]. 

Discussion 

The nervous system is capable of generating exceedingly complex dynamics. Recently 
emphasized examples include finger tapping of parkinsonian and normal subjects [35], 
neural spike trains recorded from sea slugs [36] and the pre- and post-central gyri of monkeys 
[37], and the electroencephalogram recorded from humans under a variety of conditions 
[38 - 46] and from the olfactory bulb of rabbits [47]. Several authors have suggested that 
these complex noise-like time series may be of deterministic origin and , in particular, 
chaotic in nature. This claim has been supported by the demonstration that the experi
mentally collected time series can be described by measures typically associated with the 
description of chaotic dynamical systems, e.g. fractal dimensions and positive Liapunov 
exponents . 
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Surprisingly, little attention has been directed towards the identification of neural me
chanisms which would be capable of generating complex dynamics. Indeed it appears to 
have been implicitly assumed that complex dynamics are a consequence of the obvious 
anatomical complexity of the nervous system. Here we have pointed out that very simple 
neural networks are capable of generating complex dynamics. In other words, complexity 
of a time series does not necessarily imply an underlying complexity in neural mechanisms. 

We have shown that simple neural networks which incorporate mixed feedback, e.g. 
recurrent inhibition, are capable of producing very complex dynamics. The fact that re
current inhibitory loops are associated with virtually every neuron in the central nervous 
system [48] emphasizes their importance. The observation that the statistics of CAI neural 
spike trains can be reproduced by a simple deterministic model for hippocampal recurrent 
inhibition indicates that complex neural time series can arise from relatively simple neural 
networks. The functional consequences of recurrent inhibition are typically discussed in 
the context of larger neural networks in which the inhibitory interneuron is capable of 
inhibiting a large number of neurons simultaneously. KA DEL and SCHWARTZ [49] have 
emphasized, for example , the possible role played by recurrent inhibition in shortening 
the output of a group of tonically active neurons and for highlighting the activity of those 
neurons which are relatively more activated. The tendency for recurrent inhibitory networks 
to produce complex dynamics does not appear to have been previously emphasized. In 
this sense recurrent inhibitory dynamics are quite distinct from the simple dynamics pro
duced with negative feedback as in , for example , the pupil light reflex. 

However, the experiments with the pupil light reflex clamped with mixed feedback 
suggest that complex neural dynamics can also arise because of the influence of noise. 
Thus , in general , the different components of the observed dynamics must be carefully 
identified and evaluated before the aperiodic behaviours generated by the nervous system 
can be confidently assigned a deterministic origin. 

The pupil light reflex and a recurrent inhibition are examples of very simple neural net
works, which , under appropriate circumstances , can generate complex dynamics . In both 
instances the anatomy and neurophysiology are well known. Thus it is possible to investi
gate the origins of the complex dynamics in greater detail than is possible , for example, 
with the electroencephalogram of the brain. An important aspect of this approach is the 
development of simple, b~t realistic mathematical models. However, physiological con
siderations suggest a number of extensions to existing models for which little is known. 
Examples include state-dependent delays (recurrent inhibition), second-order delay differ
ential equations (pupil light reflex) and delay equations with distributed delays to account 
for a distribution of conduction velocities (pupil light reflex, recurrent inhibition). More
over, since the ultimate aim of any modelling study is to compare prediction to experimental 
observation, it would seem to be prudent to eventually study the behaviour of these models 
in the presence of stochastic perturbations (additive and/or multiplicative) [29]. We expect 
that by the developing of appropriate mathematical models in conjunction with careful 
experimentation it should be possible to gain better insights into the generation of complex 
dynamical behaviours by the nervous system. 
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