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This paper develops a price adjustment model for a single commodity market 
with state dependent production and storage delays. Conditions for the equilibrium 
price to be stable are derived in terms of a variety of economic parameters. When 
stability of the equilibrium price is lost a Hopf bifurcation occurs, giving rise to an 
oscillatory commodity price with a period between two and four times the 
equilibrium production-storage delay. Journal of Economic Literature Classilication 
Numbers: 022, 131, 213, 214. 0 1989 Academic Press, Inc. 

I. INTR~OU~TI~N 

Trade cycles, business cycles, and fluctuations in the price and supply of 
various commodities have attracted the attention of economists for well 
over 100 years. Early authors [35,43, 50, 551 often attributed these fluc- 
tuations to random factors, e.g., the weather for agricultural commodities. 
On the other hand, others have speculated that economic cycling might be 
an inherent behaviour characteristic of unstable economic systems [4, 10, 
15, 27, 29, 30, 36, 51, 54, 58, 591. Their work and that of others [3, 8, 13, 
16, 17, 371 has played a fundamental role in sharpening the debate 
between the proponents of the exogenous versus endogenous schools 
(cf. [63] and the references therein). Recent developments in nonlinear 
dynamics in applied mathematics [ 18,401, physics and chemistry l-42, 533, 
and biology and medicine 114,471 have played a role in this discussion. 
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Interestingly enough, this newer economic modelling has almost entirely 
ignored the potential role of production delays in generating economic 
fluctuations ([28] is an exception). This omission is surprising for several 
reasons. Historically, Ricci [48], Schultz [52], and Tinbergen [57] almost 
simultaneously utilized the known lag between the initiation of production 
decisions and the delivery of goods to discuss commodity cycles in a dis- 
crete time mathematical framework that became known as cobweb theory 
[lo, 41, 621. Further, Kalecki [31-351, Haldane [19], Goodwin [15], and 
Larson [38] all developed delay differential equation models of cyclic 
economic behaviour. Finally, it is now known that a broad spectrum of 
dynamic behaviors can be found in nonlinear delay differential equations 
[22-26, 39, 44-46, 601. 

This paper develops a continuous time model for the price dynamics of 
a single commodity market, formulated as a delay-differential equation. 
Nonlinearities in supply and demand schedules are explicitly accounted for, 
as well as production plus storage delays that may be functions of the 
market price. 

II. FORMULATION OF THE MODEL 

In considering the dynamics of price, production, and consumption of a 
particular commodity, assume that relative variations in market price P(t) 
are governed by a simple balance between demand and supply: 

g&.l(P)-S(P,). 
In Eq. 1, D( . ) and S( . ) respectively denote the demand and supply func- 
tions for the commodity in question, and it is assumed that the minimum 
demand is always exceeded by the maximum supply, min,, D(P,) Q 
max., W%). 

The argument of the demand schedule is taken as P(t) in keeping with 
the simplest assumption that consumers base all buying decisions on the 
current market price. 

However, the argument of the supply schedule, P,, is more complicated 
because of two factors incorporated in this model. First, for most com- 
modities there is a finite minimum time T,i” 2 0 that must elapse before a 
decision to alter production is translated into an actual change in supply. 
For example, in agricultural commodity markets Tmin is related to 
biological constraints, e.g., gestation plus growth ‘period. Second, certain 
commodities, once produced, may be stored for a variable period of time 
(denoted by A) until market prices are deemed advantageous for selling by 
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the producer. Typically, it would be expected that as market prices 
increase, the storage period is likely to fall with the maximum storage 
period (A max) occurring when the market price is in the neighborhood of 
the production price. Furthermore, if the market price falls very much 
below the production price then the storage period may again fall as 
producers attempt to recoup as much of their investment as possible. Thus, 
the total production delay T (the total elapsed time between the initiation 
of changes in production and the final alteration of supply) may be either 
a monotone decreasing or a humped function of current market price, 
T(P) = T,i, + d(P), where Tmin < T(P) < Tmin + A max. 

The ultimate consequence of these two facets of supply dynamics is that 
it is only the market price at a time t- T(P) in the past which can have 
any effect on the current supply price P,(t). Thus, the supply price PJt) 
is just the delayed market price P(t - T(P)), 

Ps( t) = P( t - T(P)). (2) 

Equations (1) and (2) in conjunction with a specification of the func- 
tions D(P), S(P,), and T(P), complete the formulation of the model when 
an initial function P(t,), - ( Tmin + A,,,) 6 t, 6 0, is given. The model offers 
a flexible framework within which one may consider the dynamics of a 
variety of commodity markets. The uniqueness of the model lies in the 
dynamics of market price being governed by a nonlinear delay-differential 
equation with a state dependent delay. 

III. EQUILIBRIUM: STABILITY AND OSCILLATIONS 

This section considers how the stability of the equilibrium price is 
determined by various economic factors, and what happens when stability 
is lost. 

Denote the equilibrium price at which demand and supply are equal 
by P*, so D(P*) = S(P*). From Eq. (1) this clearly corresponds to 
(dP*/dt)/P* = 0. Because of the specified properties of D and S, at least one 
equilibrium price must exist, though the existence of more than one 
equilibrium price is not excluded. 

In examining the local stability of the equilibrium price P* we wish to 
determine the conditions under which P(t) -+ P* as t -+ cc following some 
small perturbation of market price away from the equilibrium price P*, i.e., 
for perturbations satisfying jP(t) - P*(/P* < 1. It is important to realize 
that the local instability of the equilibrium price guarantees the global 
instability of P*, and may indicate the existence of limit cycle or other 
behaviour in the full model. 
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Thus, expand all nonlinearities in the model in a Taylor’s series about 
the equilibrium price P*, and use the assumed smallness of the deviation 
of P(t) from P* to discard all terms in the expansion of order two or 
higher. Finally, define a new variable z(t) = P(t) - P* and ultimately find 
that z(t) satisfies the linear variational equation 

g= P*[D’*z - S’*zs], 

where zs( t ) = z( t - T* ) and T* is the total production delay evaluated at 
the equilibrium price, i.e., T* = T( P*) = T,,, + d(P*). In Eq. (3), 

dD 
D’* =- and 

dS 

dP p=pe 
fy* =- 

dP s Ps=P’ 

Therefore, D’* gives the slope of the demand function D with respect to the 
price P but evaluated at the equilibrium price P*, with a corresponding 
meaning for S’ *. It is interesting to note that the only effect of the price 
dependent delay in this model is to lengthen the effective delay via the term 
d(P*). It is somewhat surprising that the slope of d with respect to P, 
appearing in terms of the form d’(P*), does not have any effect on local 
stability considerations, since this is not the case in other problems [l, 93. 

The coefficients in the linear variational Eq. (3) for z(t) can be rewritten 
in terms of the elasticities of demand and supply given by e, = 
-D’*/(D*/P*) and e,= S’*/(S*/P*), respectively, where D* = D(P*) = 
S* = S(P* ). Thus (3) becomes 

dz 
z=- (e,z + eszs)/TRt (4) 

where T, = (D* ) -’ = (S* ) ~ ’ is the price relaxation time. 
The local asymptotic stability of P* is equivalent to z(t) -+ 0 as t + co for 

small perturbations. Thus, in order to determine when the equilibrium 
market price P* is locally stable we must determine when the linear Eq. (4) 
has solutions z(t) that approach zero. To do this, we make the standard 
assumption that z(t) = exp(lt), where 1 is a (generally complex) eigenvalue 
to be determined. Substituting z(t) =exp(At) into Eq. (4) results in the 
transcendental eigenvalue equation 

T, + e, + e, exp( -AT*) = 0. (5) 

Clearly, 1 will be dependent on some or all of the economic parameters e,, 
e,, T,, T*. The ranges of these parameters such that Re(l) < 0 must be 
determined, as this will ensure the local asymptotic stability of P*. 
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Hayes 1211 has completely characterized the conditions under which the 
eigenvalues 1 obtained as solutions of (5) will satisfy Re(1) < 0. Rewriting 
the Hayes criteria in a form useful for our purposes, the equilibrium price 
P* will be locally stable if and only if either 

or 

and 

where 

eD I I - > 1, 
es 

(6) 

T* < Twit, (7b) 

T = TRcos-‘(-edes) 
Cr’t [(es)* - (eD)2]1’2 

It is easiest to understand the significance of the Hayes criteria for the 
local stability of the equilibrium price by presenting then graphically as in 
Fig. 1. Since Eq. (7~) may be rewritten in the form 

cosC’( -e,/e,) 
esTcridTR= ~1 _ (e,je,)2~1/23 

T 

FIG. 1. A graphical representation of the Hayes criteria for the local stability of the equi- 
librium market price. Any combination of the parameters (edr e,, T,, T*) falling into region I 
or IIa corresponds to locally stable equilibrium prices P*, while parameter sets in region IIb 
correspond to an unstable equilibrium price. The solid concave up curve is the graph of 
Eq. (7~). 



502 MICHAEL C. MACKEY 

it is clear that although the linearized Eq. (4) contains four essential 
economic parameters (e,, e,, T,, and T*), the stability of the equilibrium 
market price P* depends only on the two ratios e,Je, and e, T*jT,. Thus, 
the Hayes criteria may be examined by plotting them in the e,T*/T, vs. 
(eD/es) plane. Since both e, and e, are positive, attention need only be 
confined to the first quadrant of this plane which is naturally divided into 
two separate regions by conditions (7) and (7a). The division between 
these two areas is indicated by the dashed vertical line at (e,/e,) = 1 in 
Fig. 1. From condition (6), whenever the ratio (e,/e,) falls into region I (cf. 
Fig. l), the equilibrium price is locally stable irrespective of the value of 
T*. However, in region II, the situation is more complicated. Region II, by 
virtue of Eq. (8) and the inequality e, T*/T, < e,T,,,/T,, which follows 
from (7b), is naturally divided into two subregions, IIa and IIb, and the 
boundary between them is indicated by the solid curved line which is the 
graph of Eq. (8). In the limit as (eD/es) -+ 0, e, Tcrlt/TR + 71/2 as indicated 
on the graph of (8). Thus, from inequality 7c, for all values of the parameters 
such that a point (e,/e,, e,T*/T,) lies in region IIa, the equilibrium price 
will be stable. Once the point passes into region IIb, for whatever reason, 
the equilibrium price becomes unstable. 

The graphical representation of stability in Fig. 1 may be used to 
examine the effect of an alteration of model parameters on an initially 
stable equilibrium price as one parameter is varied at a time, holding the 
other three constant. The conclusions are summarized in Table I. 

To this point, only variations in the several economic parameters leading 
to a loss of stability of the equilibrium price P* have been considered. 
What happens when P* becomes unstable? Exactly when stability is lost, 
Re(A) = 0 and this condition is defined by the relation T* = Tcrit between 
the production lag T* and the critical combination of the elasticities of 

TABLE I 

Summary of Stability Results 

Parameter varied Regions visited Stability of Equilibrium 

Increased production delay 

Decreased demand elasticity 
or 

Increased price relaxation 

Increased supply elasticity 
or 

Decreased price relaxation 

I-1 
IIA + IIB 

I -+ IIA 
if e,T*/T,<fn 

I+IIA+IIB 
if e,T*/T,> fz 

I-+IIA+IIB 

Always stable 
Eventually unstable 

Always stable 

Eventually unstable 

Eventually unstable 
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supply and demand and the supply and demand relaxation times. Using 
Eq. (7~) gives the explicit relation 

T* = TR cos-‘(-de,) 
C(ed2 - (e,)21”2 

defining when Re(1) = 0. Remember that the graph of Eq. (8), the concave 
up curve in Fig. 1, defines a locus of points in parameter space for which 
Re(1) = 0. Below and to the right of this curve Re(l) < 0 (local stability), 
while above the curve Re(A) >O (local instability). Whenever the four 
parameters e,, e,, T,, and T* satisfy (9) the eigenvalue Eq. (5) has a 
purely imaginary solution A = *iOH. Thus for the very special combination 
of parameters defined by Eq. (9) the linear variational equation has an 
oscillatory solution and the period may be calculated exactly. 

To see how this works, refer again to Eq. (4). Set A = p + iw and separate 
the real and imaginary parts to give the two equations 

and 

pTR + e, = -e,exp( -pT*) cos(oT*) (loa) 

COT, = e, exp( -pT*) sin(oT*). (lob) 

Since Re(A) =0 is the point of interest, set p = 0, square both equations, 
and add them to find that when Re(l) = 0, wHTR = [(es)’ - (eD)2]1’2. 
Thus the period of the periodic solution that ensues when the four 
parameters of the model satisfy (9) is given exactly by T, = 2n/w,, or by 

2nT, 
TH= [(es)2- (e,)2]“2’ 

Equation (11) makes the role of the elasticities of supply and demand and 
the price relaxation time in determining the period of the periodic solution 
totally explicit. 

This period is denoted by TH because it is known as the Hopf period. 
Exactly when Eq. (9) is satisfied a Hopf bifurcation takes place [20, 
Chapter 41. (Depending on auxiliary conditions involving higher order 
nonlinear terms in the expansion about P *, this bifurcation may be either 
subcritical or supercritical, but all of the numerical experiments carried out 
(see below) indicate that the bifurcation is supercritical.) This Hopf 
bifurcation is marked by the passing of a pair of complex conjugate eigen- 
values from the left hand to the right hand side of the complex plane. Just 
as they cross the imaginary axis (when Eq. 9 is satisfied) the loss of stability 
of the equilibrium price is accompanied by the birth of a cyclic oscillation 
of period TH in the market price P(t) near P*. When stability of P* is lost, 
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the amplitude of this oscillation varies as the square root of the parameter 
being changed, i.e., e,, e,, T,, T*, that gives rise to this crossing of the 
roots [20]. 

In addition to the explicit relation between T, and the elasticities and 
relaxation time given by Eq. (1 1 ), it is possible to assign upper and lower 
bounds to the period of the oscillation in market price that occurs at the 
Hopf bifurcation. This is easily accomplished by noting from Eq. (10a) that 
at p = 0, oH T* = T, cos-‘( -eD/eS). Thus Eq. (11) may be written in the 
alternate equivalent form 

2nT* 
T,= 

cos-‘( -e,/e,)’ 

Since 0 < (eD/es) < 1 (cf. inequality 7a), $I 6 cos-‘( -eD/eS) < n, and thus 

2T* < T, < 4T*. (12) 

Therefore, this commodity market model predicts that when the equi- 
librium price becomes unstable there will be an oscillation in market price 
with a period that is between two and four times the production plus 
storage lag T* evaluated at the steady state. These results, coupled with the 
well documented instability of many commodity markets, suggest that 
highly responsive and well informed commodity marketing schemes with 
elasticities of supply exceeding elasticities of demand may be primary 
contributors to commodity price fluctuations whose periods are of the 
order of the inherent production delays. 

This analysis gives information about the stability of the commodity 
market in response to small deviations away from equilibrium. In order to 
examine the full behaviour of the model, we must specify the demand and 
supply schedules as well as the form of the state dependent delay. Then the 
local analysis plus numerical simulations may be used to examine the 
complete behaviour of the model. 

To investigate the global behaviour of this commodity market model, we 
chose a demand schedule D that was a smooth monotone decreasing func- 
tion of P and a supply schedule S that was a monotone increasing function 
of P,, and set the minimum delay T,,,in > 0 and the storage delay d(P) to 
be either zero or a monotone decreasing non-negative function of current 
market price. With the functions selected it was possible to completely 
characterize the local stability of the single equilibrium price P*. An 
implementation of the scheme of Feldstein and Neves [ 121, specifically 
designed for obtaining the numerical solutions of delay differential equa- 
tions with state (P) dependent delays, was used to explore the full range of 
commodity price dynamics. 
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In every case, the linear analysis accurately predicts the set of parameter 
values for which the equilibrium price is unstable. It furthermore accurately 
predicts the period of the ensuing oscillation found in the numerical 
solutions when stability is lost. The numerical results support the analytic 
conclusion that production delays are destabilizing factors, and that the 
introduction of storage delays through improved technology can lead to an 
unstable situation. The amplitude of the oscillations in the numerically 
computed market price is increased by the storage policy, as is the period 
of the oscillations. The numerical solutions offer no indication that there is 
any other behaviour to be observed in this model save for a single 
(apparently supercritical) Hopf bifurcation from a stable equilibrium price 
to an apparently stable limit cycle oscillation in market price. There is no 
numerical evidence for the existence of higher order bifurcations to other 
periodic or chaotic solutions, as may be found in some delay differential 
equations and systems of ordinary differential equations. This indicates that 
this model offers a reasonable explanation for the cyclical behaviour seen 
in many commodity markets, and suggests that the pronounced higher 
frequency fluctuations seen in these markets may be the consequence of 
extraneous market noise. 

VI. DISCUSSION 

The discrete time cobweb models that have been so widely exploited in 
economic modelling are, in some sense, limiting cases of the model 
developed here. To see this, note that when the delay T is constant and the 
price relaxation time T, is very short so price adjustment is quite rapid, 
then (&‘/C&)/P N 0. Thus, in this limiting case Eq. (1) reduces to an implicit 
(generally nonlinear) difference equation in P(t) given by D(P(r)) = 
S(P(t- T)). If the demand schedule D is monotone, and thus invertible, 
then this implicit relation may be rewritten in the explicit form 

P(t) = F(P(r - T)), (13) 

where F = D ~ ’ 0 S and “O” denotes composition. When time t is measured 
in units of the constant lag T, then the explicit Eq. (13) is a limiting cobweb 
version of the present model that should hold under conditions of very 
rapid price adjustment. However, the correspondence between the 
behaviour of difference equations such as Eq. (13), derived in this manner, 
and delay differential equations such as Eq. (1) may be severely limited 
C461. 

It is well known [5] that the equilibrium price P*, given by the solution 
of D(P*) = S(P*), is locally asymptotically stable when IF’(P*)j < 1 and 
unstable when jF’(P*)( 2 1. Now F’(P*) = S’(P*)/D’(P*) = es/e, so these 



506 MICHAEL C. MACKEY 

conditions are simply the discrete time limiting cases of the Hayes criteria 
for the stability of the continuous time model as would be expected. 

The periodic and chaotic properties of time series generated by maps 
such as Eq. (12) have been the subject of intense mathematical investiga- 
tion during the last decade [S, 40,42, 531. Recently a variety of discrete 
time economic models that may be case into the form of the map (13), or 
higher dimensional versions, have been studied because of their analogy 
with similar maps having a period doubling bifurcation structure leading to 
the generation of chaotic time series [2, 6-8, 11, 49, 561. 

In an apparently little known paper, the British physiologist J. B. S. 
Haldane developed a linear model for a single commodity market [ 191 
which is a special case of that presented here. Some 30 years later, 
apparently unaware of Haldane’s work, Larson [38] proposed a linear 
“harmonic motion” model for the cyclical behaviour of the pork market. 
The equations of Larson’s model are completely equivalent to the 
linearized Eq. (4) under the assumption that the elasticity of demand is 
identically zero or that the price relaxation time is infinitely rapid. 

It is clear from the present work that production delays in commodity 
markets are potentially destabilizing factors, as has been pointed out pre- 
viously [ 15, 19, 31-35, 381. However, the analysis presented here is the 
first in which there has been such an explicit consideration of the roles 
played by a variety of economic parameters in determining the stability of 
a single commodity market, and the relation of the period of the oscillation 
to various economic parameters when the market becomes unstable. 
Further, this seems to be the first consideration of the effect of adding price 
dependent storage policies in commodity market models. From the results 
presented here, such policies are highly destabilizing. They may either 
destabilize a previously stable market, or exacerbate an unstable market 
situations by increasing the amplitude and period of oscillations in com- 
modity prices. 
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