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In this paper we consider the asymptotic behaviour of randomly perturbed 
discrete dynamical systems. We treat this problem by examining the evolution of 
the corresponding sequences of distributions. We show that an average contractive 
property is sufficient to ensure the weak convergence of the sequence of 
distributions to a unique stationary measure. 0 1989 Academic press, hc. 

1. INTRODUCTION 

The study of stable, periodic, and chaotic dynamical systems has seen an 
explosive growth over the past 2 decades. Further, as a consequence of the 
recognition that all systems are subject to noise, there have been recent 
attempts to understand the role of noise in altering the behaviour of the 
unperturbed system. Many discrete and continuous time systems with 
stochastic perturbations have been examined both analytically and 
numerically. As these systems may often be viewed as special cases of 
Markov processes, there is extensive applied literature concerning their 
stability properties [12]. Some of these stability results are couched in the 
language of classical Liapunov-type stability arguments [ 111. 

The effects of continuously distributed stochastic perturbations clearly 
depend on the properties of the unperturbed system. Thus, the results of 
[8, 93 indicate that addition of noise to dynamical systems with highly 
irregular trajectories (Axiom A systems) will not result in an alteration of 
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the statistical behaviour of the system since the invariant measure changes 
continuously with the noise level. However, in other cases [4, 51 the 
addition of noise results in evident changes in the dynamical behaviour of 
trajectories and may make the dynamics more regular by creating 
absolutely continuous invariant measures. Finally, the addition of noise to 
discrete time systems without statistical properties in the unperturbed state 
may lead either to a type of statistical periodicity or to statistical stability 
[13, 141. A general answer to the question of how trajectories behave in 
the presence of perturbation appears to be quite diflicult and involves the 
use of sophisticated topological methods in the definition of attracting sets 
r151. 

This paper considers the effect of very general types of random pertur- 
bations of discrete time dynamical systems. For example, both the additive 
and parametric perturbations considered in [6,7] are covered by the 
situation we treat. We make a mild assumption concerning an average 
contractive property for the system, and it is not necessary that the random 
perturbation have a density. Due to the possible lack of continuity of the 
values of the perturbation, the problem is most appropriately framed 
within the context of the evolution of measures or distributions. The 
problem is formulated precisely in Section 2. 

The main difficulty in examining the stability properties of this system is 
related to the fact that the stationary distribution is not known a priori. 
Hence, the delicate monotonicity-type arguments employed in [3, lo] are 
not helpful. In Section 3, using a statistical-type contraction argument close 
to the methods of weak boundedness [ll], it is proved that with pertur- 
bation the sequence of distributions is weakly convergent to a unique 
distribution independent of the initial distribution. Thus, we find that 
stochastic perturbations can induce interesting statictical properties in 
systems whose unperturbed dynamics have no statistical qualities. 

Since these perturbed systems have a contracting property on the 
average they could, for example, result from the perturbation of a globally 
asymptotically stable system. However, they may equally well arise from 
the seemingly unrelated situation in which, at each time step, one randomly 
applies one of a set of transformations, some of which are not necessarily 
stable. Thus, the results of this paper are immediate generalizations of work 
on the reconstruction of fractal sets using iterated function systems [ 1, 21. 
We explore this connection in Section 4, showing that the unique limiting 
fractal set to which iterated function systems converge is identical to the 
support of the unique limiting distribution considered in Section 3. 
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2. FORMULATION OF THE PROBLEM 

Consider a stochastically perturbed discrete time dynamical system of 
the form 

X n + 1= S(xm 5,) for n = 0, 1, . . . . (1) 

where S is a given deterministic transformation defined on a subset A x V 
of Rd x R' with values in A, and the 5, are independent i-dimensional 
random vectors with values in V. The initial value x0 is a d-dimensional 
random vector. 

In our study of the behaviour of (1) we make the following assumptions : 

(i) For every fixed y E V the function S(x, y) is continuous in x and 
for every fixed x E A it is measurable in y. The set A c Rd is closed and 
Vc R' is Bore1 measurable. 

(ii) The random vectors co, <,, . . . are independent and have the 
same distribution; i.e. ; the measure 

v(B) = prob(t, E B) for B c V, B Borelian 

is the same for all n. 

(iii) For every n we have 

E(IS(x, 5,)-S(z, 5”)1)< Ix-4 for X,ZEA, xZ.2 (2) 

and 

HIW, 4n)12)w42+P~ for xEA, (3) 

where E denotes the mathematical expectation and a and /I are non- 
negative constants with c1 c 1. The symbol 1.1 denotes an arbitrary norm in 
Rd which is not necessarily Euclidean. 

We always assume that the initial random vector x,, is independent of 
the sequence { <,}. 

Remark 1. Observe that in the case of A bounded, inequality (3) is 
automatically satisfied with CI = 0 and & = sup{ 1x1: x E A}. Moreover 
from (ii) it follows that if (2) and/or (3) hold for some integer n then they 
are also true for every n. 

EXAMPLE 1. Consider the system (1) with S(x, y) = [x/(1 +x)] + y or 

X n + 1 =x,/(1 + XJ + tn (4) 



STOCHASTIC PERTURBATION OF SYSTEMS 235 

on the half line R + = [0, a3). In this case d = 1 and A = R +. Assume that 

Prob(<, > 0) = 1, EC53 < a, n=o, l,.... (5) 

Examples of possible forms for the perturbations r, are 5, = (0, 1 } with 

Prob( <, = 0) = p, Prob(<,=l)=l-p, (6) 

or that the l, are Poisson random variables 5, = (0, 1, 2, . . . } where 

Prob(S, = k) = Eke-“/k!. (7) 

However, we need not be restricted to a situation where the 5, have only 
discrete values and we could equally well, for example, assume that the t,! 
have a gamma distribution. 

EXAMPLE 2. A two-dimensional analog of (4) is easily constructed, viz., 

x:+,=x:/(1 +x;+x;,+r; 

Xi+1 = xi/( 1 +x; -I- xi) + t;, 
(8) 

where A is now the first quadrant of the plane R*. 

Our goal is the study of the asymptotic behaviour of the sequence ix”). 
Since the [. are random, the behaviour of x, is uncertain even with a 
specified x0. Thus, we adopt the strategy of studying the sequence of 
distributions 

P,(B) = probtx, E B), 

where B is a Bore1 subset of A. 

(9) 

The first step in this process is to find a recurrence relation that will give 
P n+l in terms of p,,. By the Riesz representation theorem, a measure 
supported on A is uniquely defined by the value of the integral 

where C,(A) denotes the space of all real valued continuous functions on A 
with compact support. Thus we would like to know the values of pL, + ,(f) 
if p,,(S) is given. Since the vector x, is completely determined by x0 and 
5 o, . . . . 5, _ Ir it is clear that x, and t;, are independent. Let f E C,(A) be 
given. Then the-mathematical expectation of f(S(x,, 5,)) is just 

Ii f6-W ~))~L,(dxx)cp(d~). 
A V 
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However, sincef(x, + 1) =f(S(x,, <,)) the mathematical expectation is also 
given by 

s f(x) Pn + ,(dx). A 

Equating these two expressions we immediately obtain 

or 

where 

e4f) = i r f(S(X> Y)) cc(dx) cp(&). 
JAJY 

(10) 

The operator P maps the space M(A) of all probabilistic measures 
(distributions) on A into itself. Thus, for a given initial measure pco, the 
sequence {P"p,,} describes the evolution of measures corresponding to the 
dynamical system (1). Alternately, using the terminology of Foias, we 
could say that { P",u,} is the statistical solution of (1) corresponding to the 
initial distribution ,u,,. In Section 3 we prove that, under the conditions 
stated, the sequence of distributions (9) is weakly convergent to a unique 
distribution that is the fixed point of the operator P defined by (10). 

The utility of examining the evolution of the distributions is immediately 
apparent when one wishes to calculate averages of some particular quan- 
tity. For example, let C(A) be the space of all continuous functions, and let 
SE C(A) and an initial measure /.L,, be given. Further, define m,(f) by 

m,(S) = s, f(x) P”(dX). (11) 
By our previous comments, 

where U: C(A) --t C(A) is the operator adjoint to P. Thus, in order to 
calculate m,(S) we need an expression for U. From (lo), 
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and thus 

UT(x) = / f(S(x, Y)) d&k 
v 

Now take f(x) = xk so 
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(13) 

M; = j U”xk~,(dx) 
B 

is the kth-order moment after n iterations. 

3. THE UNIQUE CONVERGENCE OF MEASURES 

We now turn to our main results, first noting that by use of the 
expression for the adjoint operator U given in (13) we may rewrite Eq. (10) 
in the form &(f) = ,u( U(J)), or for genera1 n, 

n4.f) = k4Wf)). (14) 

Setting 

Sl(X, Y) = S(x, Y) and s, + 1(x, YO? . . . . y,) = S(S,(x, Yo, ...> Yn I), Y,) 

we may write an explicit expression for Eq. (14) namely 

U”f(x) = J ‘. . j f(S,(x, Yo, ..., Y, - 1)) d&o) ’ . cp(dy, - ,), 
V” 

or, introducing Y = (y,, . . . . y, - ,) and @,, = cp x .‘l. x cp, we have 

pnbw = j UY(x) P(dX), 
A 

W(x) = ( f(S,(x, Y)) @,(W. (15) 
V” 

Now denote by 6, the measure supported at the point x, that is 

for XEB 
for x$B. 

If the initial point X~E A in (1) is fixed (nonrandom), then the sequence of 
random vectors {x,} corresponding to (1) is given by 

x, = She, to, . ..1 r, I) (16) 

and P” 6, is the distribution of the x,. Our first observation concerning 
the behaviour of the system described by Eq. (1) is the following: 
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THEOREM 1. Zf conditions (i)-(iii) hold for Eq. ( 1 ), then for every two 
points 2, 2 E A the corresponding sequences 

satisfy 

lim @lx,-,?,I)=O. (17) 
n-m 

Proof: Consider the sequence (xn} given by (1) with a fixed x0. From 
(3) we have 

E(lxn + 1 I”)=E(IWt, e,,lz,=lA E(lS(x, 5,)12),a,,(dx) 

ba I A Ix12~L,(dxx)+P=~E(Ix,12)+B, 

where pn = P” 6,. Consequently, 

Hlx,12)Gh L= CM1 -@.)I + 1, 

for sufficiently large n, say n > n,,(x,). Now define 

(18) 

u,(jE, i)= E(lZ,-:.I)=I (S,(X, Y)-S,(:, Y)I @,(dY). (19) 
V” 

It is clear that the sequence of functions u,: A x A + R is decreasing. In 
fact, repeated applications of the definition of S, leads to 

IS(S,(-% Y)> Y,) - S(W, Y), YJ rp(dy,) @,(dY) 

or 

u, + ,(% 2) = I y” E(IS(S,(% Y), t,) - S(S,(:, Y), t,)l) @,(W 

(20) 

which, in conjunction with inequality (2), gives 

u, + ,(X, 2) < 
I 

IS,(x, Y) - S,(;, Y)l @,(dY) = u,(X, 2). v” 

Thus, for every X, 2 E A the sequence of functions u,(X, 2) is convergent. 
Our goal is to prove that the limiting function to which the u, converge is 
identically equal to zero. 
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Suppose that the limiting function is not zero, and assume that for some 
fixed X, TEA 

C= lim 24,(X, Z)>O. 
“-32 

Now, in order to use (2) and (20) effectively, define 

Ary= ((XT z)EA*: 1x1 dq, Izl dq, Ix--l a+, 

and 

for r > 0 and q > 0. Because of the continuity of S(x, v) with respect to x, 
and inequality (3), the expectation E( 1 S(x, 5,) - S(z, (,)I ) is a continuous 
function of (x, z). Thus, the maximum in the definition of orq exists 
whenever the set A,, is nonempty. Moreover, because of inequality (2) we 
have w,~ < 1 and evidently 

WS(x, 5,)-m, Ll/)~~rqlx--l for (x, z)EA,,. 121) 

For every lixed n, r, and q we may write V” as the union of the set 

VFq = { YE V”: (S,(X, Y), S”(k, Y)) E &/}’ 

and the set WY4 = V”\VF4. Using this partition of V” we may write the 
integral on the right hand side of Eq. (20) as the sum of two integrals. 
Applying inequality (21) to the integral over V&, and inequality (2) to the 
remaining integral over W:, we obtain 

d 24,(X, k) + (o’q - 1) J, IS,@, Y) - SAC VI @,(W. (22) 
w 

Using the definition of VF4 this gives 

u, + ,(X, 2) Q u,(fz, T) + r(o,y - 1) @,( vy. (231 
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Now we are going to evaluate @,,( I$) for large n. First, using (18) with 
x0 = X and a classical Chebyshev-type argument we obtain 

wheE w; = { YE V”: IS,(X, Y)l > q}, and an analogous inequality for the 
set Wi= {YE V”: IS,(?, Y)l >q}. Thus we have 

The same inequality holds for the integral of IS,(X, Y) - S,(.?, Y)I over @ 
and, as a consequence, 

J IS,(% Y) - s,G VI @,(W 
c 

where Z;4= W;,\( @‘;u @;). In the set Z& we also have IS,(X, Y)- 
S,(B, Y)I < r which gives 

J IS”K Y)-S,G, Y)l @“(dY) w” 
v 

< (Q/L) + r@,(Z:,J < (6q/L) + r. 

Fixing q and r such that (6q/L) -I- r < (a/2) and using (22) we conclude that 
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Since we have IS,(X, Y)- S,(Z, Y)l <2q in the set V&, from the last 
inequality it follows that Qi,( V:,) > o/4q. From this and (23) we finally 
obtain 

u, + ,(X, R) d U”(X, 2) -s for large n, 

where 6 = ra(1 - w,,)/4q is a strictly positive number independent of n. 
This implies the convergence of u,(X, k) + --00 as n -+ cc which is 
impossible. Thus we must have (r = 0 and the proof is completed. 

Remark 2. Applying the classical Dini theorem to the decreasing 
sequence {u,,] we conclude that the convergence in (17) is uniform on 
compact subsets of AZ. Further, using inequality (3) it is easy to prove that 
(17) holds for every two initial random vectors X, ,G independent of {r, } 
and having finite second order moments. However, we will not use this fact 
in what follows. 

To describe the behaviour of P”p precisely we require two definitions. 
Remember that M(A) is the set of all probabilistic Borei measures on A. 
A measure FE M(A) is called stationary if Pp = p. Further, a sequence 
(~~3 E M is called weakly convergent to a measure p E M if p,(f) -+ p(f) 
for every f~ C,(A). With these two definitions we are ready to state our 
main result in: 

THEOREM 2. Assume that the maping S: A x V -+ A in Eq. (I) and the 
sequence of random vectors { {,} satisfy conditions (i)-(iii). Then there exists 
a unique stationary pL* E M(A), andfor every pO E M(A) the sequence { P”p”) 
is weakly convergent to pL*. 

Proof The existence of a stationary measure p* may be proved in a 
standard fashion. Choose a measure S,,E M(A) and define 

p,(f) = Lim P” S,(f) = Lim 6,( Ulf) for fc C,(A), (24) 

where Lim denotes a Banach limit. Clearly p,(f) is a linear functional on 
C,(A) and thus, by the Riesz representation theorem, represents a non- 
negative measure. We are going to show that p* is normalized. In fact, 
from (18) and the Chebyshev inequality it follows that the measures 
fl, = P” 6, satisfy 

PJA,) 2 1 - (Llr2) for n >, n&x0), 

where A r = (X E A : 1x1 < r ). Consequently, for every f~ C,(A) satisfying 
1 >fa 1 A we have 1 >, p,,(f) 2 1 - L/r2 which, in turn, implies 
1 > p,(f) >, I - L/r2. Since r > 0 is arbitrary, this proves that the measure 
pL+ is probabilistic. Finally, from (24) it follows that pL* = p,( qf) or 
pL* = Pp*(f) which shows that the measure p* is stationary. 
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Now let /A,, E M(A) be arbitrary and let f~ C,(A) be Lipschitzean. We 
have by formula (15) 

mh(f) -P*(f) = no(f) - P”P*(f) 

= jA v.fb) Po(dX) - jA W(x) P*(dX). 

Let c E (0, 1) be an arbitrary number. Choose a compact set A, c A such 
that po(A \A,) <E and pL*(A\Ao) 6 E. Define 

i&(4 = !4&%l n WP*(&)7 F*(B) = P*(& n ~)/P,bw 

Then 

If%(f) - P*(f)1 

< Unf(x) Mdx) - j WY(x) fi,(dx) + 48 max IfI. (25) 
Ao A0 

Using the continuity of U"f we can find points X = x(n) and k = 2(n) in A0 
such that 

uy(x)fi,(dx)-j u”f(x)ji,(dx) sIU”f(X)- U”f(;)l. (26) 
Ao A0 

Now, using (15) and denoting the Lipschitz constant for f by L we obtain 

Ivy(x)-Unf(k)l <Lj IS,(X, Y)-S,(i, Y)l @,(dY) 
V” 

=Lu,(x,T)+4&, (27) 

where the u, are defined by formula (19). Since {u,} converges to zero 
uniformly on Ai, from (25), (26), and (27) it follows that {Z'"p,,(f)} con- 
verges to p*(f) for every Lipschitzean f E C,(A). Finally, since the set of 
Lipschitzean functions is dense in C,(A) this implies that {P”~,,} converges 
weakly to P*, and the proof is completed. 

In the proof of Theorem 2, the use of inequality (2) is evident. However, 
we would like to stress the role of inequality (3) in our considerations. 
First, observe that the existence of a stationary density depends solely on 
(3), since we have not used inequality (2) in the existence part of the proof. 
Moreover, the following example shows that (2) without (3) does not 
imply the convergence of CL, = P”pO to a stationary density. 

EXAMPLE 3. Consider a dynamical system on the real line (A = I’= R) 
of the form 

X n +, = ax,) + t,, (28) 
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where the <, are equally distributed independent random variables such 
that 5, d 0 with probability one, and S: R + R is a C’ function satisfying 

$ < S’(x) < 1, S(x) <x for XER (29) 

(for example, S(x)= (3x/4)+(,/=)/4). It is clear that the condition 
IS’(x)l < 1 implies (2). On the other hand, from (29) it follows that S- “(c) 
converges to + cc for every c E R. Thus we have 

P,,((c, co)) = prob(x, > c) < prob(S”(x,) > c) 

= prob(x, > S -“(c)) ---f 0 (30) 

for every c E R which demonstrates that there is no limiting distribution for 
the sequence {u,,}. 

Finally, we simply note that from the proof of Theorem 2 it is easy to 
show that inequality (3) may be replaced by a weaker requirement, namely 

E(lS(x, 4,)l”) d NIXI p + B for XE R, (31) 

where p> 1, Odrx< 1, /3>0 are constants. 

4. RELATION TO ITERATED FUNCTION SYSTEMS 

In this section we consider the relation between the results of Section 4 
and those of Barnsley and his co-workers [ 1,2] on the limiting properties 
of iterated function systems. In the situations considered in [ 1, 21, all 
results were obtained for systems on an arbitrary compact metric space. To 
compare our results with those from iterated function systems, we assume 
that the Barnsley system is defined on a subset A of Rd but we do not find 
it necessary to assume that A is compact. 

Consider a system wi: A -+ Rd (i = 1, . . . . N) of continuous functions 
defined on a closed set A c Rd. For a given subset B of A set 

w(B) = fi w,(B). (32) 
,=I 

When B is compact then w(B) is also compact. Thus w  may be considered 
as a mapping of a space H(A) of all compact and nonempty subsets of A 
into itself. The space H(A) endowed with the Hausdorff distance 

H(B,, B,)=max min Ix-z/ +max min lx--;( 

becomes a metric space. 
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The problem that has been examined in the behaviour of iterated 
function systems is related to the asymptotic behaviour of w”(B). As shown 
in [2], this asymptotic behaviour is closely related to a stochastic process 
which can be roughly described as follows. Fix a probability vector 
PI, ...I pN with pi> 0 and C pi= 1. Choose x,,EA and successively define 
the sequence {x,,} by choosing 

xn + 16 {w1(xA ...? w.<x,,> for n = 0, 1, . . . (33) 

in such a way that x, + 1 = wi(x,) with probability pi. 
We can easily reformulate the iterated function system of [ 1,2] within 

the framework of this paper. Assume that V is the set of all sequences 
(0, . ..) 1, ***, 0) where 1 is in the ith place, i= 1, . . . . IV. Further, consider a 
sequence of independent random vectors { <,} with values in V such that 

Prob(Sk = 1) = pi, (34) 

where <b denotes the ith coordinate of 4,. Now define S: A x V-+ A by 
setting 

Sk v) = f w,(x) Yi> (35) 
i=l 

where again y’ denotes the ith coordinate of the vector y = (y’, . . . . JJ”). 
Now, 

xn + I = S(xn, 5,) (36) 

gives the required sequence of random variables. 
Given a measure p E M(A) we will denote its support by supp p. Thus 

x E supp p if and only if 

PL(W, 6)) > 0 for every 6 > 0, 

where K(x, 6) is an open ball with center x and radius 6. From the 
definition it follows that supp p is a closed set. Now let (~“1 denote the 
sequence of distributions corresponding to the random variables {x,,} 
described by Eqs. (35) and (36). Assume that B= supp p0 is compact. 
Using the continuity of wi it is straightforward to verify that 
supp p 1 = w( B,) and, by induction, 

SUPP I(,, = w”(B), for n=O, 1,2 ,.... (37) 

Thus, the behaviour of w”(B) is completely described by the behaviour of 
pL,. However, when the limiting set 

B, = lim w”(B) (38) n-m 
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exists (in the sense of the Hausdorff distance on H(A)) it may not be equal 
to the support of the limiting measure p*. That this may be the case is 
easily shown by the following. 

EXAMPLE 4. Let A = [0, I], N = 2, and let c(‘, E 0, w2 z x, and 
p,=p2=+. In thiscase V={{O,l}, {l,O}} and 

S(x, Y) = xy*, y= (v’, Y2). (39) 

We have 

Thus, according to Theorem 2 the limiting measure p* exists and is unique. 
Actually, ,u, can be easily calculated in this case since 

Uf) = Jw(~(x~ 50))) = -w(x, r;,, = +j-f(o) + $f(x), 
and generally 

Therefore, 

vyf) = (1 - 2 -“)f(O) + 2 -“f(x). 

P”M)= j[o,Il rf(x)P(dx)=(l -2-“)/(o)+2~“~lo,,,f(x)~(d\.) 

and, as a consequence, we have 

lim Fp(f) =f(O). 
n-73 

Thus the limiting measure pL* =6, and supp pL* = (0). However, on the 
other hand we have 

w(B) = w,(B) u w*(B) = {O} u B, 

and by induction w”(B) = (0) u B. Thus w”(B) converges to (0) u B which 
differs from the support of I** unless B= (0). It is obvious that in this par- 
ticular example the set (0) is the most appropriate limiting set. In fact, all 
but one of the sequences {x”} described by (33) and (34) have the form 

with corresponding probabilities 2 -‘. The unique sequence x, = x0 appears 
with probability zero. 
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The critical fact in this example leading to the lack of correspondence 
between the limiting set B, and the support of the measure ~1~ is the depen- 
dence of B, = (0) u B on the choice of the initial set B. The contrary 
situation is covered by the following. 

PROPOSITION 1. Assume that the functions wi: A + Rd (i= 1, . . . . N) are 
continuous and such that the limiting set B, E H(A) defined by (38) exists for 
every BE H(A) and is independent of B. Further, assume that for every 
p E M(A) there exists a limiting distribution p* = lim p,, independent of p. 
Then the support of ,uL* is B,. 

Proof Choose an arbitrary POE M(A) with compact support B. Set 
B, = w”(B). From (37) we have B, = supp pn. The weak convergence of p, 
to p* implies that 

supp p* c lim supp CL, = lim B, = B,. 
n-co n-m 

Now let B, be the support of pL*. Since B, is a closed set contained in B, 
it is compact. Consider B = B m as the initial set for B, = w”(B) and p0 = p* 
as the initial distribution. We have /.L,,=P* so, again by (37) 

B, = SUPP PL, = supp p* > 

which, in turn, implies that 

B, = lim B, = supp p*, 
n-03 

which completes the proof. 

The iterated function systems {IV”} considered in [ 1, 21 are restricted to 
the particular case when all of the wi are strictly contractive, i.e., they 
satisfy 

Iwi(x)-wi(Z)l <Alx-zl for X,ZEA, (4) 

with a constant A < 1, where A is a compact set. Thus, in a situation where 
the contractive property (40) holds then the assumptions of Proposition 1 
are always satisfied. That this is the case may be easily seen by noting that, 
first, the inequality (40) implies, according to [l, 21, that the limit of B, of 
(38), always exists and is independent of the initial B. Secondly, for the 
transformation S defined by (35) we always have 

E(IS(xY t,)-s(z? t.)l)=E( 1 f (wi(x)-wi(z)) (:I) 
i=l 

<lx--l f E(g)= (x-z/, 

,=I 
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which is a much stronger condition than (2) which is assumed in the 
statement and proof of Theorem 2. Finally, one must simply recall that, by 
Remark 1, (3) is automatically satisfied for compact sets. 

Iterated function systems have many potential applications, and many 
examples may be found in [ 1,23. In closing we would like to add one 
further example which is quite unexpected. 

EXAMPLE 5. Consider the baker transformation 

{ 

(2% @,, 
T(“, O)= (Zu- 1, $+f), 

0624<~,0~ud1 
~<u<l,Odubl, 

and observe that the first (u) coordinate of T simply evolves by the dyadic 
transformation T,(u) = 2u (mod 1). Set 

(u n + 19 u, + I) = T(u,, 0,) for (u,, V~)E [0, l] x [0, 11. 

Then these iterates of the baker transformation may be written in the form 

un + I = T,(un) 

V II+1 =$,+5,, 

(41) 

where the 5, are given by 

5,= 1 [I/*, 1 ](‘n). 

From a classical result of Borel, it is known that the [, defined in this 
way are independent random variables on the probability space 
([0, 11, L!J’, p) where 9 is the sigma algebra of all Bore1 subsets of [0, l] 
and p is the usual Bore1 measure. 

Equation (41) may be rewritten as 

0” + I = S(u,, 5,) 

with S(u, y) = $0 + y. It is clear that S and {tn} satisfy all of the 
assumptions for iterated function systems as well as the conditions of 
Theorem 2. Thus, by the simple expedient of taking the u projection of the 
Baker transformation an iterated function system is produced. 
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