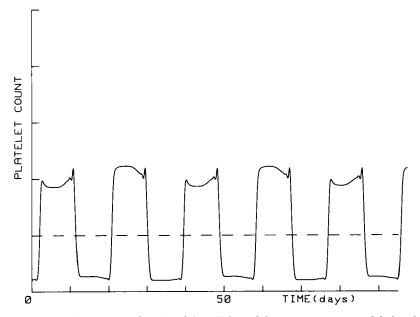
A Model for the Regulation of Mammalian Platelet Production^a

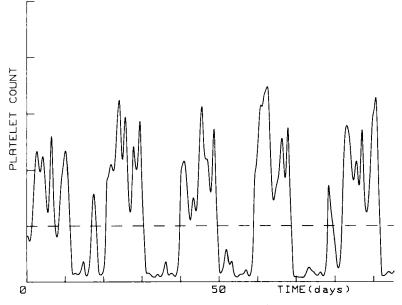
JACQUES BÉLAIR

Département de mathématiques et statistique and Centre de recherches mathématiques Université de Montréal C.P. 6128, Succ. 'A' Montreal, Québec H3C 3J7 Canada

MICHAEL C. MACKEY


Department of Physiology McGill University 3655 Drummond Street Montreal, Québec H3G 1Y6 Canada

The pathophysiology of cyclical thrombocytopenia and idiopathic thrombocytopenia purpura are examined in a simple model for the regulation of mammalian platelet production. We let P(t) denote the total number of platelets of all ages, T_m stand for the maturation time of a megakaryocyte, T_s represent the age of death (due to senescence) of a platelet, and γ be the (age-independent) random destruction of platelets. Then it may be shown that


$$\frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t}(t) = -\gamma \mathbf{P}(t) + \beta (\mathbf{P}(t-\mathbf{T}_{\mathrm{m}})) - \beta (\mathbf{P}(t-\mathbf{T}_{\mathrm{m}}-\mathbf{T}_{\mathrm{s}})) \mathbf{e}^{-\gamma \mathbf{T}_{\mathrm{s}}}$$
(1)

where $\beta(P) = \beta_0 \theta^n P/(\theta^n + P^n)$ reflects the thrombopoietin feedback influencing the influx of cells into the recognizable megakaryocyte compartment, and n, θ , and β_0 are parameters. Equation 1 has the trivial steady state $P^* = 0$ for all values of the parameters. When $\beta_0 > \gamma/(1 - e^{-\gamma T_*})$, a second, non-trivial, steady state $P^* > 0$ appears, and the trivial solution is locally asymptotically unstable. Normally, $T_* = 10$ days and $T_m = 9$ days. We have used published clinical data¹ to determine the parameters n, θ , and β_0 in the feedback function $\beta(P)$. Using these, we numerically integrated Equation 1 for different values of the parameter γ . In FIGURE 1, the non-trivial steady state has lost its stability. Subsequent bifurcations led to irregular time series, an example of which is shown in FIGURE 2. Other simulations have revealed a wide range of possible behavior for Equation 1 as γ is varied, including low, sustained platelet levels, and oscillating nonperiodic counts similar to those observed clinically.²

^aSupported by the Natural Sciences and Engineering Research Council of Canada (Canada) and the Fonds pour la Formation de Chercheurs et l'Aide a la Recherche (Québec).

FIGURE 1. Platelet count as a function of time. Values of the parameters are n = 2.2, $\theta = .04$, and $\gamma = 3$. The dashed line indicates one-tenth of the normal level.²

FIGURE 2. As in FIGURE 1, except γ is now 2.

REFERENCES

- BRANEHOG, I., J. KUTTI & A. WEINFELD. 1974. Brit. J. Haematol. 27: 127-143.
 COHEN, T. & D. P. COONEY. 1974. Scand. J. Haematol 12: 9-17.