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Consumer Memory and Price Fluctuations 
in Commodity Markets: An Integrodifferential Model 
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A model for the dynamics of price adjustment in a single commodity market is 
developed. Nonlinearities in both supply and demand functions are considered 
explicitly, as are delays due to production lags and storage policies, to yield a 
nonlinear integrodifferential equation. Conditions for the local stability of the 
equilibrium price are derived in terms of the elasticities of supply and demand, 
the supply and demand relaxation times, and the equilibrium production- 
storage delay. The destabilizing effect of consumer memory on the equilibrium 
price is analyzed, and the ensuing Hopf bifurcations are described. 
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1. INTRODUCTION 

Trade cycles, business cycles, and fluctuations in the price and supply of 
various commodities have attracted the attention of economists for well 
over 100 years and possible more than thousands of years (Weidenbaum 
and Vogt, 1988). Early authors often attributed these fluctuations to 
random factors, e.g., the weather for agricultural commodities (Kalecki, 
1952; Slutzky, 1937). 

Other workers speculated that economic cycling or fluctuations might 
be an inherent endogenous dynamical behavior characteristic of unstable 
economic systems (Ezekiel, 1938). A number of business cycle models 
postulating the existence of nonlinearities to account for limit cycle 
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behavior have played a fundamental role in sharpening the debate between 
the proponents of the exogenous versus endogenous (or stochastic versus 
deterministic) schools [cf. Zarnowitz (1985) and the references therein]. 

The recent explosive developments of modern dynamical system 
theory (Glass and Mackey, 1988; Guckenheimer and Holmes, 1983; Lasota 
and Mackey, 1985) have shed new light on this debate. The possibility that 
economic fluctuations may reflect underlying periodic or chaotic dynamics 
in nonlinear economic systems has been explored in various contexts 
[Gabisch and Lorenz (1987), Goodwin et  al. (1984), Grandmont and 
Malgrange (1986) and references therein]. 

Interestingly enough, this recent rekindled interest in the techniques 
from dynamical systems theory has almost exclusively ignored the potential 
role of production delays in generating fluctuations in economic indicators 
[Howroyd and Russel (1984) is an exception]. This omission is surprising 
for two reasons. The first is historical, because Ricci (1930), Schultz (1930), 
and Tinbergen (1930) almost simultaneously utilized the known lag 
between the initiation of production decisions and the delivery of goods to 
discuss commodity cycles in a discrete time mathematical framework that 
became known as cobweb theory (Ezekiel, 1938; Kaldor, 1933; Leontief, 
1934; Waugh, 1964). Further, Kalecki (1935, 1937, 1943, 1952, 1972), 
Haldane (1933), Goodwin (1951), and Larson (1964) all developed con- 
tinuous time theories of cyclic economic behavior formulated as delay dif- 
ferential equations. Secondly, the broad spectrum of dynamic behaviors to 
be found in nonlinear delay differential equations is now well documented 
(Glass and Mackey, 1979, 1988; an der Heiden, 1979, 1985; an der Heiden 
and Walther, 1983; an der Heiden and Mackey, 1982, 1987; an der Heiden 
et  al., 1981; Kaczmarek and Babloyantz, 1977; Lasota, 1977; Mackey and 
Glass, 1977; Mackey and an der Heiden, 1984; Mates and Horowitz, 1976; 
Nisbet and Gurney, 1976; Peters, 1980; Saupe, 1982; Walther, 1981, 1985; 
Wazewska-Czyzewska and Lasota, 1976). 

In this paper, we analyze an integrodifferential equation to model the 
price dynamics of a single commodity market. Supply and demand 
schedules are explicitly accounted for, as well as production plus storage 
delays and consumer memory. This model is derived in Section 2. In Sec- 
tion 3, we consider the local stability of the equilibrium price, relating this 
stability to the relevant economic parameters. The limiting case of no con- 
sumer memory is considered first, and then the bifurcations introduced by 
finite average consumer memory are treated. Stability of the equilibrium 
price is lost at a supercritical Hopf bifurcation, giving rise to an oscillatory 
variation in the commodity price. When a finite average consumer memory 
is operative, there is a possibility for subcritical Hopf bifurcations, and an 
arbitrary number of sub- and supercritical Hopf bifurcations. In Section 4, 
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the well-known discrete time cobweb formulation and the continuous time 
models of Haldane and Larson are formally derived as limiting cases of our 
model. 

The main results of this paper are contained in Section 3, where we 
investigate the destabilizing role of consumer memory on the equilibrium 
price. In particular, we find that stability switches (Cooke, 1985) can be 
introduced by the existence of a finite average consumer memory. 

2. F O R M U L A T I O N  OF THE M O D E L  

In considering the dynamics of price, production, and consumption of 
a particular commodity, we assume that relative variations in market price 
P(t) are governed by the equation 

l dP 
7, -~ = f(D(PD), S(Ps)), (2.1) 

where D(. ) and S(-), respectively, denote the demand and supply functions 
for the commodity in question. The arguments of the demand and supply 
schedules are given by PD (demand price) and Ps (supply price), respec- 
tively, rather than simply the current market price P, for reasons detailed 
below. It is further assumed that the minimum demand is always exceeded 
by the maximum supply, 

min D(PD) <~ max S(Ps). (2.2) 
PD PS 

The price change function f(D, S) relates the relative change in market 
price [(dP/dt)/P] to the imbalance between demand and supply, and 
satisfies the conditions: 

(i) 

(ii) 

f(D, S) = 0 

of 
- ~ =  fD>~O, 

~s =fs<~O. 

when D = S ;  and 

In a simple case f might be given by 

f(D, S ) = D - S .  

2.1. Demand Price 

In specifying how consumer behavior affects commodity demand, we 
assumed that this behavior is governed by an integration of information 
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regarding past prices. Thus, demand for a commodity is a weighted func- 
tion (PD) of past prices. In calculating this weighted function, we assume 
that, at time t, the consumer attaches a weight K o ( t - u )  to a past market 
price P(u), where - oe ~< u ~< t, and that the weighted average of all of these 
past prices is just the demand price: 

f 
t 

PD(t) = Ko(t -- U) P(u) du. (2.3) 

The weighting function KD(q), the demand price kernel is assumed to be 
normalized: 

f o  KD(q) dq -- 1. 

2.2. Supply Price 

To complete the formulation of the model, the relation between 
current market price P and the supply price Ps must be specified. We 
assume that producers, like consumers, take past market prices into 
account when making decisions to initiate alterations in production using 
an analogous normalized weighting function, the supply price kernel Ks(q). 
For most commodities, there is a finite minimum time Train ~> 0 that must 
elapse before a decision to alter production is translated into an actual 
change in supply. In agricultural commodity markets, this delay is related 
to biological constraints (e.g., the gestation plus growth period). Then the 
supply price Ps is given by 

i 
t - -  Train 

Ps(t) = Ks(t - Tmi, - u) P(u) du, (2.4) 
~ - -  o o  

in complete analogy with the demand price. 
Equations (2.1), (2.3), and (2.4), in conjunction with a specification of 

the functions f (D,  S), D(PD), and S(Ps), complete the formulation of the 
model when an initial function P(to), - Train <~ to <<. O, is given. The unique- 
ness of the model lies in the dynamics of market price being governed by 
a nonlinear integrodifferential equation. 

3. EQUILIBRIUM AND STABILITY 

In this section, we determine the steady state or equilibrium price for 
the model derived in the previous section, and investigate the local stability 
of the equilibrium price as a function of the various economic factors. 
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Denote the demand and supply prices Po and Ps for which demand 
and supply are equal by P*. Since it has been specified that f(D, S)= 0 
when D = S, it is clear that 

1 dP* 
- - - - ~ 0 ,  
P* dt 

Thus, P* is the equilibrium, or steady state, price of the commodity, and is 
implicitly determined by the relation 

D( P* ) = s(  e*  ). 

Because of the specified properties of D and S in Eq. (2.2), at least one 
equilibrium price must exist, though the existence of more than one equi- 
librium price is not excluded. 

In examining the stability of the equilibrium price P*, we would like 
to determine, as generally as possible, the conditions under which P* is 
globally asymptotically stable. Because of the inherent nonlinearity of the 
model as formulated, this global stability cannot, in general, be determined. 
One must be content with an examination of the local asymptotic stability 
of the equilibrium price P*, i.e., stability under small perturbations. The 
local stability of the equilibrium price does not, by itself, offer any insight 
into the global stability of P* without additional study. However, the local 
instability of the equilibrium price in turn guarantees the global instability 
of P*, and may indicate the existence of limit cycle or other behavior in the 
full model. 

We expand all nonlinearities in the model derived in the previous 
section in a Taylor's series about the equilibrium price P*, and discard all 
nonlinear terms. We then define a new variable z ( t ) = P ( t ) - P *  and 
ultimately find that z(t) satisfies the linear variational equation 

dz 
- -=  P * [ f *  D*ozD + f *  S*szs]. (3.1) 
dt 

In Eq. (3.1), the symbols have the following meaning: 

f * = f D ( D * )  where D*=D(P*) 

f *  =fs(S*) where S* =S(P*)  

~D P~= S* - ~S 
D*o = Op D p., es - ~Ps es= e* 

The value of D*o gives the slope of the demand function D with respect to 
the consumer weighted demand price PD evaluated at the equilibrium price 
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P*, with a corresponding meaning for S* s. Finally, the variables zD and Zs 
in Eq. (3.1) are given by the integrals 

and 

f 
t 

z~(t) = K ~ ( t -  u) z(u) du, (3.2) 
- - o o  

f 
t T r a i n  

Zs(t) = Ks(t  - Tmin - u) z(u) du. (3.3) 
- - o o  

The coefficients in the linear variational Eq. (3.1) for z(t) can be 
rewritten in terms of the elasticities of demand and supply. By definition, 
the elasticity of  demand, eo, is given by 

D* D 
e D = -  D*/P*'  

while the elasticity of  supply is, correspondingly, 

S* o 
e s -  S*/P*" 

Thus, (3.1) may be rewritten as 

dz 
- - =  - ADZ o -- Aszs ,  (3.4) 
dt 

where AD=eD/TD, A s = e s / T s ,  and TD= ( D ' f * )  -1 and Ts= - ( S ' f *  )-1 
are, respectively, the local demand and supply relaxation times. 

In order to determine when the equilibrium market price P* is locally 
stable, it must be determined when the linear Eq. (3.4) has solutions z(t) 
that approach zero. To do this, make the (usual) Ansatz z( t )=exp(vt) ,  
where v is a (generally complex) eigenvalue to be determined. Clearly, v 
will depend on some or all of the economic parameters eD, TD, es, Ts, 
and Train, as well as the demand and supply price kernels Ko and Ks. 
The values or ranges of these parameters such that Re(v)<0 must be 
determined. 

Substituting z(t) = exp(vt) into Eqs. (3.2), (3.3), and (3.4) results in the 
integral eigenvalue equation 

v + Ao KD(q)e -vq dq + As  Ks( q + Tmin)e -vq dq = 0 (3.5) 
- -  T r a i n  

to be solved for v. Although it is possible to obtain some very restrictive 
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sufficient conditions for Re(v)<0 from (3.5), thus implying the local 
asymptotic stability of the equilibrium price P*, their application is analyti- 
cally difficult. Thus, it is more instructive to consider the local stability 
problem after a specification of potentially interesting forms for the 
demand and supply price kernels, KD and Ks, to obtain some insight into 
how various economic parameters in this model affect the local asymptotic 
stability of the equilibrium price P*. A simple case that may be dealt with 
analytically is considered here. It involves making specific assumptions 
about producer and consumer behaviors that are reflected in properties of 
the supply and demand price kernels. 

From the supply side, we assume that producers, in making decisions 
to alter production, pay little attention to past price and base production 
alteration decisions primarily on current prices. Thus, the supply price 
kernel is a Dirac delta function Ks(q)= 6(q). Under this assumption from 
Eq. (2.4), the supply price Ps is simply Ps(t) = P(t - Tmi,). 

In terms of consumer behavior, we consider a class of consumers who 
base buying decisions on a weighted average of past prices. In addition, we 
suppose that the consumers have a fading memory, more accurate for more 
recent prices. This assumption is equivalent to assuming that the demand 
price kernel is a monotone decreasing function, which we take to be an 
exponential function 

Ko(q) = [exp(-q/Tc)]/Tc,  

where the constant T c is to be interpreted as the average length of the 
consumer memory. With this assumption, the demand price then takes the 
form 

f 
l 

Po(t) = T~ ~ [exp - ( t -  u)/Tc] P(u) du 
0(3 

and the commodity price dynamics are completely specified by 

l dP 
-~ d~= f(D(Po(t)), S ( P ( t -  Train)). (3.6) 

With these assumptions, the eigenvalue Eq. (3.5) takes the explicit 
transcendental form 

Q 
- - ) ~ T  - -  2 + ~ + e  - 0 .  (3.7) 

where 2=v/As,  Q=AD/As,  R = A s T c ,  and T=AsTmi~. We now deter- 
mine, for a fixed value of the parameter R, the region in the space of 
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parameters Q and T for which all roots of 2 Eq. (3.7) satisfy Re(2)<  0. 
This is a variant of the method of D subdivision (Kolmanovskii and 
Nosov, 1986), since one of the delays, T, is taken as a parameter. (Usually, 
the coefficients are considered variable, for fixed values of the delays.) 

In the case R = 0, Eq. (3.7) becomes a quasi-polynomial, the roots of 
which are well known. Hayes (1950) has completely characterized the 
conditions under which the eigenvalues obtained as solutions of (3.7) will 
satisfy Re(2) = 0. 

Using our notation and restricting ourselves to the case at hand, we 
have the following: 

Theorem 3.1. 
of Eq. (3.7) satisfy R e ( 2 ) < 0  if and only if 

(1) Q > I  

or (2a) Q ~ 1 

and (2b) T <  Tcrit 

arccos( - Q) 
where Tcrit = [(As)2 _ (AD)2]I/2. 

and the inverse cosine takes its value in the interval [�89 zt]. 

(Hayes). Let R = 0 and Q > O. Then all of the roots 2 

(3.8) 

(3.9a) 
(3.9b) 

(3.9c) 

The Hayes criteria are presented graphically in Fig. 1. Noting that 
Eq. (3.9c) may be rewritten in the form 

c o s - l ( -  AD/As) 
AxTcrit = [1 -- (Ao/A2s] 1/2' (3.10) 

the Hayes stability criteria may be examined by plotting them in the 
AsTmi, vs. (AD/As) plane. Since both Ao and As are positive, attention 
need only be confined to the first quadrant of this plane that is naturally 
divided into two separate regions by the conditions (3.8) and (3.9a). The 
division between these two areas is indicated by the dashed vertical line at 
(AD/As)= 1 in Fig. 1. From condition (3.8), for all combinations of the 
four parameters (eo, To, es, Ts) falling into region I (cf. Fig. 1), the 
equilibrium price P* is locally stable irrespective of the value of the total 
production delay Tmin. However, region II is naturally divided into two 
subregions, IIa and IIb: the boundary between them is indicated by the 
solid curved line that is the graph of Eq. (3.10). In the limit as 
(AD/As) ~ O, AsTcrit ~ �89 as indicated on the graph of Eq. (3.10). Thus, 
from inequality (3.9b), for all values of the parameters such that a point 
(AD/As, AsTmin) lies in region IIa, the equilibrium price will be stable. 



Consumer Memory and Commodity Markets 307 

~ 2  

l ib 

IIo 

0 edTs/Tde~ 

Fig. 1. A graphical representation of the Hayes criteria of Theorem 3.1. Any combination 
of the parameters (eD, TD, es, Ts, T) falling into region I or IIa corresponds to locally 
stable equilibrium prices P*, while parameter sets in region IIb corresponds to an unstable 
equilibrium price. The solid concave up curve is the graph of Eq. (3.9c). 

Once this point passes into region IIb, the equilibrium price becomes 
unstable. 

The effects of an alteration of model parameters on an initially stable 
equilibrium price as one parameter is varied at a time, holding the other 
four constant, are summarized in Table I. 

These results can be interpreted as follows. Because of moderately 
precise knowledge of current market conditions on the part of commodity 
traders, the supply relaxation time Ts is expected to be less than the 
demand relaxation time TD, Ts< To. Thus, the ratio AD/As=(eo/es) 
(Ts/TD) should be less than the ratio of demand to supply elasticities. This, 
coupled with the fact that O<~AD/As<I is a necessary condition for 
instability, would suggest that highly responsive and well-informed com- 
modity marketing schemes with elasticities of supply exceeding elasticities 
of demand are primary contributors to commodity price fluctuations. 

To this point, only variations in the various economic parameters 
leading to a loss of stability of the equilibrium price P* have been con- 
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Table I. Summary of Stability Results 

Parameter varied Regions visited Stability of equilibrium 

Increased production delay I ~ I Always stable 
IIA --* lib Eventually unstable 

Decreased demand elasticity I ~ IIA Always stable 
if esTnain/Ts< �89 

o r  

Increased demand relaxation I --* IIA ~ liB Eventually unstable 
if es Trnin/Ts > �89 

Increased supply elasticity 
o r  

Decreased supply relaxation 
I --* IIA --* IIB Eventually unstable 

sidered. When stability is lost, the relation T =  Tcrit between the production 
lag T and the critical combination of the elasticities of supply and demand 
and the supply and demand relaxation times holds. Using Eq. (3.9c) gives 
the explicit relation 

arccos( - A D/A s) 
T -  [(As)2 - (AD)2] m (3.11) 

defining when Re(2 )=0 .  The graph of Eq. (3.11) is the convex curve in 
Fig. 1 and the graph defines a locus of points in parameter  space for which 
Re(2) = 0. Whenever the five parameters eD, TD, es, Ts, and Tmin satisfy 
Eq. (3.11), then the eigenvalue Eq. (3.7) has a purely imaginary solution 
2 = ___ico N. Below and to the right of this curve, Re (2 )<  0 (local stability), 
while above the curve R e ( 2 ) > 0  (local instability), as can be checked 
explicitly since 

)~ = icoH 2 

d(Re 2) o9/~ 0. 
dT - (~o~,T)Z + (1 + QT) 5> 

For  the combination of parameters defined by Eq. (3.11), the linear 
variational equation has an oscillatory solution and its period may be 
calculated exactly. Indeed we have the following: 

Theorem 3.2. Let Eq. (3.11) be satisfied for some values of the 
parameters T, Ao, and A s. The Eq. (3.4) has a periodic solution of period 

21rT 
7",, = [.(As) 2 _  (A~)2]  1/2. (3.12) 
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Furthermore, 

2T <~ TI~ <~ 4T. (3.13) 

Proof. Let 2=ico in Eq. (3.7). Separating the real and imaginary 
parts leads to 

and 

A D = --As cos(coTmin) (3.14a) 

co = As  sin(coT~in). (3.14b) 

Squaring both equations and adding them yields 

co = [(As) 2 -  ( A o ) 2 ]  1/2 

for the frequency of the solutions sin(cot) and cos(cot) of Eq. (3.4), or the 
period given by Eq. (3.12). 

From Eq. (3.14a), c o H T = c o s - l ( - A D / A s ) ,  and thus Eq. (3.12) can be 
written as 

2re Tmi n 
T H = 

cos - l ( -A , /As ) "  

Since, as stated above, c o s - l ( - A D / A s ) e ( 5  , n), Eq. (3.13)follows. ] 

Remarks. (i) Eq. (3.13) makes explicit the role of the elasticities of 
supply and the price relaxation times in determining the period of the 
periodic solution. (ii)The model predicts, by Eq. (3.13), that when the 
equilibrium price becomes locally unstable there will be an oscillation in 
market price with a period that is between two and four times the produc- 
tion lag T. 

When T< TH, it is of interest to determine what happens to this 
periodic orbit. A supercritical Hopf bifurcation will take place (Stech, 1985) 
provided that certain nondegeneracy conditions are fulfilled by the non- 
linear terms in Eq. (3.6). This Hopf bifurcation is marked by the passing of 
a pair of complex conjugate eigenvalues from the left-hand to the right- 
hand side of the complex plane. Just as they cross the imaginary axis 
[when Eq. (3.11) is satisfied], the loss of stability of the equilibrium price 
is accompanied by the birth of a cyclic oscillation of period TH in the 
market price P(t) near P*. An easy but quite involved computation using 
the method of Stech (1985) yields the following: 
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Theorem 3.3. Consider Eq. (3.6) with PD(t)=P(t),  R=O, and 
(AD/As) < 1. Then there is an e > 0 such that, for a value of the parameters 
Ao, As, and Train close to and above the curve defined by Eq. (3.11), there 
exists an orbitally asymptotically stable periodic solution y(t) of Eq. (3.6), 
satisfying [I y - P* I] < e, provided that 

Re{[3h3(r r q~) + 2h2(q~, aze2'~162 ao)]/[1 - Te r~i]} <0 ,  (3.15) 

where 

~ ( s )  = 

a 0 = 

h~(r ;)= 

h3(r (, ~/)= 

e2O, i, az=h2(O,O)/(2ogi+Q+e 2~er), 

2hz(r r + 1), 

C~b(0) ~(0) + D~b( - T) ~( - T) + E {r ~( - T) + r - T) ~(0)}, 

F~b(0) ~(0) q(0) + Gr - T) ~( - T) ~/( - T) 

H 
+ ~- [~b(0) ~( - T) r/( - T) + r - T) ~(0) r/( - T) 

+ r - T) ~( - T) r/(0) ] 

and the Taylor expansion about P* in Eq. (2.1) is given by 

Pf(D(P) ,  S(P,)) = A ( P -  P*) + B(P~ - P*) + C ( P -  p,)2 

+ D(P~-  p,)2 + E ( P -  P*)(P~ - P*) + F ( P -  p, )3  

+ G ( P s - P * )  3 + H ( P - P * ) ( P s - P * )  2 

This periodic solution is unique up to a phase shift. 

If we now incorporate consumer memory into Eq. (3.6), then this 
corresponds to R > 0 in Eq. (3.7). In this case, the preceding calculations 
essentially carry over, but the algebraic complications increase somewhat. 

As a first step, we determine the values of the parameters Q, R, and 
T for which Eq. (3.7) possesses pure imaginary roots 2. We proceed by 
fixing R > 0, and considering Q and T as parameters. We have 

Theorem 3.4. Consider Eq. (3.7) for a fixed value of R > O. Then the 
values of T giving pure imaginary roots 2 = ico of Eq. (3.7) are given by 

(i) if R < v / 2 - 1 ,  then Q~[-O, 1)and 

21/2R a r c cos ( -  2Q/[ 1 + 2RQ + R 2 + [(1 + R2) 2 + 4RQ(R 2 - 1 )] ~/2) 
T+ - {R2+ 2 Q R -  1 + [(1 + R2)2+ 4RQ(R 2 -  1)] 1/2} 

(3.16a) 
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(ii) if ~ / 2 - 1 < R < l ,  let Qc=(I+R2)2/{4R(1-R2)};  then for 
Q e [-0, Qe), T is given by Eq. (3.16a). Further, for Q e [1, Qc), there is 
another family of roots given by 

2m R arccos(-  2Q/[ 1 + 2RQ + 8 2 - [(1 + R2) 2 +4RQ(R 2 - 1)] 1/2) 
T ---~ {R 2 + 2QR - 1 - [-(1 + R2) 2 + 4RQ(R 2 - 1 )] 1/2 } 

(3.16b) 

(iii) if  R > 1, for Q ~ [0, ~),  T= T+ as given by Eq. (3.16a) and, 
for Q~ El, ~),  T= T as given by Eq. (3.16b). 

Remark. The region of definition of each family of roots in the 
parameter plane (R, Q) is shown in Fig. 2. 

Proof. Separating the real and imaginary parts of Eq. (3.7) after 
letting 2 = io9, we obtain 

cos(~oT) = -Q/(1 + R2092) (3.17a) 

O 

o ~ - 1  1 R 

Fig. 2. An illustration of the parameter values giving pure imaginary roots of Eq. (3.7). The 
boundary curve for x f 2 - 1 ~ < R < l  is defined by Q=(l+R2)2/E4R(1-R2)]. The roots 
c o + ( ~ )  and oJ ( ~ )  are given by Eq. (3.19). 
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sin(~oT) = o)[1 - R Q / ( 1  + R2co2)]. (3.17b) 

Since roots of Eq. (3.7) come in conjugate pairs, we assume without loss 
of generality that ~o > 0 in Eqs. (3.17). Adding the squares of the right-hand 
sides of Eqs. (3.17) yields a quadratic polynomial in the variable 09 2, with 
coefficients that are polynomials in the parameters Q and R: 

R2o~ 4 -{- ( l  - -  2 Q R  - R2)co z + Q2 _ 1 = 0. (3.18) 

Solving this last equation for the roots co 2 yields 

R 2 + 2 Q R  - 1 +_ [ ( R e + 2 Q R  - 1) 2 -  1 )2 -  4R2(Q 2 -  1)] ~/2 
2 (3.19) co + - 2R 2 

Since e) is real, the roots defined by Eqs. (3.19) only exist when the 
discriminant in Eq. (3.18) is positive. This occurs for all values of Q when 

o I Q 

Fig. 3. A graphical representation of the values of the parameters Q and T leading to 
stability of the null solution in Eq. (3.4): local stability occurs for parameter values in the 
hatched region. Here, R=0.35,  but the diagram is qualitatively unchanged for values of R 
between 0 and x / ~ -  1 (cf. Theorems 3.4 and 3.5). 
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R >  1, but only for Q < ( 1  +R2)2/[4R(1 --82)] if R <  1. Furthermore, the 
z must be positive. For ~o_ this is equivalent to values of the roots ~o+ 

Q >  1; for 09+, this introduces the restriction that Q <  1 whenever 
R <21/2-  1. In each of these regions, the square roots can be taken in 
Eq. (3.19), the positive root being kept by the remark above. Substituting 
these values back into Eq. (3.17a), we obtain Eqs. (3.16a) and (3.16b). I 

Once the roots given by Theorem 3.4 are known, we have to deter- 
mine how their real parts vary as a function of the parameters. In par- 
ticular, among the infinite branches given by Eqs. (3.16), we must find 
which ones are parts of the boundary of the domain of stability of 
Eq. (3.7). This problem is resolved in the following: 

Theorem 3.5. Consider Eq. (3.7), and denote TJ+ (resp. T J) the root 
given by Eq. (3.16a) [resp. (3.16b]) for which the arccosine takes its value 
in the interval (n/2 + 2nj, n + 2nj) [resp. (7z/2 + 27tj, 7z + 2rtj) /f R < 1 and 
(re + 2rcj, 37r/2 + 27tj) /f R > 1], where j is any positive integer. Then the 

71 

o 1 0 

Fig. 4. Same as in Fig. 3, except row R = 0.85 and, more generally, R is between ~ -  1 and 
1 (cf. Theorems 3.4 and 3.5). Notice the change of scale. 

865/1/3-5 
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positive values of  Q and T for  which all roots 2 o f  Eq. (3.7) satisfy Re()~)< 0 
are given, according to the values of  R, by 

A. R < x / / 2 -  1 �9 Q > I  or Q < I  and 

(1 + R 2 )  2 
B. x / ~ -  1 < R <  1: Q >  

4R(1 - R 2) 

< (1 + R2) 2 

or Q 4 R ( 1 _  R2) 

C, R > I :  0 < T < T +  or 

ro 

and T < T ~ or T j < T < T J+ + 1 

T j < T <  T J + t  _ - - q -  �9 

Remark .  Each of these three cases is i l lustrated in Figs. 3-5. 

Proof.  F r o m  Eq. (3.17) it is clear that  cos(co+ T)<~ 0. It  is easy to see, 
f rom Eqs. (3.17b) and (3.19), that  sin(co+ T) is always positive, and that  

o 1 Q 

Fig. 5. Same as in Fig. 3, except now R = 1.15 and, more generally, R is greater than 1 (cf. 
Theorems 3.4 and 3.5). Notice that the stability region is now multiply connected. 
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sin(~o_ T) is positive if and only if R < 1. For a fixed value of R, the 
appropriate branches of the inverse cosine functions in Eqs. (3.16) thus 
have the ranges specified in the definitions of T+ and TJ .  Three distinct 
cases must be analyzed. Consider first case A, defined by the requirement 
that R < x / ~ - 1 .  Then only branches T~_ give rise to imaginary roots of 
Eq. (3.7), as follows from Theorem 3.4. Given the expression of Eq. (3.16a) 
for all of these branches, it is easy to see that limQ~o TJ+(Q)=n/2 +2nj,  
lime~. 1 TJ+(Q)= 0% and no two branches T~ and Tk+ can intersect when 
j 4 = k. For a fixed value of Q less than 1, an increase in values of T thus 
leads to a successive crossing of all branches T+ in increasing order of the 
integer j. An implicit differentiation of Eq. (3.7) leads to 

~T (Re 2) 

[(1 + R2efl) 2 - RQ(RQ + 2)]0) 2 

- {o)2(R 2 + 2 R T ) -  (1 + TQ - RQ} 2 + co2{2R + T +  TRQ + (~2R2T} 2 

(3.20) 

and use of Eqs. (3.16) then gives 

~T~ _ ~+ (Re 2) > 0. (3.21) 

On any branch T =  T~_(Q), eigenvalues of Eq. (3.7) cross from the left half 
to the right half of the complex parameter plane 2, and Eq. (3.7) thus has 
all of its roots with negative real part when T <  T ~ if Q < 1. [When Q > 1, 
there are from Theorem 3.4 no values of T giving imaginary roots of 
Eq. (3.7).] 

At the value R = x f 2 - 1 ,  a significant change occurs in the region of 
stability, as shown in Fig. 4, and remains so for values of R between 
x / 2 - 1  and 1. In this case, values of Q greater than Q c = ( I + R 2 ) 2 /  
4R(1 - R 2) give a stable steady state for all values of T (see Theorem 3.4). 
When Q < Qc, there is a finite value of T at which a solution of Eqs. (3.17) 
exists, and is given by Eq. (3.6). In Eq. (3.16b), the curves T~ are only 
defined for Q ~ (1, Qc) whereas the curves TJ+ are defined, by Eq. (3.16a), 
for Q e (0, Qc). Unlike the previous case, however, the variation of the real 
part of an eigenvalue 2 of Eq. (3.7) is not uniform on all curves defined by 
Eqs. (3.16). Indeed, Eq. (3.21) still holds, but we have 

~T~ (Re 2) < 0. (3.22) 
- -  i o 9  _ 
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From Eqs. (3.16), one computes lira Q + o T J+ (Q) = 2ztj + re/2, 

lim T~_(Q)= lim TJ_(Q)=2R 
Q~fQc Q~Qc 

1 - R 2 

- R 4 + 6R 2 - 1 

and 

• arccos 

lim T J ( Q ) =  ~ .  
Q$1 

I - ( 1 + R 2 )  2 7 
R(-3 R4) j  , 

For increasing values of T at a fixed value of Q s (1, Qc), there is thus a 
loss of stability at the values T=T+(Q) defined by Eq. (3.16a), and 
(re)gain of stability at the values T =  T_(Q) defined by Eq. (3.16b). 
Furthermore, for a fixed value of Q less than 1, roots of Eq. (3.7) can only 
become pure imaginary by crossing from the left-hand side to the right side 
of the complex plane and, thus, once stability of the stationary solution has 
been lost, it cannot be gained by increasing T (see Fig. 4). 

When R >  1, a "perturbation" of the stability diagram obtained for 
R ~ ( x / ~ - 1 ,  1) (Fig. 4) leads to Fig. 5. It reflects the fact that both co+ 
and co_ now exist for all values of Q greater than 1, and that co+, of 
course, exists also for Q s (0, 1). At a fixed value of Q greater than 1, the 
calculations from the paragraph above indicate that, as T increases, 
stability is lost at T =  T+ and gained at T =  T_. The main difference from 
the previous case is that there are no values of Q for which P* is stable at 
all values of T. In other words, when R > 1, for a fixed value of Q, there 
is always a value of T at which the steady state P*, which is stable for T 
small enough, loses its stability: the region of absolute stability has 
disappeared. II 

As in the more simple case of R = 0, nondegeneracy conditions must 
be fulfilled for a Hopf bifurcation to occur at the values of T and Q for 
which Eqs. (3.17) are satisfied. Namely, only one pair of eigenvalues of 
Eq. (3.7) must be on the imaginary axis, and all others must lie in the left- 
hand half of the complex plane: this is clear from the continuous 
dependence of 2 on Q and T in Eq. (3.7) and the calculation above. There 
is also a condition involving the nonlinear terms of Eq. (3.6). When this 
condition is fulfilled, a supercritical Hopf bifurcation occurs, and a stable 
periodic solution appears when the steady state is unstable. The period of 
this solution can be estimated, and will depend upon the value R. 

Let us write TH for the period of the oscillating solution at the bifurca- 
tion value. Then TH= 2re/coil, where con is the value of the root of 
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Eqs. (3.17). Using the explicit expressions of Eqs. (3.16) and Eq. (3,19), we 
obtain 

27~ 27r 
T n - T+ or T_ 

arccos(co + ) arccos(co ) 

according to whether COn=CO+ or a n = c o  . As mentioned above, the 
inverse cosine function takes its value either in an interval 
(7r/2 + 2ztj, ~ + 2~j) or (Tr + 2~j, 37z/2 + 2z~j), where j is an integer, depend- 
ing on the value of R if co~/= ~o_. Thus, 

2T<~Tn<~4T if ~ou= to+ 

COIl = CO_ 

4T<~TH<~2T if coil = co 

(3.23a) 

and R < 1 

and R > 1, (2.36b) 

when j = 0, which gives the bifurcation line present for all values of R. 
The model thus predicts that, when the equilibrium price becomes 

unstable, the induced oscillation in market price will have a period between 
two and four times the production lag T, when consumer memory is suf- 
ficiently poor. When an improvement in the latter occurs, however, this 
induced oscillation may have a period of either between two and four times 
the production delay T or between four-thirds and two times the produc- 
tion lag T. 

4. RELATION TO OTHER MODELS 

In this section, we compare the model presented here with well-studied 
models from the economic literature. 

The discrete time cobweb models that have been so widely exploited 
in economic modeling are limiting cases of the model developed here. To 
see this, examine the price adjustment dynamics embodied in Eq. (3.6), viz. 

l dP 
~ - ~ =  f(D(P), S (P( t -  T)), (4.1) 

with Po = P and Tmi~ = T. When the supply and demand relaxation times, 
Ts and To, are very short so price adjustment is quite rapid, then 

so, from Eq. (4.1). 

l dP 
P d t  

f ( D ( P ) ,  S (P ( t  - r ) )  = 0. 
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Hence, from the properties of f specified in Eq. (2.3), in this limiting case 
Eq. (4.1) reduces to an implicit (generally nonlinear) difference equation 
in P(t): 

D(P( t ) )  = S (P( t  - T)). (4.2) 

If the demand schedule D is a locally monotone (and thus invertible) 
function, then Eq. (4.2) may be written in the explicit form 

P(t)  = F(P( t  - T))  (4.3) 

where F = D -  1 o S. When time t is measured in units of the constant lag T, 
then Eq. (4.2) or the explicit version (4.3) is the limiting cobweb version 
of our model that should hold under conditions of very rapid price 
adjustment. 

It is well known that the equilibrium price P*, given by the solution 
of D ( P * ) =  S(P*) ,  is locally asymptotically stable when 

F ' ( P * )  < 1 (4.4) 

and unstable when 

F ' ( P * )  > 1. (4.5) 

Now F ' ( P * ) = S ' ( P * ) / D ' ( P * ) = e s / e D  so conditions (4.4) and (4.5) are 
simply the discrete time-limiting cases of conditions (3.8) and (3.9) of the 
Hayes criteria for the stability of the continuous time model. 

Recently a variety of discrete time economic models that may be cast 
into the form of the map (4.3), or higher dimensional versions, have been 
studied because of their period doubling bifurcation structure leading to 
the generation of chaotic time series [Goodwin et al. (1984) and references 
therein]. However, the analogy between discrete maps, such as Eq. (4.3), 
and delay equations, such as Eq. (4.1), from which they are derived as a 
singular limit, may have severe limitations as far as the dynamical behavior 
of each system is concerned (Mallet-Paret and Nussbaum, 1986). 

In an apparently little known paper, the British physiologist 
J. B. S. Haldane developed a linear model for a single commodity market 
(Haldane, 1933). In this model, p(t)  denotes the fractional deviation of 
commodity price away from its equilibrium value, and Haldane argued 
that the dynamics of p(t)  should be governed by the integrodifferential 
equation 

= --Ap - B g(x)  p( t  - x )  dx, (4.6) 
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[cf. Haldane (1933), Eq. (2), with notational changes]. In Eq. (4.6), the 
coefficient A is proportional to the elasticity of demand while B is propor- 
tional to the elasticity of supply. 

A comparison of Eq. (4.6) with Eq. (3.4) shows that the Haldane 
model is a special case of that presented here under the assumption that the 
demand kernel is a delta function and the function g is identified with the 
supply price kernel, Ks. 

Some 30 years later, apparently unaware of Haldane's work, Larson 
(1964) proposed a "harmonic motion" model for the cyclical behavior of 
the pork market. A linear relation was assumed between market price P 
and the quantity of part marketed, that supply being determined by the 
linear delay differential equation 

dS 
dt  = k [P( t  - T) - P*] 

relating the rate of change of supply to the lagged deviation P ( t -  T) from 
the equilibrium price P*. From these two assumptions, Larson derived the 
equivalent relations 

and 

dz 
- - =  - R z ( t -  T) (4.7) 
dt 

ds 
- - =  - R s ( t -  T), (4.8) 
dt 

where z and s are the deviations from the equilibrium price and supply, 
respectively. Eqs. (4.7) and (4.8) have oscillatory solutions of period 
exactly 4T for R =  1 and, to explain the 4-year cycle in pork price and 
supply, Larson made the ad hoc assumption that R =  1, along with the 
reasonable choice of T= 1 year. 

Eq. (4.7) is simply the linear version of the model presented here (cf. 
Eq. 3.6) under the assumption that supply price is Ps( t )=  P ( t - T ) ,  and 
either that the elasticity of demand is identically zero or, equivalently, that 
the demand relaxation time is infinite. Thus, Larson's harmonic motion 
commodity market model is another limiting case of the model developed 
here. 

5. DISCUSSION AND CONCLUSIONS 

The work presented here furnishes further evidence that the presence 
of delays in regulatory mechanisms may introduce destabilizing effects. 
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However, different delayed regulatory actions may lead to different effects, 
as has been discussed in models for the regulation of populations (Cooke, 
1985). 

From a mathematical point of view, various avenues have been 
explored to investigate these effects (Driver, 1963b; Myshkis, 1977; Stech, 
1978; Walther, 1976). We will mention only two. The first concerns the 
consequences of modifying the kernels in integrodifferential equations. 
Roughly speaking, the more weight that is given to the past, the less stable 
an equilibrium point is (Hadeler, 1976; Walther, 1976). This is very much 
in line with our results. The second one deals with the introduction of a 
second delay, by considering when a delayed regulatory mechanism takes 
effect. Once again, the longer this second delay is and the less stable the 
equilibrium point is, in the same sense as in the previous case: the region, 
in parameter space, leading to an asymptotically stable steady state is 
reduced when this second delay is increased (Stech, 1978). 

In an economic context, our work shows that the production delays in 
commodity markets are potentially destabilizing factors, as has been 
pointed out previously (Goodwin, 1951; Haldane, 1933; Kalecki, 1935, 
1937, 1943, 1972; Larson, 1964). However, our analysis seems to be the 
first one displaying an explicit consideration of the roles played by a 
variety of economic parameters in determining the stability of a single 
commodity market, and the relation of the period of the oscillation when 
the market becomes unstable to various economic parameters. 

The model that we have presented could be refined in several ways. A 
very interesting one would be the incorporation of a variable production 
delay. Indeed, certain commodities, once produced, may be stored for a 
variable period of time (denoted by A) until market prices are deemed 
advantageous by the producer. Typically, it would be expected that, as 
market prices increase, the storage period is likely to fall with the maxi- 
mum storage period (Zmax) occurring when the market price is in the 
neighborhood of the production price. Furthermore, if the market price 
falls very much below the production price, then the storage period may 
again fall as producers attempt to recoup as much of their investment as 
possible (the dumping phenomenon). For goods that are not perishable, or 
that do not become obsolete, the maximum storage period would be 
infinitely long, but this seems unrealistic for most situations and the maxi- 
mum storage time is usually expected to be finite. In these circumstances, 
the total production delay (the total elapsed time between the initiation of 
changes in production and the final alteration of supply), T, may either be 
a monotone decreasing or humped function of current market price, 
T(P) = Tmir~ + A(P), where Tmin ~ T(P) <~ Tmi n h- Area x. The ultimate conse- 
quence of this variable storage capability would be that market prices 
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between a time t -  T ( P )  in the past and the present time t cannot have any 
effect on the current supply price Ps( t ) .  Thus, Eq. (2.4) would be 
modified to 

U r(P) 
P s ( t )  = J | _  ~ K s ( t  - T ( P )  - u) P (u )  du. 

Similar problems with state-dependent delays arise naturally in relativistic 
electrodynamics in which the motion of two particles is determined by a 
central interaction, but occurring with a time delay that is an increasing 
function of the interparticle separation (Driver, 1963a). Also, the control of 
mammalian platelet production involves a nonlinear feedback operating 
with a variable delay that depends on the number of circulating platelets 
(B61air and Mackey, 1987; Mackey and B61air, 1988). In both of these 
examples, however, the state-dependent delay is monotone increasing and 
therefore quite different than what would be expected in an economic 
context. 

To our knowledge, there has never appeared an explicit consideration 
of the effect of adding price-dependent storage policies in commodity 
market models of the type considered here. The results presented here 
suggest that such policies would be highly destabilizing and would either 
destabilize a previously stable market situation, or exacerbate an unstable 
market by an increase in the amplitude and period of oscillations in com- 
modity prices. The mathematical questions raised by problems framed in 
terms of delay differential equations with state-dependent delays are 
formidable, and only limited analytical results seem to be available for such 
systems (Driver, 1963a, b; Myshkis, 1977; Nussbaum, 1974; Sugie, 1988; 
Winston, 1974). The fact that such problems appear to be of some 
relevance in economics as well as in biologically derived problems (B61air 
and Mackey, 1987; an der Heiden and Mackey, 1987) may prove a spur to 
mathematicians to study these systems. 

Another possibility would be to suppose that, although consumers 
base their decisions on information concerning past price, there is a non- 
zero gap in the information available to them; namely, the most recent 
prices. This gap would correspond to the interval between successive 
acquisitions on the part of the consumer, and would be present, for 
example, if only personal information was used. In this case, the demand 
price kernel KD would be zero on some interval [0, G]. We have every 
reason to believe that this second delay G would significantly compli- 
cate the behavior of Eq. (2.1), for even the linear stability analysis is 
quite difficult in equations with two delays (B61air, 1987; Braddock and 
van den Driessche, 1983; Nussbaum, 1975). 
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Even if production delays are set identically equal to zero, other 
choices of demand and supply kernels will give rise to other commodity 
market model formulations in which oscillations may well arise. As a 
simple example, let Tm~n = 0 in Eq. (3.6) and, following Fargre (1973), pick 
the supply and demand kernels to be given by the generic forms 

and 

KD=KD(q;a,m)=am+lqme-aq/m! a>0 ,  m >  - 1  

Ks=Ks(r;b,n) =b"+lr"e-br/n! b>0 ,  n > - i  

where (a, b, m, n) are parameters. Then it is a straightforward calculation 
to show that the system composed of Eqs. (2.1), (2.3), and (2.4) in conjunc- 
tion with these kernels is equivalent to a system of (m + n + 4) ordinary dif- 
ferential equations. Given the fact that nonlinear systems of three ordinary 
differential equations may have solutions that are aperiodic ["deterministi- 
cally chaotic" (Guckenheimer and Holmes, 1983)], this procedure of 
generating a system of ordinary differential equations from the model 
presented here may lead to solutions displaying irregular behavior. If one 
retains the production plus storage delay in this procedure, the resulting 
coupled system will consist of (m + n + 3) ordinary differential equations 
and one nonlinear delay differential equation. 

The commodity market model presented here is highly idealized in its 
consideration of a market isolated from all other economic influences. 
Many investigators have considered models similar to that presented here 
embedded in the economic analogue of a thermodynamic "heat bath" 
[Kalecki (1952) is representative]. In these studies, a loose coupling of a 
larger extended economy to the primary system offers a source of stochastic 
shocks to the system being modeled and reproduces the qualitative 
behavior of real economic situation. Within the context of the model 
presented here, reduced to a framework of a system of ordinary differential 
equations as outlined above, the recent work of Lasota and Traple (1986) 
is likely to be quite important. 
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