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In this paper we study the properties of a broad class of discrete time dynamical systems in the presence of added external 
noise. We prove three theorems showing that added noise will either induce a type of statistical periodicity or statistical 
stability in the asymptotic behaviour of these systems. This result is based on the fact that, in the presence of noise, the 
Markov operator describing the evolution of densities has smoothing properties which allow the application of a recently 
discovered asymptotic decomposition theorem. Using this result it is possible to evaluate the (limiting) period of the sequence 
of densities. This effect is numerically illustrated by the addition of noise to a discontinuous map studied by Keener. 

1. Introduction 

An immense effort has been invested in the 
study of stable, periodic, and chaotic dynamical 
systems over the past 15 years. It is generally 
agreed that all real systems are subjected to 
"noise" of one variety or another, and many dis- 
crete and continuous time systems with stochastic 
perturbations have been examined numerically. 
The discrete time systems that have been the most 
studied in the presence of noise are the quadratic 
map [3, 4, 8, 9, 18, 19, 22], the circle map [6], the 
standard mapping [11, 20], and the two-dimen- 
sional Kaplan-Yorke map [7, 10]. 

These studies have clearly highlighted an im- 
portant and difficult question: What role does 
extraneous noise play in the development of 
asymptotic behaviour of the system? Or, put dif- 
ferently, how is the behaviour of the unperturbed 
dynamics altered by noise? 

The answer to this question appears to depend 
on the properties of the unperturbed system. The 
results of Kifer [13, 14] indicate that addition of 

noise to dynamical systems with highly irregular 
trajectories (Axiom A systems) will not result in 
an alteration of the statistical behaviour of sys- 
tems since the invariant measure changes continu- 
ously with the noise level. However, in other cases 
the addition of noise results in evident changes in 
dynamical behaviour of trajectories and may make 
the dynamics more regular by creating absolutely 
continuous invariant measures [1, 2]. A general 
answer to the question of how trajectories behave 
in the presence of perturbation appears to be quite 
difficult and involves the use of sophisticated topo- 
logical methods in the definition of attracting sets 
[211. 

This paper considers the effect of stochastic 
perturbation and, more generally, randomly ap- 
plied stochastic perturbation on discrete time dy- 
namical systems from a statistical point of view. 
Thus we consider the behaviour of sequences of 
densities, or ensembles of trajectories, correspond- 
ing to a given system. We show that for every 
system which concentrates trajectories in a 
bounded region of phase space [see condition (2)1, 
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the addition of noise always has the effect of 
making the sequence of densities asymptotically 
periodic. 

In the next section we specify a class of sto- 
chastically perturbed systems to be considered. 
Section 3 contains a theorem relating the onset of 
asymptotic periodicity with the addition of noise 
to a deterministic system. Section 4 extends this 
with a second theorem on the existence of asymp- 
totic stability, while section 5 points out three 
important  special cases of the theorems of the 
preceding two sections. There we also illustrate 
the onset of asymptotic periodicity in a map that 
is normally capable of only very irregular behav- 
ior. The results of sections 3 and 4 are generalized 
in section 6 where we prove a theorem concerning 
the occurrence of asymptotic periodicity in a broad 
class of stochastically perturbed discrete time dy- 
namical systems. The paper concludes with some 
brief comments in section 7. 

for all n 

prob (~,, ~ B)  = f g ( x )  dx 

for B c R d, B a Borel set. 

(iii) The density g has a finite first moment, i.e. 

m = L J x l g ( x ) d x  < oo. (3) 

Finally, in addition to assumptions (i)-(iii), we 
assume that the initial condition x 0 is indepen- 
dent of the sequence of perturbations (~, }. 

The set of all densities in R d is denoted by D, 
and thus 

D= ( f E L I ( R a ) :  f>O, IlfllL, = 1},  

If we let the density of the distributions of the x~ 
be denoted by fn, then it is straightforward [17] to 
show that 

2. Mathematical preliminaries 

In the next three sections of this paper, we 
consider a stochastically perturbed d-dimensional 
discrete dynamical system 

x , + l = g ( x , ) + ~ ,  for n = 0,1 . . . . .  (1) 

In eq. (1), S is a transformation that maps R d 

into itself and the quantities ~o, ~1 . . . .  are inde- 
pendent d-dimensional random vectors. In consid- 
ering the system (1), we assume the following: 

(i) The transformation S: R d-~ R d is Borel 
measurable and such that 

Is(x)l~lxl+B f o r x e R  u, (2) 

where a and fl are non-negative constants, ct < 1, 
and [-I is the norm in R d. 

(ii) The vectors ~o, ~1,-.. are independent and 
all have the same distribution with density g, i.e., 

f n + l ( X )  ~ f R / n ( y ) g ( X - -  S(y)) dy 

for n = 0,1 . . . . .  (4) 

Thus, given an arbitrary initial density f0, the 
evolution of densities by the system (1) is de- 
scribed by the sequence of iterates ( P  n f0 }, where 

Pf (x )  = f R / ( y ) g ( x -  S ( y ) ) d y  (s) 

is a linear (Markov) operator from L 1 into itself. 

3. Asymptotic periodicity 

Our first step in the study of the sequence 
{ P ' f  } is to show that the operator P is weakly 
constrictive. By definition, an operator P is weakly 
constrictive if there exists a weakly precompact set 
~ c  L 1 such that 

lim p(P"f ,  ~ )  = 0 f o r f c  D, (6) 
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where 0 ( f ,  o~) denotes the distance, in L 1 norm, 
between the element f and the set o~'. The impor- 
tance of weak constrictiveness is a consequence of 
the following theorem of Komornik [15], also 
proved in a more restricted case in ref. 16: 

Spectral decomposition theorem. Let P be a weakly 
constrictive Markov operator. Then there is an 
integer r, two sequences of non-negative functions 
g~ ~ D and k~ ~ L °~, i = 1 , . . . ,  r, and an operator 
Q : L  1--*L 1 such that for all f ~ L  1,Pf may be 
written in the form 

Pf (x )  = ~ Xi(f)gi(x ) + Qf(x), (7) 
i = 1  

where 

X~(f)=fsf(x)k,(x)dx. 

The functions g, and the operator Q have the 
following properties: 

(1) gi(x)gj(x)  = 0 for all i ~=j, so that the den- 
sities gi have disjoint supports. 

(2) For each integer i there exists a unique 
integer c0(i) such that Pg, = g~(i). Further, ~o(i) 4= 
o : ( j )  for i ~ j  and thus the operator P just serves 
to permute the functions g,. 

(3) IIP"Q_fl[ --} 0 as n -~ oo for every f ~  L 1. 
From eq. (7) it is clear that pnf may be written 

a s  

where ( ~0- "(i)  ) denotes the inverse permutation 
of (00"(i)). 

Rewriting the summation portion of (8) in this 
way reveals precisely what is happening with every 
successive application of the operator P. As the 
densities gi(x) all have disjoint supports, each 
successive application of P leads to a new set of 
scaling coefficients Xo,-.(f ) associated with each 
density g,(x). Because r is finite, the summation 
portion of (8) is periodic with period less than r !, 
and since [IQ,fl[ -o 0 as n ~ oo we say that for a 
weakly constrictive Markov operator the sequence 
( p nf ) is asymptotically periodic. 

Having developed this background, we are ready 
to state our first main result: 

Theorem 1. If the transformation S: R d ~ R d and 
the density of the distribution of the stochastic 
perturbation respectively satisfy inequalities (2) 
and (3), then the Markov operator defined by eq. 
(5) is weakly constrictive. 

Proof. We define 

E ( f )  = fRJx lg(x )dx  (9) 

and consider the sequence { E(P"f) )  for an f ~  D. 
From eq. (5) and inequalities (2) and (3), it follows 
immediately that 

P"f= ~ Xi(f)g~.ti)+ Q.(f), (8) 
i=1 

where Q, = P" 1Q, and w"(i) = co(w"-l(i)) = ..., 
and [IQ,f[] ~ 0 as n -o oo. The terms in the sum- 
mation in eq. (8) are permuted with each applica- 
tion of P. Since {w"(1) . . . . .  o:"(r)} is just a 
permutation of (1 . . . . .  r}, there is a unique i 
corresponding to each w"(i). Hence, the summa- 
tion portion of (8) may be rewritten as 

X,~ , ( o ( f )g i ( x ) ,  
i=1 

E(P°+I/) 

= f.ff .JxlP"f(y)g(x- S ( y ) ) d x d y  

= fRafRJz + S ( y ) i P ' f ( y ) g ( z ) d z d y  

<- fR~fRa[Z[P~f(y)g(z)dzdy 

+ fRafRa(a]y[+ f l ) P ~ f ( y ) g ( z ) d z d y  

= m + fl + aE(P~f) .  
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As a consequence, (5) we have 

m + fl + a"E(f). E(P"f)< 1 - a  fBP~fo(x)dx 

Choose an arbitrary M >  (m + f l) / (1 - a). If 
E(f)  < oc then, since 0 _< a < 1, for sufficiently 
large n, say n > no(f), we have 

E( P' f  ) < M. (10) 

For  e > 0, denote by 3(e) a positive number such 
that 

= {fR uP" lfo(Y)g(x-S(y))dy}dx 

= S(y))dx}P"-lfo(y)dy 

= fR~{fB SLv)g(z)dz} ,n-lf°(y)dy" 

1 g ( x ) d x < e  whenever ~ ( B )  < 3(e) ,  (11) 

where # denotes the standard Lebesgue measure 
on R. Let ~ ' c D  be the set of all densities f 
satisfying the following two conditions: 

When B satisfies ~t(B)< 3(e), then the set B -  
S(y) has the same property and, as a consequence 
of (11), 

fBP~fo(x)dx <efRP" lfo(Y)dy=e. 

fx / ( x ) d x < M  I- > _ - 7 -  f o r r > O  (12) 

and 

f / ( x ) d x  <e f o r e v e r y e > 0 i f # ( B ) < 3 ( e ) .  

(13) 

From standard and well-known criteria for weak 
precompactness [5], it follows from (12) and (13) 
that the set ~" is weakly precompact. 

In order to verify (6), and demonstrate that P is 
weakly constrictive, consider an f0 c D such that 
E(fo) < oo. From inequality (10) and the 
Chebyshev inequality it follows that 

M 
" f o ( x ) d x < - -  f o r r > 0 a n d n > n 0 ( f 0  ). 

[> r 

(14) 

Further, let B c R d and e > 0 be given, and let 
/~(B) < 6(e). Then, from the definition of P in eq. 

Thus for every fixed n > no(fo ) the function f =  
P"f0 satisfies both (12) and (13), and as a conse- 

quence P " f o ~  for n > n0(fo) + 1 whenever 
E(fo) < oo. Since the set of all f satisfying E(fo) 
< oo is dense in D, this implies (6), and the proof 
is complete. 

Remark. The constrictiveness of integral op- 
erators defined by "a kernel has been shown previ- 
ously [15-17], but the operators were not derived 
by considering the stochastic perturbation of sys- 
tems. 

As a consequence of Theorem 1 in conjunction 
with our comments and remarks of the previous 
section, we know that the addition of any stochas- 
tic perturbation with a continuous distribution to 
a deterministic transformation on R a will make 
that transformation asymptotically periodic from 
a statistical point of view. The only requirements 
are that the density of the distribution of the 
stochastic perturbation must possess a finite first 
moment [inequality (3)], and the transformation S 
must satisfy the growth condition (2). 
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4. Asymptotic stability 

In eq. (8) of the previous section for ( p n f  }, if 
r = 1 so that the summation is reduced to a single 
term, then for every f ~  D the sequence ( P n f )  
converges to the same limit as n ~ oo independent 
of f .  In such situations we say that the operator P 
is asymptotically stable. For applied situations, this 
is extremely interesting and useful because of the 
possibility of calculating statistical properties 
characterizing the dynamics. 

Using Theorem 1 we may prove the following 
result concerning the appearance of asymptotic 
stability of the Markov operator P defined by eq. 
(5). 

Theorem 2. Assume that the Borel measurable 
transformation S: R d--* R d and the density g 
satisfy inequalities (2) and (3). Further assume 
that there exists a point z o ~ R d and a number 

m a  + fl 
ro> l_----Z-- A- 

Since, by Theorem 1, we know that P is weakly 
constrictive, we need only to demonstrate that P 
satisfies the rest of the assumptions of the Lemma. 
Let f ~ D be arbitrary. Since f is integrable there 
is a bounded subset B c R d such that 

f f ( x )  dx = ½. 

Define f l ( X )  = 2f (x ) lB(x ) ,  where 1B denotes the 
characteristic function of the set B. Clearly, f l  ~ D 
and E(fa)  < oo. Define 

ma + fl 1 m + fl 
o = r  0 1 - a  ' M = z ° +  1 - a  

and r = o +  m+13 
1 - - O r  " 

From inequality (14) it follows that 

fxl> r P M " f , ( x ) d x  < - -  f o r n > n o ( f l  ). 
r 

Thus, 

such that 

g ( x ) > O  a.e. for I x - z 0 1 < r  o. (15) 

Then the Markov operator defined by eq. (5) is 
asymptotically stable. 

f P"f(x)dx>_½f Pnfl(X)dx 
I:~'1-< r Ixl<_r 

> ½ [ 1 - M / r ] > 0  f o r n > n o ( f ,  ). (17) 

Proof. To prove this theorem, we employ the fol- 
lowing. 

Lemma. Let P be a weakly constrictive Markov 
operator. Assume there is a set A c R d of nonzero 
measure, /~(A)>0,  with the property that for 
every f ~  D there is an integer n l ( f )  such that 

P ' f ( x )  > 0 (16) 

Now we may write 

P " f ( x )  = f R P " - y ( y ) g ( x  - S ( y ) )  dy  

>- fl y " - l f ( y ) g ( x -  S ( y ) ) d y .  (18) 
vl <- 

Define e = ( 1 - a ) o .  If Ix-zol<e and lYl<_r, 
then 

for almost all x ~ A  and all n > n x ( f ) .  Then 
{ P" f  ) is asymptotically stable. 

The proof of this lemma may be found in ref. 17. 

[ ( x -  S ( y ) )  - Zo[ < I x -  Zol + IS(y ) I  

< I x -  zol + alyl+ fl 

< e + a r + f l = r  o. 
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Hence, according to inequality (15) we have 

g ( x - S ( y ) ) > O  for I x - z 0 1 < e a n d l y l  < r .  

(19) 

From (17) and (19) it follows that for every x 

satisfying lx - zol < e the product 

P" a f ( y ) g ( x -  S(y)) for n > n0 (A)  + 1, 

as a function of y, does not vanish in the ball 
defined by lyl < r. As a consequence, inequality 
(18) implies (16) with 

A = ( x :  Ix-zo[<e } and n l ( f ) = n o ( f l ) + l .  

Case 1. Assume that S maps Rd+ into itself 

and that ~n > 0, n = 0,1, 2 . . . .  , with probability 
one. Here, R+ denotes [0 ,~) .  In this case, for 
every initial x 0 > 0, the sequence {x~} is well 
defined with probability one. Thus we may pro- 
ceed with all of our arguments and calculations 
precisely as in Theorems 1 and 2, noting simply 
that in the definition of the operator P given by 
eq. (5) the domain of integration must be altered 
so that 

P f ( x ) :  fA, f ( y ) g ( x -  S(y))dy ,  (20) 

where 

Thus, the proof  of the theorem is complete. A(x)  = ( y ~  Rd+: x -  S ( y ) ~  Rd+ }. 

5. S o m e  special cases 

In Theorems 1 and 2 of the two previous sec- 
tions, it was assumed that the transformation S is 
defined on the entire space R a, which is quite 
unrestrictive in that further specifications of the 
nature of the perturbing vectors ~, are not re- 
quired. However, if the transformation S is de- 
fined only on a subset G c R a, then it is quite 
possible that, for some x,0 ~ G, the point 

Xno+l = S ( X n o )  q-~no 

may not belong to G and as a consequence 

S(xno+l ) may not be defined. Should this be the 
case, the sequence (x  n ) cannot be calculated for 

n > n 0 + l .  
However, in some special cases that may be 

important  from an applications point of view these 
difficulties may be easily circumvented. We discuss 
three such special situations, which are not ex- 
haustive but do serve as good illustrations of how 
one may proceed under such circumstances. In our 
discussion we will always assume that S is Borel 
measurable, and this assumption will not be re- 

peated. 

Therefore, having S: Ra_.~Ra+ which satisfies 

inequality (2), and the sequence (~,  } with ~, >_ 0 
all having the same density g with a finite first 
moment  (inequality (3)), Theorem 1 is im- 
mediately applicable. If, in addition, g(x) > 0 for 

a sufficiently large subset of Ra+, e.g., if 

g(x) > 0 for x ~ R~, Ixl ~ r0 

with r 0 > fd(ma + f l ) / ( 1  - a) ,  

then Theorem 2 holds. 
There is, however, another way to view this 

case. Thus, we could consider that S is indeed 
defined on the entire space R a (by assuming, for 
example, that S ( x ) = 0  for x fERd+) and that 

fo(X) = 0 for x ~ Rd+. Then all of the successive f,, 
have the same property, and this situation is merely 
a special case of the more general situation with S 
defined on R a. 

Case 2. Now consider the situation where S 
maps an interval [0, a] into itself, and S is such 
that 

s u p S ( x )  = b <  a. 

Now we may consider the sequence (x  n } defined 
by eq. (1), assuming that x 0 ~ [0, a] and 0 < (~ < 
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a - b with probability one. In this case, Theorem 
1 holds since inequality (2) is automatically 
satisfied with a = 0 and fl = b, and inequality (3) 
holds due to the fact that the space is a finite 
interval. The operator P is again given by eq. (20) 
wherein the domain of integration A ( x )  is given 
by 

A ( x )  = { y  ~ [0, a ] :  x > S ( y ) } .  

For  Theorem 2 to hold it is sufficient that g ( x )  > 0 

on a sufficiently large subset of [0, a], e.g., g ( x )  > 0 

a.e. on [0, a - b] with b < ½a. 
Case 3. Consider a transformation S that maps 

the d-dimensional torus T a into itself. [Recall that 
T a may be obtained from R d (as a quotient space) 
if we identify all points x, y ~ R a such that x - y  
is a sequence of integers.] In this case, as in the 
previous one, inequalities (2) and (3) are trivially 
satisfied and the arguments in the proof of The- 
orem 1 proceed exactly as written. Thus, assuming 
that we have S: T a ~  T a and (~n} independent 
with values in T a and all having the same density 
g: T a W  R,  we obtain Theorem 1. As before, to 
obtain Theorem 2 we need only assume that g ( x )  

> 0) on a sufficiently large subset of T a, e.g., 
g ( x )  > 0 a.e. on T a. 

Theorem 1 implies that, for a very broad class 
of transformations, the addition of a stochastic 
perturbation will cause the limiting densities to 
become asymptotically periodic. For some trans- 
formations, this would not be at all surprising, e.g. 
the addition of a small stochastic perturbation to a 
transformation with an exponentially stable peri- 
odic orbit gives asymptotic periodicity. However, 
the surprising content of Theorem 1 is that even in 
a transformation S that has aperiodic limiting 
behaviour, the addition of noise will result in 
asymptotic periodicity. 

This phenomenon is rather easy to illustrate 
numerically by considering 

Xn+ 1 = S ( X n )  ( m o d l ) ,  ( 2 1 )  

where S ( x ) = a x + M  O < a < l  and 0 < ~ < 1 .  

0 % . 

OH,m,,i 

o 

Fig. 1. Asymptot ic  periodicity illustrated. Here we show the 
h is tograms obtained after iterating 10'* initial points uniformly 
distr ibuted on  [0,1] with a = ~, ?, = 137 , and 8 = l s in eq. (23). 
(a) n = 10; (b) n = 11; (c) n = 12; and (d) n = 13. The corre- 
spondence  of the histograms for n = 10 and n = 13 indicate 
that, with these parameter  values, numerically the sequence of 
densities has period 3. 

This transformation is an example of a class of 
transformations considered by Keener [12]. From 
the results for general Keener transformations, for 
a ~ (0,1) there exists an uncountable set A such 
that for each X ~ A the rotation number corre- 
sponding to the transformation (21) is irrational. 
For  each such ?~ the sequence (x  n } is not periodic 
and the invariant limiting set 

6 S~([O,1]) (22) 
k = O  

is a Cantor set. The proof of Keener's general 
result offers a constructive technique for numeri- 
cally determining values of ?~ that approximate 
elements of the set A. 
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From our remarks above (see Case 3), the trans- 
formation (21) clearly satisfies the conditions of 
Theorem 1 and is, therefore, an ideal candidate to 
illustrate the induction of asymptotic periodicity 
by noise in a transformation whose limiting be- 
haviour is neither periodic nor asymptotically 
periodic in the absence of noise. 

To be specific, we pick a = 1 /2  and use the 
results of Keener to show that )t = 17/30 is close 
to a value in the set A for which the invariant 
limiting set (22) should be a Cantor set. Asymp- 
totic periodicity is illustrated by studying 

x,,+~ = ( a x .  +) t  + ~ . ) ( m o d  1) (23) 

where the ~n are random numbers uniformly dis- 
tributed on [0, 0]. Fig. 1 shows the numerically 
calculated effect of this stochastic perturbation for 
0 = 1/15 and these values of a and X. Figs. la  
through ld,  respectively, show the histograms ob- 
tained after 10, 11, 12, and 13 successive iterations 
of 10000 initial points uniformly distributed on 
[0, 1]. The 13th histogram is identical with the 
10th, as is the 14th with the 11th, etc., thus 
indicating that numerically the sequence of densi- 
ties is asymptotically periodic with period 3. 

6. A generalization 

To this point we have considered a relatively 
special class of situations in which perturbations 
were added to consecutive values of S(x.). This 
could be extended by considering 'multiplicative 
noise' with x .+  1 = S(x.)~. or, even more gener- 

ally, 

x .+  1 = S(x., ~.). (24) 

Instead, however, we choose to describe a different 
process characterized by randomly applied per- 
turbations. We assume that, in general, our system 
evolves according to a given transformation 
S(x.). The qualifying phrase ' in general' means 
that the transition x. ~ S(x.) occurs with prob- 

ability (1 - e). In addition, with probability e, the 
value of x .+  1 is uncertain. If x .  = y  is given then, 
in this case, x .  + 1 may be considered as a random 
variable distributed with a density K(x, y) which 
depends on y. 

Our first goal in the description of this process 
is the derivation of an equation for the operator P 
which gives the prescription for passing from the 

density f~ of x,, to the density fn+i of x~+ I. We 
assume that S maps a Borel measurable set G c 
R a, /~(G) > 0, into itself and that S is nonsingu- 
lar. [Recall that S: G--* G is nonsingular if S is 
measurable and such that 

/ ~ ( A ) = 0  implies/~(S i ( A ) ) = 0  

for all measurable A c G.] 

The requirement that S is nonsingular allows us 
to introduce the Frobenius-Perron operator Ps 
which describes the evolution of densities by the 
transformation S. The operator Ps is given im- 
plicitly by 

fAPsf(x)dx= fs ~(A/(X)dx (25) 

for every Borel subset A of G. The Radon- 
Nikodym theorem guarantees that for every f c 
LI(G) there exists a unique Psf~ Li(G) such that 

(25) holds. 
Now assume that the density f~ of x~ is given 

and that a Borel set A c G is given. We would like 
to calculate the probability that x.+ i E A. As we 
outlined the randomly applied perturbation pro- 
cess, x .+  i may be reached in one of the two ways: 
deterministically with probability (1 - e) and sto- 
chastically with probability e. Thus, in the de- 

terministic case x .  + i = S (x . )  and 

Probi(x.+lEA)=Probi(S(x.)EA ), (26) 

where the index I is used to denote the determin- 
istic case. F r o m  the def ini t ion of the 
Frobenius-Perron operator, the density of S(x,,) 
is Psf~ and, as a consequence, 

Prob I (S(x.) ~A) = [Psf~(x)dx. (27) 
JA 
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If  the stochastic perturbat ion occurs and if y = x n 
then 

ProbH (x,+l ~Alx,--y)-- fAK(x, y)dx. 

Since x, is a r andom variable with density fn, we 
also have 

Prob n (x,+ 1 ~A) 

- -  fGPrObH ( X n +  1 E A IXn =y)f,(y) dy, 

and combin ing  this relation with the previous one 

we have 

Probu(x.+1~A)=L{foK(x,Y)f.(y)dy}dx. 
(28) 

F r o m  eqs. (26)-(28) we have 

Prob ( x , +  1 ~ A )  

= ( 1  - e) Prob I (x,+ 1 ~ A) + e Probii  (Xn+ 1 E A) 

= f [(l- )Psfo(x) 
+ fcK(x, y)L(Y)dy]dx. 

Since A is an arbitrary Borel set this relation 

implies that  the density f.+l exists whenever f .  
exists, and is given by 

f~+x(X) = (1 - e)Psf~(x ) + e lK(x ,  y)f~(y) d y. 

Thus,  the expression for the operator  P that de- 
scribes the evolution of  densities by our  process is 

Pf(x) = (1 - e)Psf(x) + e fcK(x, y) f (y)dy .  

(29) 

satisfies 

K(x,y)>O and fGK(x,y)dx=l.  

These two condit ions in conjunction with the re- 

qui rement  that  K: G X G ~ R as a function of  the 

two variables is measurable means that K is a 

stochastic kernel. We assume that K(x, y) is uni- 

formly integrable in x, i.e., for every ~/> 0 there is 

a 8 > 0 such that 

fAK(x, y) dx <_ 

for every y ~ G and A such that ~ t (A)<  8. Fi- 

nally, we assume that 

fcl xlK(x,y)dx<alyl+fl  for y c G, (30) 

where a and B are non-negative constants and 
a < 1. No te  that condition (30) is automatically 

satisfied if G is bounded.  However if G is un- 
bounded,  for example if G is the entire space R d, 
then condi t ion (30) is quite important  since it 

prevents  divergence of trajectories to infinity. 

Then  we have: 

Theorem 3. If  S: G ~  G is nonsingular and 

satisfies inequality (2) and K: G X G ~ R is a 
uni formly  integrable stochastic kernel satisfying 

(30), then with 0 < e < 1 the operator P given by 

(29) is weakly constrictive. 

Proof. To simplify our notat ion we set P0 = Ps 
and 

Paf(x) = fGK(X, y) f (y)dy.  

Furthermore ,  set e o = 1 - e and e 1 = e. Then P = 

eoP o + elP1, and as a consequence 

Since K(x,y) with fixed y is a density, it P"f= ~_,ei,eo'"e;Pi, Pi ," 'Pi . f ,  
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where the summation is taken over all possible 
sequences (i  1 . . .  i , )  such that i k = 0 or 1. 

Next we define the set o~ 0 to be all non-nega- 
tive functions f ~  L ~ such that 

f a  M I l f l l ~ l  and I x l f ( x ) d x ~ - -  f o r r > O ,  
r 

However, if f ~ o~0, then 

P " f  - e ; P ~ f  = f f " f  c ~  

and, as a consequence, 

p(e"  _<_ . J '  g0~  

where M > / 3 / ( 1 -  a) is a fixed constant. Using 
inequalities (2) and (30) it is easy to verify that 

P~ (.~-0) c ~-0, i = 0, 1, and as a consequence of the 
fact that o~ 0 is convex, P'(o~-0) c o ~  0. 

With o~  thus defined, for f ~ o ~  0 we set 

P ~ f =  ~ ' e i e , 2  . . .  ei°P~P~2 . . .  P~, f ,  (31) 

where the prime (') on the summation indicates 
that the term e ~ P ~ f  is omitted. With these oper- 
ators P"  defined from (31), we define a sequence 
of subsets in L 1 by 

o~,, = P " ( o ~ 0 )  , n = 1 , 2  . . . . .  

I t  is clear that ~,~ c ~ 0 .  From the sequence o~ we 
define .~- by 

tl E 1 

taking care to note that n -- 0 is not included. We 
are going to prove that the operator P is weakly 
constrictive, i.e. that condition (6) is fulfilled and 
that o ~ is weakly precompact. 

To demonstrate that the set o ~ satisfies (6) is 
relatively easy. Since P is a Markov operator, it is 
sufficient to demonstrate that (6) holds for a dense 
subset D o c D .  We take D o to be the set of all 
densities with a finite first moment, i.e., 

~l x l f ( x )  d x  < o~. 

Proceeding as in the proof of Theorem 1, for every 
f ~  D o we have P ' f ~ ' o  if n is sufficiently large. 
Therefore, it is sufficient to verify (6) for f ~ o~ 0. 

so (6) is verified for Y .  
To show that Y is weakly precompact is much 

more difficult. However, note that since o~ c o~0, 
and owe ow 0 as a consequence, to prove the weak 
precompactness of .,~ it is sufficient to show that 
all functions f ~ o ~  are uniformly integrable [5]. 

Thus for every ~ > 0 pick n o = n0(7/) such that 

q)o _< ,7/2 

and consider the set 

It o 

"'10 ( ~ i l ' ' ' ~ i k r i ,  " Piko'~O)) " a=l 

Note that the primed summation is a summation 
of sets of functions (not just functions), and that 
all of the terms in the primed summation contain 
the operator P, = K. From the uniform continuity 

of K it easily follows that the set o~0 is weakly 
precompact.  Thus given n001 ) we may choose a 

^ ^ 
8(~) > 0 such that for all f e ~ , ,  

f f ( x )  dx <_ (32) 

for every a c G satisfying / , ( A ) <  8(~). Now fix 
~/> 0 and pick an arbitrary f ~ o  ~ .  Then there 
exists an integer n > 1 such that f ~ o ~ .  Consider 
two cases. 

Case 1. n < n  o . In this case o~co~ , ,  and in- 
equality (32), with f =  f ,  is satisfied. 

Case 2. n > n o . For this case set f =  P"g for 
some g ~ .~-0. Then f = P"g may be written in the 
form 

f =  E l 8 q  " ' "  E , , , e i l  ' ' '  e z . g  

+ g ' ' '  " ' G g '  
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where the superscript 1 indicates that the summa- 

tion is taken over all possible (ii . * . i,) having 

indices i, = ... = i,O=O, except i, = .-. =i,= 

0, and the superscript 2 indicates that the summa- 

tion contains all of the remaining terms. Since 

~EF, we have Pi, +, -. . Pi, g E F. and it is easy 

to verify that C* is an element of the set gn,. 

Further, a simple calculation shows that 

l/c 1 
& . . . 

‘I q,, . ’ . P,ngli I lg. 

Thus we may write f=fi +f2 with f2 ~~~~ and 

11 fi 11 I q/2. From the foregoing and inequality 

(32) with f^= f2 it is clear that 

Therefore, for arbitrary f ~3 and 11~ 0 we have 

J Af(X)dx~v 

whenever p(A) 5 6( 7) and, as a consequence, all 

f E g are uniformly integrable. Hence P is weakly 

precompact and the proof is complete. 

Now we are going to show that Theorem 3 is a 

generalization of Theorem 1, or more precisely 

that the process { xn} described by eq. (1) is a 

special case of the process with randomly applied 

perturbations. To achieve this we adopt what might 

appear to be a paradoxical approach, eliminating 

the deterministic portion of (29) and then reintro- 

ducing a deterministic process in the remaining 

term related to the random perturbation. The first 

essential point to note is that the value Ed = 0 in 

Theorem 3 is not excluded. Thus we may assume 

that .Q = 0 and Ed = 1 which means that the trajec- 

tory always evolves as a random walk. As in 

section 1, assume that we have a sequence { 5,) of 

independent random variables with a common 

density g of the distribution and a transformation 

S: Rd -+ Rd. Further assume that the random 

walk from x, =y to x,+i is given by x,+i = S(y) 

+ 5,. In this case x,+i, subject to the condition 

x, = y, has the conditional density g(x - S(y)) 

and our eq. (29) with K(x, _Y) = g(x - S(y)), be- 

comes identical with (5). 

More generally if we have a given { 4, } and a 

function S: Rd x Rd -+ R of two variables, then 

we may assume that the system goes from x, =y 

to x,+1 = S( y, E,). Denote by K( x, y) the density 

of S( y, 5,). This density always exists if S( y, z) as 

a function of z is nonsingular. If this is the case 

then eq. (29) with Ed = 0, Ed = 1 describes the 

evolution of densities corresponding to (24). 

7. Discussion 

Within the context of specific application, it 

would be of interest to know how the period of 

P”f, as guaranteed by Theorems 1 and 3, depends 

on the perturbation applied to the system. A par- 

tial answer to this question may be obtained from 

eq. (8). For example, if {x,,} is described by eq. 

(1) and the system is considered on the unit circle 

T’, then we have 

P”f(4 = j$x - S(.d)P”-‘fb+b 

SY T,Pn-lf(ddy=y, J 
where y = sup g and this evaluation is valid for 

every density f. In particular, if f = g, then P “f = 
g w~~~i~ which implies that g, I y. Since the g, have 

disjoint supports, we also have 

I 

r= 
/c T’i=o 

gidxs Y, (33) 

and thus the period of the asymptotically periodic 

densities is equal to or less than y!. If the noise 

amplitude is small, i.e., the 5, are small, then 

sup g is large and vice versa. Thus from (33) it 

follows that large noise amplitudes correspond to 

shorter periods of the asymptotically periodic se- 

quence of densities. In particular, if y < 2 then 
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r =  1 (s ince  r m u s t  be  an  integer)  a n d  the se- 

q u e n c e  p nf will, in  this case, be  a sympto t i ca l ly  

s table .  

T h o u g h  we d iscussed  the u n i t  circle for s impl ic-  

ity, in  the  gene ra l  case the  s i tua t ion  is m u c h  the 

same.  However ,  the difference is tha t  ~ = sup g 

m u s t  be  r ep laced  b y  

= f F ( x ) d x ,  

where  F(x )  is a n  a sympto t i c  u p p e r  b o u n d  for the 

s e q u e n c e  of  densi t ies ,  i.e., F satisfies 

P " f  < F ( x )  + ~ , (x ) ,  l im I1~.11 : 0 .  

It  m a y  be  eas i ly  p roved  that  for every cons t r ic t ive  

o p e r a t o r  P such  a func t i on  exists, an d  F is s t rongly  

re la ted  to the  proper t ies  of the  set , ~  in  the 

spec t ra l  d e c o m p o s i t i o n  theorem.  

F i n a l l y  we w o u l d  l ike to no t e  tha t  f rom eq. (8) it  

fo l lows tha t  a n y  sys tem in  the presence  of no ise  is 

q u a n t i z e d  f r o m  a s tat is t ical  p o i n t  of  view. T h u s  if 

n is large,  wh ich  phys ica l ly  m e a n s  tha t  we have 

obse rved  the  sys tem longer  t han  the re laxa t ion  

t ime,  t hen  

P'f-- ~ X,(Y)go~°(i). 
i = 1  

A s y m p t o t i c a l l y  P"f  is e i ther  equa l  to one  of the 

p u r e  s ta tes  gi or  to a mix tu re  of these states, each 

h a v i n g  the  weight  X r 
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