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Abstract. A heuristic model for the dynamics of  recurrent inhibition, emphasiz- 
ing non-linearities arising from the stoichiometry of t ransmit ter-receptor  
interactions and time delays due to finite feedback pathway transmission 
times, is developed and analyzed. It is demonstrated that variation in model 
parameters may lead to the existence of multiple steady states, and the local 
stability of  these are analyzed as well as the occurrence of switching behaviour 
between them. As an example of the applicability of  this model, parameters 
are estimated for the h ippocampal  mossy fibre-CA3 pyramidal cell-basket cell 
complex. Numerically simulated responses of this system to alterations in 
presynaptic drive and titration of inhibitory transmitter receptors by penicillin 
are presented. Numerical  simulations indicate the existence of  multiple 
bifurcations between periodic solutions, as well as the existence of bifurcations 
to chaotic solutions, as presynaptic drive and receptor density are varied. It 
is hypothesized that the model offers insight into the sequences of  events 
recorded in single CA3 pyramidal  cells following the application of penicillin, 
a specific inhibitory receptor blocking agent. 
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I. Introduction 

Recurrent inhibition, in which activity in a populat ion of neurons excites a second 
populat ion that in turn inhibits the activity of  the first, is ubiquitous throughout 
the nervous system. The widespread occurrence of recurrent inhibition has 
intrigued many investigators, and generated considerable speculation concerning 
its functional significance. 

In this paper, a simple mathematical  model for a recurrent inhibitory neural 
feedback system is developed and investigated analytically and numerically. The 
model, framed in terms of a nonlinear functional (time delay) differential equation, 
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is a particular member of a large class of models which are known to display a 
rich spectrum of dynamical behaviour. 

The organization of the paper is as follows. In the next section, based on 
known and presumably important neurophysiological aspects of recurrent inhibi- 
tion, the model is developed. Particular attention is paid to nonlinearities intro- 
duced by the stoichiometry of inhibitory transmitter-receptor interactions, and 
the role of feedback pathway delays. It is demonstrated that the dynamic 
behaviour of the model is dependent on four internal parameters plus the level 
of presynaptic activity. Section III analytically examines the steady states of the 
model and their local stability as a function of model parameters. It is possible 
to show that under certain circumstances multiple steady states exist, and that 
alteration of model parameters will lead to switching between these steady states. 
This switching behaviour may display hysteresis. Furthermore, these steady states 
may be stabl~e, corresponding to sustained activity, or unstable and thus give rise 
to periodic or aperiodic firing patterns. In the fourth section an attempt is made 
to estimate the model parameters from data obtained in studies of recurrent 
inhibition in the hippocampus. The response of the model to an experimentally 
accessible procedure, titration of inhibitory transmitter receptors by penicillin is 
examined. In the fifth and final section, some extensions of the model to more 
physiologically realistic situations are discussed. 

II. Formulation of the model 

The model considered here for recurrent inhibition considers three populations 
of neurons. These populations are the presynapticfibres, which are excitatory to 
the postsynaptic cells, and the inhibitory interneurons. The interneuronal population 
is activated by axon collaterals from the postsynaptic cells and, in turn, returns 
an inhibitory input to the postsynaptic cells. Rather than dealing with populations 
of cells, it is assumed that, in the first approximation, each population may be 
replaced by a single "average" cell. 

The postsynaptic cell has an input given by 

E ( t ) -  I(t), 

where E( t )  is the excitatory postsynaptic potential (EPSP) due to activity in the 
presynaptic cell, and I ( t )  is the inhibitory postsynaptic potential (IPSP)arising 
from activity in the inhibitory interneuron. Both E( t )  and I ( t )  are measured in 
millivolts (mV) relative to the resting potential of the postsynaptic cell. 

The output of the postsynaptic neuron is in the form of action potentials 
occurring at an instantaneous frequency F(t) ,  meastired in Hertz (Hz). Here it 
is assumed that this postsynaptic cell output is given simply by 

where 

F(t )  = x . O(E( t )  - I ( t ) -  0), 

0 x ifx<~O 
O(x) = if x/> O" 

(1) 
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In Eq. (1), the constant x (Hz/mV) is the slope of the firing frequency versus 
postsynaptic cell input relationship and 0, measured in mV relative to the post- 
synaptic cell resting potential, is the threshold. 

Activity in the postsynaptic cells activates the inhibitory interneurons, causing 
action potentials to be conducted along their axons which arrive at the synaptic 
terminals at a frequency F(t). The arrival of an action potential at the inhibitory 
interneuron synaptic terminals leads to the release of inhibitory transmitter. This, 
in turn, diffuses across the synaptic cleft to combine with a receptor on the 
postsynaptic cell. The effect of this transmitter-receptor complex is to generate 
the IPSP, I ( t ) .  However, due to the resistive-capacitive properties of the post- 
synaptic cell membrane this inhibitory potential will decay at a characteristic 
rate 7 (msec-~) �9 

Combining the above sequence of events, the dynamics of the IPSP will be 
determined by 

d I  
= - ~ I  + ~ P .  (2 )  

dt 

~7(mV) is a time-dependent inhibitory interaction coefficient given by 

rl(t ) = TVmG(fZ( t ) ) .  (3) 

In Eq. (3), T is the average number of inhibitory postsynaptic receptors per cell 
and Vm (mV) is the inhibitory potential resulting from activation of one receptor. 
The fraction of inhibitory receptors available for activation by transmitter is given 
by G(ff'). 

To determine G(F)  is is necessary to consider the stoichiometry of the 
transmitter-receptor interaction. Of the total receptor population T, L are active 
(combined with transmitter), and M are inactive. Here it is assumed that the 
receptor-transmitter interaction is governed by 

M +nC---~L,  

where n is the number of molecules of transmitter (C) required to activate one 
receptor. If  this reaction is sufficiently rapid to be at equilibrium, and conservation 
of receptors is assumed (i.e. T = M + L), then it is straightforward to show that 
the fraction of receptors available for activation is 

K 

K + [ C ]  ~ 

where K is the equilibrium constant for the transmitter-receptor reaction, and 
[C] is the concentration of transmitter. 

If it is assumed that the pool of inhibitory transmitter is sufficiently large not 
to be depleted by interneuronal activity, then the relation between released 
transmitter levels and interneuron firing frequency will be [C] = rnF, where m is 
a constant. Thus, the function G(zff) is given by 

G ( F )  - K 
K + (m/3) n. (4) 
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Our final task is to relate the frequency of arrival of action potentials at the 
interneuron synaptic terminals (F) to the frequency of generation of action 
potentials in the postsynaptic cell (F). Here it is assumed that activity in the 
postsynaptic cell at a frequency F ( t )  requires a finite time r to be translated into 
activity at the synaptic terminals of the inhibitory interneuron. Thus we take 

F ( t )  = a F ( t  - r), (5) 

where a is to be interpreted as the reciprocal of the number of action potentials 
in the postsynaptic cell required to elicit one interneuronal action potential. 

Equations (1) through (5) may be combined to give 

d I ( t )  K 
dt = -~ , I ( t )  + a T V m F ( t -  r) K + ( m o ~ F ( t -  ~'))" (6) 

and 
F (  t) = uO(  E (  t ) -  I (  t) - 0). (7) 

Equations (6) and (7), in conjunction with an initial condition I ( t ) =  Io(t), 
-r<~ t~<0, and a specification of E( t ) ,  form a complete description of the 
simplified recurrent inhibitory feedback neuronal network. 

Equations (6) and (7) contain a number of parameters. This number can be 
reduced by rescaling the system. 

Moreover it will facilitate later analysis and computation if (6) and (7) are 
rewritten in dimensionless form. Thus, the following notation is introduced: 

= t /T  t,b" = K ( ~ ' / m a ) "  

e( t )  = E ( t ) /  0 F = y'r 

i( t)= I ( t ) / O  13 = aTqrVm/O 

f ( t )  = "rF(t) /O H = r~O/tp. 

Using (8), Eqs. (6) and (7) may be written as 

and 

where 

(8) 

di(t)  
= -Fi6) +13g(f( t  - 1)) (9) 

d7 

f ( t )  = HO(e(7)  - i ( t ) -  l) (10) 

f 
g(f )  = 1 +f"" (11) 

Thus the dynamics of the recurrent inhibitory neuronal feedback model are 
dependent on the four parameters/3, F,/4, and n, and the normalized EPSP, e(~). 

IlL Steady states and local stability 

Henceforth it is assumed that the EPSP is constant in time, e(7) = e. In a steady 
state, all quantities appearing in (9) through (11) are independent o f  7 and the 
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steady state values of the IPSP and postsynaptic cell firing frequency, denoted 
by i* and f * ,  are given by the solutions of 

and 

f *  = HO(e - i* - 1) (12) 

F 
- -  i *  = g ( f * ) .  (13) 
/3 

As shown below, the pair of Eqs. (12), (13) may have one, two, or three solutions 
depending on the values of the parameters F,/3, H, n, and e. 

Steady states. The situation is especially simple if e ~< 1, and is summarized in: 

Proposition 1. (a) I f  e <~ 1 then i* = f *  = 0 is the unique steady state; and (b) I f  
f * = O  then i* =O and e<~ l. 

Proof: (a) From (13) i*>~0 so e- i*<~l  and Eq. (12) gives f * = 0 .  Hence we 
conclude i * = 0  from (13). (b) If f * = 0  then i * = 0  by (13) and, because of (12), 
e - i * ~ < l .  Hence e<~l. 

Now we examine the situation when e >  1. In this case, by Proposition l(b) 
any steady state f *  is positive and given by f *  = H ( e -  i * -  l). Thus i*= 
- f * / H  + e - 1 .  Substituting this expression for i* into Eq. (13), the steady state 
is determined by 

f * + / 3  e = ~ -  ~ g ( f* )  + 1. (14) 

The right-hand side of (14) is a function 

f * + / 3  
p ( f* )  = - ~  ~ g ( f* )  + 1, (15) 

depending on the parameters/3, F, H, and n, but not on e. Any steady state f *  
satisfies e = p(f*).  

If  p is a strictly monotone function o f f * ,  then f *  is uniquely given by 

f *  = p l(e), (16) 

where p-1 denotes the inverse function of p. An examination of dp/df*  and 
de p / d f  .2 shows that p is strictly monotone increasing (and, thus, so is p- l )  if 

F (/7 - 1) 2 
> - -  (17)  

/3H 4n 

Conversely, if 

F ( n - l )  2 
- - < - -  (18) 
fl H 4n 

then p has two local extrema f, f, f < f ,  as @own in Fig. 1. In this case there is 
a unique steady state f *  only if e < el --- p( f )  or e > e2 ~ p(f) .  For all values of 
e satisfying e~ < e < e2 there are three steady states f *  <f2* <f3* since there are 
three values o f f *  satisfying e = p(f*).  
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Fig. 1. The graph of p(f*) versus f* 
when inequality (18) is satisfied and 
multiple steady state solutions to the 
system of Eqs. (9)-01) may exist. 
Steady states are determined by sol- 
utions of e = p(f*). See the text for 
further details 

In summary  we have proved:  

Theorem 1. (a) I f  inequality (17) holds, then for every e (constant) the system 
(9)-(11) has a unique steady state (i*, f* ) .  For fixed 3, F, H, and n, f * is a monotone 
increasing function of e; and (b) I f  inequality (18) holds, then there are values of 
presynaptic input el = el (/3, F, H, n) and e2 = e2 (3, F, H, n) such that the system 
(9)-(11) has exactly 

(i) 3 different steady states if  el < e < e2, 
(ii) 2 different steady states if e = e~ or e = e2, 

(iii) 1 unique steady state if  e < e~ or e > e2. 

As illustrated in Fig. 1, when inequality (18) is satisfied variat ion o f  the 
constant  presynapt ic  input  e may lead to abrupt  switching between steady states. 
Further,  this switching behaviour  will display hysteresis. Thus, an increase in e 
will lead to an abrupt  shift f rom a low to high postsynapt ic  cell steady state firing 
frequency ( f *  ~ f * )  at e -- e2. Conversely,  a decrease in e to e = e~ will result in 
a sudden drop  in output  cell activity (f3* ~ f * ) .  

Local stability. Having enumerated  the possible steady states for this model  
we now turn to an examinat ion o f  their stability. First note that if e < 1 then the 
steady state ( i * , f * ) =  (0, 0) is asymptotical ly stable since y = i -  i* obeys 

d y =  - F y  

dt 

~n a ne ighbourhood  o f  zero (writing t instead o f  7 throughout) .  
N o w  consider e > 1. Then i* > 0, f *  > 0, and there is ne ighbourhood  U of  

f *  such that f ( t ) =  H [ e -  i ( t ) -  1] whenever  f ( t ) c  U and 

dr( t )_  T di(t) 
dt n - -~- -= F H i ( t ) -  [3Hg( f ( t -  1)). 
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Eliminating i(t) by using i( t)= e -  1 - f ( t ) / H  this equation becomes 

df(t) 
dt = FH(e - 1)-  F f ( t ) -  f l H g ( f ( t -  1)). (19) 

The characteristic equation [8] for the eigenvalues A of (19) near the steady state 
f *  is given by 

A + F + # H g '  e -A = 0 (20) 

where 

dg f=r g' =~-~ (21) 

It is well known [8, 14] that all of the eigenvalues A will have negative real parts 
if and only if 

- F  < flHg'< [g2 + F2]1/2 (22) 

where #~ is uniquely determined by 

~:l = - F  ta n  ~1, 0 < ~:~ < ~-. (23)  

If this criterion is satisfied then f *  is asymptotically stable, while if (22) is violated 
then f *  is unstable. 

We first consider the case when inequality (17) holds (and, hence, Theorem 
l(a)). In this case our stability results are summarized in: 

Theorem 2. Let fl, F, H and n be fixed, let inequality (17) be satisfied and ~j given 
by (23). Then 

(a) /f f lH < [ ~  +F2] 1/2 then, for each e, the steady state of equation (9) is 
asymptotically stable ; 

(b) if  f lH>[#~ +F2] ~/2 then there is a value ~ = #  (fl, F, H, n)>  1 of e such 
that the steady state of equation (9) is unstable whenever 1 < e < ~ and is 
asymptotically stable whenever e > #. 

Proof: Since 

dg(f)>~ ( n - l )  2 

df  4n 

for all f ~  0, it follows that the first inequality of (22) is always satisfied. Further 

rig(f) <~ 1 
df 

for all f~> 0. Thus the second inequality of (22) is satisfied if f lH < [~:2 +F2]~/2, 
proving (a). 

To prove (b), assume #tH>[#Z+F2] ~/2. If  e - 1  increases from 0 to oo, then 
f *  increases from 0 to oo by Eq. (16). If f *  increases from 0 to ~/1/(n - 1), then 
g' decreases from 1 to 0, and g ' < 0  for all f *  > ~/1/(n - 1). Thus there is a unique 

> 1 such that the second inequality of (22) does not hold for e between 1 and 
#, but holds for all e > Y. The proof of the theorem is complete. 
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We finish with a consideration of the stability when a set of parameters/3, F, 
H, n satisfies inequality (18). Then Theorem l(b) is applicable, and we introduce 
the following notation. Let the single steady state existing for e < el be denoted 
by f * ,  the single steady state for e > e2 be called f * ,  and the three steady states 
existing for el < e < e 2 be called f *  < f *  < f * .  Then we have: 

Theorem 3. Let/3, F, H, n satisfy inequality (18). 
Then: (a)f3* is asymptotically stable; (b) f*  is unstable; and (c)/f/3H < [~:~ +/'2] ]/2 
then f *  is asymptotically stable; or (d) if  f i l l >  [(2+F211/2 then there is a value 
~= ~ (F, fl, H, n), 1 < ~< e2, such that f *  is unstable whenever 1 < e < ~ and f *  
is asymptotically stable whenever ~ < e < e2. 

Proof: Part (a) follows from 

~ d~ f=f~ ~ O, /3H df 

which implies inequality (22). 
At the steady state f *  we have 

F dg ~ - - -  

/3H 

so inequality (22) is violated, and part (b) is proved. 
Finally the proof of (c) and (d) follows entirely analogously to the proof of 

Theorem 2 with f *  replacing f *  everywhere. 

Remark: Though local instability of a steady state implies it is globally unstable, 
local stability of a steady state offers no insight into its global stability properties. 
However in either case a result of an der Heiden [1] can be used to show that 
for a non-negative initial condition io(t), -1  ~< t ~< 0, to the system of Eqs. (9)-(11) 
the solution i(7) is bounded below by zero [i(~)> 0 for all ~ > 0] and for some 
finite t+ > 0, 

</3 i s u p i ( t ) ~ s u p g ( )  for all t> t+ .  

Thus we know that any non-constant solution i(t) is bounded above and below, 
as is f(7). 

The system of Eqs. (9)-(11) describing recurrent inhibition is of the form 

dx(t) 
dt yx(t) + h(x(t - ~-)) (24) 

where h(x) is a non-monotone "humped" function of x. Analytic and numerical 
studies of time-delay differential equations of this type by a number of authors 
[1, 3-5, 12, 18, 21, 24, 26, 27] have revealed a rich structure of bifurcating periodic 
solutions as well as the existence of apparently aperiodic ("chaotic") solutions. 

Rather than examine the possible behaviours of the numerical solutions to 
the system (9) through (11) for variations in all of the parameters/3, F, H, n, and 
e, in the following section we examine a specific example. 
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IV. A specific example 

In this section, we apply this model to a well studied recurrent inhibitory circuit 
in the hippocampus, the mossy fibre-CA3 pyramidal cell-basket cell complex. 

The CA3 pyramidal cells (the postsynaptic cells) receive excitatory presynaptic 
input from the mossy fibres, and recurrent inhibitory input from the basket cells 
via what is generally considered to be a monosynaptic pathway. The inhibitory 
transmitter is 7-aminobutyric acid (GABA) [7, 17]. 

From data [16,25] it is estimated that 0 = 4 m V ,  y - l = 1 0 m s e c ,  and x =  
2.25 Hz/mV. Other work [6] yields an estimate for ~ of 100 msec, V,, = 24 mV, 
and a = 0.1. Finally the half maximal GABA response is 5 IxM [20], so " ~ -  = 5 jxM; 
and n = 2 o r 3 [ 2 0 ] , o r  n = 3  or 4128], so we take n = 3 .  

Two parameters we have been unable to estimate are T (the average number 
of GABA receptors per CA3 pyramidal cell) and m. With these uncertainties in 
mind, the above data give F =  10, n =3,  H = 0 . 1 8  m, and/3 =3T/m, where m is 
in units of ixM-sec. 

Penicillin competitively binds to the GABA receptor, and indeed the topical 
application of penicillin is a common experimental tool for the generation of 
epileptic-like behaviour in cortical cells. Viewed within the context of this model, 
the application of penicillin is equivalent to the titration of the number, T, of 
GABA receptors on the CA3 cell. Thus, to investigate the response of  this model 
to variations in T, in Fig. 2 we show the steady state deviation of the dimensionless 
membrane potential from the resting potential, e -  i*, as a function of receptor 
density for presynaptic inputs, e, ranging from 1.1 to 2 times threshold. In 
constructing Fig. 2 the estimated hippocampal parameters data were used under 
the assumption that m = 50 fxM-sec. The local stability or instability of e - i*, as 
determined by Theorems 2 and 3 of the previous section, is indicated by a solid 
or dotted line respectively. Once e exceeds approximately 1.3 times threshold, 
there is a range of receptor densities for which multiple steady states may exist. 
For this set of parameter values the intermediate steady state e - i*, corresponding 
to f * ,  is always locally unstable while the largest steady state ( f* )  is predicted 
to be locally stable, f *  may be stable or unstable depending on the value of T. 

Using an integration step size of 0.01 (corresponding to 1 msec integration 
steps, since ~-= 100 msec) and an initial condition of i0(t)= 0.1, -1  ~< ~ ~< 0, the 
full set of dynamical Eqs. (9) through (11) were integrated with parameters 
determined by the estimates from the hippocampal data, m = 50 ixM-sec, and a 
variety of receptor densities T and presynaptic input levels e. 

Our simulations seem to indicate that, whenever there is a single steady state 
for the system (9)-(11), and the conditions of Theorem 2(a) are fulfilled then this 
steady state is globally attracting. The same is true when the conditions of Theorem 
2(b) apply and the steady state is stable (e > Y). However, in the situation that it 
is unstable (I < e <  Y) all numerical solutions are attracted to an apparently 
globally stable limit cycle whose complexity may vary. 

The situation is even more interesting when the possibility of three steady 
states exist. In this case, when 1 < e < g (compare Theorem 3(d)) then the steady 
state f *  appears to be replaced with either limit cycle or aperiodic behaviour. 

To illustrate this, in Fig. 3, using a variety of receptor densities T and a 
presynaptic input level of e = 1.6, the resultant dynamical variation in e - i(7) is 
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I I I I I I I I I 

! I f ! ! ! 

Fig. 3. Model predicted behaviour as a function of  GABA receptor density (decreasing, top to bottom) 
for the same parameters used in Fig. 2. Each panel represents one second of simulated CA3 pyramidal 
cell activity after a three second period to allow transients to die out. In each panel the ordinate 
(membrane  potential) runs from - 5  to +10 in threshold units, or from - 2 0  to +40 mV, relative to 
the resting potential. Going from top to bottom the receptor density falls from T = 1900 to T =  500 
in steps of  200 
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shown for t = 30 to 40 (corresponding to 1 second of activity in the CA3 fibres 
since ~-= 100 msec). As an aid to understanding, superimposed vertical lines 
corresponding to the occurrence of action potentials are included. 

At high receptor densities (T  = 1900) the membrane potential e - i(7) is peri- 
odic and the output cell displays bursting behaviour. Decreasing T from this 
value brings about a surprising sequence of behaviours in which bursting in 
various patterns is interspersed with patterns of irregular continuous activity. 
Prior to the transition to sustained regular firing ( f* ,  not shown) the model for 
recurrent inhibition predicts the occurrence of irregular fluctuations in membrane 
potential (e.g. T = 7 0 0  and 500) and an attendent irregularity in CA3 firing 
patterns. These sequences of changes in the underlying dynamics of this model 
for recurrent inhibition are exactly analogous to the patterns of multiple period 
doubling bifurcations and the onset of "chaotic" dynamics noted by others for 
time delay differential equations like (24) with non-monotone h. 

The sequence of dynamical behaviours exhibited in Fig. 3 as T is decreased, 
at constant e, is remarkably similar to that seen following the application of 
penicillin wherein bursting behaviour is gradually transformed into irregular 
firing patterns to finally be superseded by sustained high level firing [22]. Just as 
decreases in T may result in a transition to this high level of sustained activity 
at constant levels of presynaptic drive e, increases in e at constant GABA receptor 
numbers may result in the same phenomenon. As with decreases in T, increasing 
the presynaptic drive results in a number of different activity patterns before the 
transition to sustained high level activity occurs. It is tempting to speculate that 
experimentally observed irregular variations in membrane potential and action 
potential generation may, on some occasions, not be due to stochastic fluctuations. 
Rather, they may reflect the fact that a recurrent inhibitory mechanism is operating 
in a region of parameter space characterized by chaotic dynamics. 

V. Discussion 

The occurrence of hysteresis phenomena in neural network models has been 
considered previously [13,29]. Wilson and Cowan [29] considered mutually 
excitatory-inhibitory networks, while Hadeler [ 13] examined the Hartline-Ratliff 
equations with pure mutual inhibition and external excitation. In this case, 
however, the multiple steady states which may occur are not homogenous, and 
it has been shown [2] quite generally that neural networks containing only 
monotone nonlinearities and inhibitory couplings cannot have several 
homogenous steady states. 

Other models like (24) have been proposed for lateral inhibition in the retina 
of Limulus but with monotone non-linearities [9, 10]. The periodic solutions in 
these models are much simpler than those discussed here, and there is experi- 
mental evidence for the existence of periodic activity in this preparation [23]. 

From a neurophysiological perspective there are at least two assumptions in 
this model for recurrent inhibition to which objections may be raised. 

The first is related to the assumption, contained in Eq. (1), that the output 
cell firing frequency is a linearly increasing function of the cell input, E-I, once 
the threshold has been exceeded. This assumption neglects, for example, the 
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attainment of a maximal firing rate equal to the reciprocal of the output cell 
absolute refractory period. Thus in the more general case (1) might be replaced 
by 

F = t 0  E - I < O  
~ ( E - I - O )  E- I>~O 

where ~(x)~O, x~>0; [d~/dx]>O at x = 0 ;  and limx_~oo ~(x)<F~ <oo. A simple 
graphical consideration of the steady state behaviour of the recurrent inhibition 
model with this more general relation between membrane potential and output 
cell firing frequency reveals that if Fm is sufficiently small then it is possible for 
multiple steady states [Theorem l(b)] to disappear. However, for the specific 
example considered here of hippocampal recurrent inhibition, the introduction 
of a more general saturating relation ~: between E - I and F will not affect the 
qualitative behaviour described in the previous section, though quantitative details 
will change. 

The second objectionable assumption involves the supposition that the recur- 
rent inhibitiory pathways all operate with an identical delay of T. In the more 
realistic case, a distribution of axonal diameters, conduction pathway lengths, 
and synaptic transmission times would lead to a relation of the form 

=o~ (t F ( u ) k ( t - u )  du 
..I- o o  

replacing (5), where a is a constant and k(x) is the distribution of transmission 
times. On general neurophysiological grounds, one would expect k(x) to have 
the following properties: 

(1) k(x)=O for O < x < r * , r * > O  (i.e. there is a minimum non-zero trans- 
mission time r 

(2) k(x) >1 0 for r* < x ; 
(3) l i m x ~  k(x) = 0; and 

c o  

(4) ~o k(x) dx= 1. 
Thus the mean transmission time around the recurrent inhibitory feedback path- 
way is 

fo = xk(x) dx 

Numerical simulations of systems like (24) replacing a single time delay with 
a distribution of delays indicate that the qualitative behaviour of solutions is 
largely unaffected by the addition of a distribution of delays [1]. Numerical 
studies of recurrent inhibition models with distributions of time delays have been 
published previously [15, 19]. 

A third objection, specifically related to the application of this model to the 
dynamics of the CA3 pyramidal cell-mossy fibre-basket cell complex, involves 
the neglect of any recurrent excitatory pathway. In their study of penicillin 
induced hippocampal seizured activity, Dichter and Spencer [11] postulated the 
existence of not only recurrent inhibition but also recurrent excitatory circuits. 
They speculated that the paroxysmal depolarizing shift noted after the application 
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o f  p e n i c i l l i n  was  due  to t he  o c c u r r e n c e  o f  l a rge  s y n c h r o n o u s  E P S P ' s  g e n e r a t e d  
by r e c u r r e n t  exc i t a t ion .  

T h o u g h ,  as the  p r e s e n t  s tudy  ind ica tes ,  a s u d d e n  d e p o l a r i z i n g  shi f t  w i th  

a c c o m p a n y i n g  s u s t a i n e d  ac t iv i ty  is n o t  d e p e n d e n t  o n  the  p r e s e n c e  o f  r e c u r r e n t  

exc i t a t i on ,  the  ex i s t ence  o f  a r e c u r r e n t  exc i t a t o ry  c i rcu i t  w o u l d  ce r t a in ly  a u g m e n t  

such  a r e sponse .  The  i n c l u s i o n  o f  r e c u r r e n t  e x c i t a t i o n  w i t h i n  t he  c o n t e x t  o f  this  

m o d e l  is s t r a i g h t f o r w a r d ,  and  wil l  resu l t  in t he  m o r e  c o m p l i c a t e d  d y n a m i c a l  

s c h e m e  

dI  K~ 
- - =  - c d  + a~ Tx V~iF( t - "r~ ) 
dt K1 + ( m l a t F ( t  - z l ) )"I  

a n d  

dE K e  
--dt = - a E  + a E T ~ V m E F ( t -  ze)  KE + ( m E a e F ( t -  z~))nE 

in c o n j u n c t i o n  wi th  (7), w h e r e  the  quan t i t i e s  h a v e  the i r  p r e v i o u s  m e a n i n g  a n d  

the  subsc r ip t s  E a n d  I r e fe r  to the  r e c u r r e n t  e x c i t a t o r y  a n d  i n h i b i t o r y  p a t h w a y s  

r e spec t ive ly .  S u c h  a s i t ua t i on  is o f  o b v i o u s  in teres t ,  as se l f  g e n e r a t e d  osc i l l a to ry  

b e h a v i o u r  is n o w  pos s ib l e  in the  a b s e n c e  o f  p r e s y n a p t i c  exc i t a t o ry  dr ive ,  bu t  wi l l  

no t  be  dea l t  wi th  fu r the r .  
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