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Abstract. This paper presents a general model for the cell division cycle in a 
population of cells. Three hypotheses are used: (1)There is a substance 
(mitogen) produced by cells which is necessary for mitosis; (2) The probability 
of mitosis is a function of mitogen levels; and (3) At mitosis each daughter 
cell receives exactly one-half of the mitogen present in the mother cell. With 
these hypotheses we derive expressions for the ~ and fl curves, the distribu- 
tions of mitogen and cell cycle times, and the correlation coefficients between 
m o t h e r - d a u g h t e r  (Prod) and sister-sister (Pss) cell cycle times. 

The distribution of mitogen levels is shown to be given by the solution to 
an integral equation, and under very mild assumptions we prove that this 
distribution is globally asymptotically stable. We further show that the limiting 
logarithmic slopes of a( t )  and f l(t)  are equal and constant, and that prnd ~ 0 
while Pss ~> 0. These results are in accord with the experimental results in many 
different cell lines. Further, the transition probability model of the cell cycle 
is shown to be a simple special case of the model presented here. 

Key words: Cellular proliferat ion--cell  cycle t ime- - l inea r  operators--  
distribution of mitogen level 

I. Introduction 

The elapsed time between cell birth and cellular division is known as the cell 
cycle, or generation, time T. In a steady state population of cells that appear to 
be identical at birth, it is a curious but universal phenomenon that the distribution 
of generation times, ~0(t), is broad and often closely approximated by a log-normal 
distribution. Further, if a population of cells is synchronized by mitotic blockade 
and subsequently released, then the distribution of cell cycle times in successive 
generations rapidly approaches the same distribution ~O(t) observed in the steady 
state population. 
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The correlation coefficient, P,,d, between the cell cycle times of a mother cell 
and her daughter cells, in a variety of cellular populations, consistently falls 
between 0 and -�89 This observation has been widely interpreted by many inves- 
tigators to indicate an influence of one generation of cells on the cell cycle times 
of their progeny. Conversely, the correlation coefficient between the cell cycle 
times of daughter cell pairs with the same mother cell, ps,~, is positive. This is 
in sharp contrast to the total lack of correlation between the cell cycle times of 
unrelated cells. 

As an outgrowth of the work of Smith and Martin [ 14], in which the "transition- 
probability" model for the cell cycle was introduced, it has become popular 
among experimentalists to characterize populations of cells by the fraction of 
cells undivided at a time t after their birth. This index is denoted by o~(t) and is 
clearly related to O(t) by 

ct ( t )  = 1 - ~b(x) dx. 

Further clues concerning cell population dynamics may be obtained by examining 
the fraction of sibling cell pairs whose intermitotic times differ by at least a time 
t. This statistic, first introduced in [7], is denoted by/3(t). It has been a common 
observation [1, 9-14] that the limiting (large t) logarithmic slopes of a(t)  and fl(t) 
are constant and equal. 

This paper shows that the qualitative characteristics of a(t)  and f l ( t )  are 
predicted by a very simple and general model for the cell cycle. Further, the 
model predicts a rapid approach of the distribution of cell cycle times to a stable 
distribution, the asymptotic properties of o~(t) and f l ( t ) ,  and that fired is negative 
and p,s is positive. 

The next section presents the model and derivations of a ( t )  and /~(t). 
The model rests on three hypotheses: (1)There is some substance produced 
by the cell (which we call mitogen for convenience) necessary for mitosis; (2) The 
probability of mitosis in a given cell is a function of cellular mitogen levels; and 
(3) At mistosis each daughter cell receives exactly one-half of its mothers mitogen 
content. 

In the third section we prove that the distribution of mitogen, and thus the 
distribution of cell cycle times, is globally asymptotically stable. Finally, in Sect. IV 
we show that the asymptotic properties of a(t)  and ~(t) are consistent with 
experimental observations, as are prod and p~s- We also show that the "transition- 
probability" model for the cell cycle is a special case of the model presented here. 

II. Model for the cell cycle 

The concept that there exists some substance(s) (mitogen) necessary for mitosis 
is not a new one, and indeed there exists abundant experimental evidence 
supporting the concept [see [8] for an excellent review of this lfterature]. Other 
workers have argued that, in addition, cell mass may play a critical role in the 
initiation of mitosis and cytokinesis. 

Whatever the identity of the variables necessary to initiate the cell division 
process is ultimately shown to be, here we assume that the process is governed 
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by the production and magnitude of a single variable which, for convenience, 
we refer to as mitogen. 

Consider a given cell in a large population that was born at a time t = 0, and 
let m be the mitogen level for this cell. Our first hypothesis is that the evolution 
of mitogen with time following cellular birth is governed by 

m' ( t )  = g ( m ) ,  re(O) = r. (1) 

We always denote the solution to equation (1) by m(r,  t). 
We consider two possible cases for mitogen production. 

Case  I. The mitogen level is a priori bounded. 
In this case we assume that g is a C l function on the finite closed interval 

[0, 2l], and that 

g ( x ) > 0  f o r 0 < x < 2 /  (2) 

and 
g(2/) = 0. 

Generally, the value g(0) is unimportant  for our considerations. However, if g(0) = 0 
then we assume g ' (0 )>  0. 
Case  II. T h e  mitogen level is a priori unbounded.  

Under  this circumstance we assume that g is a C 1 function on the half line 
[0, co), and that 

g ( x )  > 0 for x > 0. (4) 

As in Case I we require that g'(0) > 0 when g(0) = 0. We further assume that for 
every r~>0 the solution re(r, t) o f ( l )  is defined for all t~>0. This is equivalent to 

g ( u )  - oe, 0 < e < 21, 

which is automatically satisfied in Case I since g is a C 1 function and satisfies (3). 
On occasion, we will treat Cases I and II  together, so l = co in some equations 

is not excluded. 
Our second hypothesis is that a cell containing an amount m of mitogen at 

time t has the probability 

r  + o (A t )  

of dividing in the time interval [t, t +At].  [At this point we wish to note out that, 
although throughout this paper  we talk of  probabilities, the model can equally 
well be formulated in terms of  "'fractions of  cells". The model thus admits both 
deterministic and stochastic interpretations. The advantage of using the prob- 
abilistic approach is that some elements of  the derivations are made easier.] 

The function r is assumed to be non-negative and C 1 on [0, 2l], and such that: 

r = O, lim inf r  O, l<oc;  (5a) 
x ~ 2 1  

. . . .  r  
r = O, nm t n t - - >  O, l = co. (5b) 

x - ~  g ( x )  
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Conditions (5a) and (5b) simply state that mitogen is necessary for mitosis, and 
that mitosis is likely when mitogen levels are near their maximum values. 

A. Derivation of  a( t). 

These two hypotheses are sufficient to determine a(t). Denote, as before, the 
generation or cell cycle time of  a given cell by T. We consider T to be a random 
variable (all random variables will be denoted by capital letters). I f  a(r, t) is the 
probability that T/> t given that the initial mitogen level was r, or 

a(r, t) ~. P r o b ( T ~  > t[m(0) = r), (6) 

then from our two hypotheses we have 

a(r,  t)= exp[- f/c~(m(r,s))ds]. (7) 

Thus a(r, t) is the expression for a in a population of cells having the same 
mitogen level r at birth. The derivative 

On(r, t) 
th(m(r, t))a(r, t), 

Ot 

which we denote by a,(r, t), is the density function for the distribution of 
generation times in these cells. 

In general the initial amount  of  mitogen, r, is presumably not fixed in a 
population, but rather is distributed on the interval [0, 1) with a density f(r). 
Thus, the fraction of  cells in a population having initial mitogen levels r between 
r~ and rE is given by 

and the a curve for the entire cellular population is given by 

fo ,~(t) = P r o b ( T  >1 t) = ~(r ,  t ) f ( r )  dr. (a) 

Finally we note that the density function for the distribution of  generation 
times in the entire population of cells is given by 

Io ~ ( t )  = - ~,(r ,  O f ( r )  dr. 

B. Derivation of  fl(t) 

To derive an expression for /3(0 ,  we require our third and final hypothesis: Each 
newly born sister cell receives exactly one-half of  the mitogen present in the 
mother cell at mitosis. 

We consider two sister cells with the same initial mitogen level r, and let T~ 
and T2 denote their respective generation times. Defining 

fl(r, t ) -  Prob([ T l -  T2[/> t[m(0)= r) (9) 
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we have 

/3(r , t )= f f  a~(r,x)at(r,y)dxdy=2 f f  
ly--Xl~t y - - x ~ t  

If we set z = y -  x then this last expression becomes 

~(r,  0 = 2  c~,(r,x)c~,(r,x +z) dz dx 

= 2 ~,(r, x ) [~( r ,  oo) - o4r, x + t)] dx. 

From Eqs. (2) through (4), for all l we have 

lim re(r, t)= 21 
t ~ c o  

and so from (5) and (7) 
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a,(r, x)a,(r, y) dx dy. 

(10) 

xlim a(r, x) = O, r>O. (I1) 

Thus 

]~(r, t) = - 2  at(r , x)a(r, x + t) dx. (12) 

As for a(t) ,  we must account for the initial distribution of mitogen in order 
to calculate the total population fl curve: 

fl(t) = Prob(I T1 - 7"21 >i t) = fl(r, 0f ( r )  dr. (13) 

Thus, using (12) we finally have 

folio ' / 3 ( 0 = - 2  a,(r,x)a(r,x+t)f(r)dxdr.  (14) 

C. The distribution of mitogen 

Our final task in the formulation of this model is to derive an equation connecting 
the initial mitogen distributions in successive generations of cells. Let fL be the 
initial distribution in one generation, and f2 be the distribution in the progeny 
of this generation. 

To start we assume that in the first generation of cells the initial mitogen level 
was fixed at r, and we denote by R the initial amount of  mitogen in the next 
generation. By our third hypothesis, 

R-�89 T) (15) 

where T is the generation time of  cells in the first generation, so 

Prob(R/> xlm(O ) -- r) = Prob(m(r, T) >/2x). (16) 
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The function t ~  m(r, t), at fixed r, increases from m(r, O)= r to m(r, oo)= 21. 
Hence, for each x c [�89 l) there is exactly one time ~-(r, t) such that 

re(r, r(r, x)) = 2x. 

Further, for each x ~ [�89 l) the condition R/> x is equivalent to T ~  > r(r, x) so Eq. 
(16) may be rewritten as 

1, O<-x<lr  (17) 
Pr~ a(r,r(r,x)),  �89 

I f  we set y = m(r, s) in Eq. (7), then dy = din(r, s) = g(m(r, s) ds = g(y) ds and 
as a consequence 

a(r , ' r (r ,x ) )=exp{--Jr  f2x r 

Let 

q(x) = qb(x)/ g(x) 

so Eq. (17) becomes 

Prob(e~xlm(O)=r)=exp{ f;ax(2x, r) - q(y) dy}. 

In the first generation of  cells mitogen is distributed with a density fi ,  so 

fo Prob(R ~> x) = Prob(R i> x I m(0) = r)fffr) dr. 

However, since f i  is the density for the distribution of  R we must also have 

Prob(R/> x) = f i f o  dr, 

SO 

fffr) dr = Prob(R/> x[m(O) = r)fi(r) dr. 

(18) 

(19) 

f2(x) = k(x, r)fl(r) dr 

0, f f~  k(x, r)= 2 q ( 2 x ) e x p { -  q(y) dy},  

0~x<�89  

�89 
(20) 

where 

Differentiating this last expression with respect to x and using equation (19) we 
obtain 
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By induction, the density for the initial mitogen distribution in the n the gener- 
ation, f. ,  must satisfy 

Io f ,(x) = k(x, r)f,_~(r) dr. (21) 

Substitution of (20) into (21) gives the more explicit representation for f ,(x) 

f , (x)= 2q(2x)exp{-  f]~' q(y) dy} [ 2  in(2x'O exp 

(22) 

Should it happen that q(y) = 0 for y < l, then (22) takes the simple form 

Thus, in this very special case the sequence {fn} for n > 2 is stationary regardless 
of the initial density f~. 

III. Stability of the mitogen distribution 

In the previous section we derived a curious and interesting integral equation 
(21) connecting the initial mitogen distributions in successive generations of cells. 
In this section we shall prove, subject to some mild conditions on k(x, y), that 
the f ,(x) approach a unique limit as n -~ ~ ,  i.e. there is a unique solution to 

i0 f(x) = k(x, r)f(r) dr. (23) 

This will require some other results which we develop below. 
However, before presenting this material note that a closer consideration of 

(23) raises the question of the existence of a solution, much less its convergence. 
To be specific, pick g(x) = c > 0, c a constant, and ~b(x) = x. Now q(x) = x/c, 

[  fx_ lr 
o -2x2+ r2 ] i f / >  �89 

k(x, r) = (4x/c) exp c 2cJ 

and (23) takes the specific form 

io f(x) = (4x/c) exp(-2x2/c) exp(r2/2c)f(r) dr. (24) 

This integral equation is equivalent to the first order differential equation 

cxf'(x) + (4x 2 - eft(x) - 4x2f(2x) = 0 

with an advanced argument. [This may be easily shown by dividing both sides 
of (24) by (4x/c)exp(-2x2/c) and differentiating]. 

That Eq. (24) even has a solution is interesting because of the curious analytic 
properties f(x) must have. First, since the right-hand side of (24) is continuous, 
the solution must be continuous. Secondly, since any solution is continuous it 
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must be C ~ since, for continuous f, the right-hand side of  (24) is C ~. By induction, 
we therefore conclude that every integrable solution of  Eq. (24) must be C ~ on 
the half  line [0, oo). On the other hand, any solution f of  (24) must satisfy f(0)  = 0. 
Differentiating, we also find that f ' ( 0 ) =  0, and by induction it is easy to show 
that any solution of (24) must satisfy f~n)(0) = 0 for all n. Thus we conclude that 
any solution f of  Eq. (24) is C ~ on [0, 0o) but is not analytic at x = 0! 

Before stating and proving our main result, we require some other background 
material from the theory of  integral equations with positive kernels. However, 
since we are interested not only in the existence of  solutions but also their stability, 
and the kernel k(x, y) is generally unbounded (as in the previous example), some 
recent results from ergodic theory [5] will prove more useful than classical results 
related to the Kre in -Ru tman  theorem. 

Denote by D the set of  all real valued functions on [0, 1) which satisfy 

f (x)  >~ 0 and f / f ( x )  dx = 1. (25) 

Such functions f 6  D will be called densities, and no distinction will be made 
between two elements of  D which differ only on a set of  measure zero. 

For the purposes of  this section let k(x, y) be a measurable function defined 
for x, y c [0, I), l finite or not, satisfying 

f/ k(x, y) >~ 0 and k(x, y) dx = 1 for all y. (26) 

Such functions k will be called stochastic kernels. Further, let an operator  P :  L 1 -~ 
L 1 be defined by 

fo Pf(x) = k(x, y)f(y) dy. (27) 

A function h will be called a lower bound function for the operator  (27) if, 
for every f e  D, there exists an integer no(f) such that 

Pnf(x) >I h(x), n >~ no(f). (28) 

A lower bound function will be called non-trivial if  

h(x)>~O and f / h ( x )  dx>O. (29) 

With these definitions and notation, we may state the following: 

Theorem 1 [5] I. I f  for a given stochastic kernel k, there is a nontrivial lower bound 
function for the operator (27), then the equation 

f (x)  = k(x, y)f(y) dy 

has a unique solution f .  c D. Moreover, for any other density f c D 

f' lim IPnf(x) - f ,  (x)] dx = O. 
n -~  o o  0 
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For  b o u n d e d  intervals [0, t), 1 < ~ ,  it is somet imes  easy to demons t ra t e  the 
existence of  a lower b o u n d  function.  It  is sufficient to find any  nontr ivial  h 
satisfying (29) and 

k(x, y) >t h(x) for  x, y e [0, I). (30) 

In this case we have 

fo fo P' f (x )  = k(x, y)P"-~f(y) dy >>- h(x) P"- t f (y )  dy = h(x). 

Therefore ,  condi t ion (28) is satisfied for  n/> 1. 
For  l = oe there is little hope  of  finding a lower b o u n d  funct ion satisfying (30) 

since, for  most  s tochast ic  kernels,  infy~Eo,~ ) k(x, y) = 0. However ,  we m a y  prove  
the fol lowing useful  result. 

Theorem 2. I f  k(x, y), x, y c [0, oe), is a stochastic kernel such that 

o~ 3"y+6, y>~O, (31) 

for some constants 3' and 8, y <~ 1, and if 

inf  k(x, y)  > 0 (32) 
y~EO,a] 

for every finite a, then there exists a non-trivial lower bound function for the operator 
(27). 
Proof Cons ider  the sequence  

Io I?Io o E. ( f )  = xP~f(x) dx = xk(x, y )pn- , f (y )  dy dx 

<- P"-'f(y)(3"y+~) dy<- 3"E~ 

which shows that  
6 

E , ( f ) ~  < +1 
1 - 3 '  

for  sufficiently large n, say n >i no(f). The funct ion En(f)  is the mathemat ica l  
expec ta t ion  cor responding  to the density P~(f) .  Since 

io o ) E , ( f )  >! xg" f (x)  dx >~ a P ' f ( x )  dx = a 1 - P ' f ( x )  dx 

we have 

fo' P"f(x) dx >! 1 - 
E.(____A) 

a 

Choos ing  a > 6/(1 - 3') + 1 we have 

I0 p~f(x) dx >~ 1__1 1 - - e > O  
a 
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for n >~ no(f), and finally 

fo o P"f(x) = k(x, y)P"-'  f (y)  dy 

Io /> inf k(x, y) P"-~f(y) dy 
ye[0,a] 
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for n ~ no(f) + 1. 
Hence, setting 

/>e inf k(x,y) 
y~[O,a] 

h(x)= e inf k(x, y) 
y~[O,a] 

condition (28) is satisfed which completes the proof. 
Our next task is to point out some properties of the function q(x) defined by 

Eq. (18). From our assumptions concerning g and ~b it easily follows that q 
satisfies: 

(i) q(x)>! 0 and q(x) is continuous for x c [0, 20;  
(ii) So21 q(x) dx = co, 1 fimte" or not; and 

(iii) limx_~ inf q(x) > 0 when l = co. 
With properties (i), (ii), and Eq. (20) it is easy to show that k(x, r) is a stochastic 

kernel. Thus from (i), 

k(x,r)~O forO<~x,r<l. (33) 

Furthermore, 

so by (ii) 

f ] k (x , r )  d x = - e x p { - I f  x q(s) ds} i]lr/2 

folk(x, r) dx = 1. (34) 

From (33) and (34) it follows that for every initial density fl  ~ D, all successive 
densities obtained from (21) are also in D. 

We are now ready to state and prove our main result concerning the density 
of  the mitogen distribution. 

Theorem 3. Assume that the function q is defined on [0, 2l), l finite or infinite, and 
satisfies conditions (i) through (iii) above. Then there exists a unique density f .  
which satisfies the integral equation 

f ,  (x) = k(x, y)f,  (y) dy (35) 

with k(x, r) defined by (20). Further, for every f l~  D the sequence (21) converges 
to f ,  strongly in L 1, i.e. 

lim " [ '  IL(x ) - f , (x ) l  dx =0.  
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Thus,  this theorem ensures that  there is a unique s ta t ionary  densi ty for  the mi togen  
distr ibution,  and that  this density is global ly asymptot ica l ly  stable. Fur thermore ,  
there is a unique densi ty funct ion O(t) for  the distr ibution of  cell cycle t imes in 
the entire popula t ion  of  cells. 

Proof. We consider  the cases l finite and infinite separately.  

Case L I finite. Consider  k(x, r) for  x E [�89 1). Then  �89 < x for  every r ~ [0, l) and 
as a consequence  

k(x, r)= 2q(2x)exp{ - ffx q(y) dy}~> 2 q ( 2 x ) e x p {  - If x q(y) dy} 

for  x ~ [�89 I). Setting 

we have 

Also 

0 

h ( x ) =  2q(2x) exp{ _ IfX q(y) dy} 
for  O<-x<�89 
for�89 

k(x, r) >I h(x) for  all 0 ~< r < l, 0 ~< x < 1. 

Using (ii) we finally obta in  

f~ h(x) dx=exp{- I~ q(y) dy} >O. 

Thus  in this case the theorem follows f rom Theo rem 1. 

Case II. 1 infinite. First we examine  the integral 

Ioxk(x, r) dX= fr/~ 2xq(2x)exp[- ffX q(y) dy] dx. 
In tegra t ing by parts we have 

foxk(x,r) dx = -xexp{-ffXq(y) dy}ll];a+f~exp[-I) x q(y) dy] dx. 
(36) 

F rom proper ty  (iii) o f  q it follows that  there is an e > 0 and d >t 0 such that  

q(x)>le f o r x / > d ,  

and,  as a consequence  

{I; } l im x exp - q(y) dy = 0. (37) 
X --> o o  
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Furthermore, 

r/2exp - -  �9 q(y) dy dx<~ r/2exp{-e[2x-max(r' d)]} dx 

=lexp{-e[r-max(r, d)]} <~lexp(ed). 
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(38) 

Consequently from (36) through (38) we obtain 

fo ~ r 1" xk(x, r) dx <~ ~ +-~e exp(ed) 

so the kernel satisfies Eq. (31) of  our Theorem 2 with y =1. It only remains to 
show that k satisfies (32). 

Let ro ~> 0 be an arbitrary finite real number. Consider k(x, r) for 0 ~< r ~< ro 
and x i> �89 Then 

k(x, r)= 2q(2x) exp{ - f;X q(y) dy} 

/> 2q(2x) exp - q(y) dy for 0 ~ r ~ to, x i> �89 

and, as a consequence, 

I ~ {Io 
inf k(x, r)>l h(x) = 2x 

0~r<ro 2q(2x) exp - q(y) dy for x ~�89 

h(x) dx= o/22q(2x) exp - q(y) dy dx 

=exp{- f~~ dy} >0, 

Further, 

thus completing the proof  of  the theorem. 

IV. Consequences of the model 

There are several interesting direct consequences of our theorems of  the previous 
section demonstrating the existence of  a globally asymptotically stable density 
f , .  These results are of importance experimentally for they relate to the asymptotic, 
large t, behaviour of  a ( t )  and /3(0, and the correlation coefficients between 
sister-sister and mother-daughter  cell cycle times. Even more importantly they 
are valid for a large class of functions 4, and g. 
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First, under the mild assumption that ~b(x)= 0 for 0<~ x<~ e for e small and 
that limx_~2~ ~b(x) = ~b(2l) exists, then as we have shown in Appendix A 

d d 
lim,~,o~ -d~ [log ~(t)] = lim,~o~ -Tat [log/3(0] = - ~b (2/). 

Secondly, as shown in Appendices B and C respectively, p~s/> 0 and Prod <~ O. 
These findings are in accord with the commonly observed features of cell cycle 
data as mentioned in the Introduction. 

It was over 30 years ago when it was first observed that the cell cycle could 
be viewed as containing four discrete phases: the DNA synthesis period (S), the 
mitotic period (M), the phase between the completion of M and the initiation 
of S (known as G1), and the period between the completion of S and the beginning 
of M (called G2) [3]. Cells were thought to progress through these stages in a 
sequential and orderly fashion. This model was later expanded by including a 
resting (GO) phase into which all cells entered after mitosis, and from which cells 
were recruited randomly into G1 [4]. This "GO cell cycle model"  has been 
analyzed several times [2, 6]. 

Smith and Martin [14] reformulated the GO cell cycle model into what has 
since become popularly known as the transition probability model for the cell 
cycle. They postulated that the cell cycle consists of a completely deterministic 
B phase encompassing a portion of G1, S, G2, and M, and an indeterminate or 
stochastic A state following mitosis. The A state contains GO and the remainder 
of G1 from the GO model of the cell cycle. They postulated that while a cell is 
resident in the A state it is not progressing toward mitosis, and that its probability 
per unit time of entering the B state (the transition probability) is modifiable by 
environmental factors. 

The transition probability model is a special case of the model presented here. 
If we set 

{Oh O~<m<rh (39) 
~b(m) = r~ <~ m 

and 

{~ > 0  0<~m<rfi  
g(m) = rh <~ m, 

then it is an immediate consequence of equations (7) and (8) that 

1 O~<t~<~ 
a( t )  = 

e x p [ - h ( t  - 7)] t < t 

(40) 

(41) 

where ~ is such that m(r, 7) = rh, so 7 = rh/2c. Furthermore from (14), it is straight- 
forward to show that /3(0 = exp(-h t ) .  These expressions for a(t)  and /3(0 are 
identical with those originally derived [7, 14]. The functions ~b(m) and g(m), 
given by (39) and (40) respectively, do not satisfy the regularity conditions we 
have specified. However if we pick sufficiently smooth functions that are "close" 
to (39) and (40) then they will satisfy our criteria and the discontinuous change 
in the slope of a(t)  which occurs at t = t will become smooth. 
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Appendix A. Asymptotic behaviour of ct(t) and iS(t) 

In data sets, it is commonly observed that the limiting (large t) logarithmic slopes of  a( t )  and fl(t) 
are equal. Here we show that this is expected from the model presented here. 

For the a and fl curves we have, according to (8) and (14) respectively, 

' fo' / r  dtt [log a(t)]  = = at(r  , t ) f ,  (r) dr a(r, t ) f ,  (r) dr 
t r i o  

and 

d fl '( t)  
dtt [log fl(t)] = flU) 

;?fo /r f ' = a ~ ( r , x ) a , ( r , x + t ) f , ( r ) d x d r  a , ( r , x ) a ( r , x + t ) f , ( r ) d x d r  
I d O  JO 

Using Eq. (7) we may rewrite these formulae in the forms 

d Io' dtt [log a(t)]  = - r t))Po(r , t) dr 

and 

respectively, where 

(A1) 

and 

po(r, t) = of(r, t ) f ,  (r) a(y, t ) f ,  (y) dy (A3) 

/;,~ pl(r, x, t) = at(r  , x)a(r ,  x + t ) f ,  (r) a t (y  , z )a(y ,  z + t ) f ,  (y) dz  dy (A4) 

Assume that ~b(x) = 0 for very small x, say 0 ~< x ~< e, which simply means that mitosis cannot occur 
until the mitogeo level exceeds e. Then by Eqs. (20) and (35), jr, (x)=  0 for 0 ~ x ~< �89 and from (A3) 
and (A4) 

po(r, t )=0 ,  pl(r, x, t )=O (A5) 

for 0 <~ r ~< �89 From our assumptions concerning g (namely that g(x)  > 0 for 0 < x < 2/) it follows that 

lim m(r, t) = 21 
t ~ c c  

uniformly for �89 <~ r ~  < 2/. Thus, assuming that ~b(x) has the limit ~(2l) as x-)21, we have 

lim 4)(m(r, t)) = (b(2l) (A6) 

uniformly for e ~< r ~  < 2/. 
It is easy to verify that the kernels P0, Pl are nonnegative and satisfy 

fo' fo~ po(r, t) dr = 1 and p](r, x, t) dx  dr = 1. (A7) 

d t  [ log/3(0 ] = - ~(m(r, x + t))pi(r , x, t) dx dr (A2) 
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From these and Eqs. (A1) and (A2) it follows that 

d [ l o g  ot(t)] + q~(2l) ~< dell [~b(2l)- O ( m ( r ,  t))[po(r , t ) d r  

and 

~tt [log/3(t)] + ~b(2l) ~< 1 ~ ( 2 1 ) - O ( m ( r , x + t ) ) l p t ( r , x , t ) d x d r .  

Thus from (A6) and (A7) we have 

d . d 
!im ~ [log a(t)]  = lx m ~-~ [log/3(03 = -(b(21), 

and the limiting logarithmic slopes of a ( t )  and f l ( t )  are indeed equal. 
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Appendix B. Sister-sister cell cycle time correlations 

Let T~ and T 2 denote the cell cycle times of two sister cells. Note that 

P r o b ( r l > ~ q ,  T2>~t2) = P r o b ( T l > ~ q ,  T z > ~ t 2 1 m ( O ) = r ) f , ( r ) d r  

where 

Prob(T I >/tl, T2~ t2lm(0 ) = r ) =  a(r,  t O a ( r  , t2). 

Thus the joint  density distribution function f ( t l ,  t2) is given by 

Io' f(t~, t2) = ~,(r, tl)a,(r, t2)f. (r) dr. 

Note that f ( q ,  t2) = f ( t 2 ,  q) .  
The correlation coefficient between sister cell generation times T1, T 2 is given by 

E ( T  t T2) - E ( T O E ( T 2 )  
Pss - [ E [ T ~ ) E ( T 2 ) ] I / 2  

To evaluate the various terms in (BI), we need 

Since 

and 

E ( T ~ T ~  ) = t ~ t ~ f ( t l ,  t2) dt  1 d t  2 

fo fo fo ' = t~'t~'c~,(r, tOc~t(r , t2 ) f ,  (r)  d t  1 d t  2 dr  

=fo'f ,(r)[fot '~' ,( ' , t)dt] '[f  r"'~,(r,t)dt]dr- 

- a t ( r  , t )  d t  = I 

- that(r ,  t)  d t =  n l ~ - t  a(r ,  t)  d t  

(B1) 
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we have immediately that 

io ;o ' fo o E(T1) = E(T2) = a(r, t)f, (r) dt dr = a(t) dt, 

fo fo fo E(T2)  = E(T2) = 2 ta(r,f)f, (r) dtdr = 2 ta(t) dr, 

and 

E( Ta T2)= fot ( f ~ a(r, t) dt} 2f, (r) d r. 

The numerator  of  (BI), given by the above formulae as 

N = f f [ f o a ( r , t )  d t ] 2 f , ( r ) d r - { f f [ f o a ( r , t ) d t ] f . ( r ) d r }  2 

will determine the sign of Pss. If  we set 

ro Sa(r, t) = ~?(r) dt 

then N may be written more compactly as 

and F(r) = f,(y) dy 

;0 {Yo' N =  [ 3 7 ( r ) ]  2 dF(r)- rt(r) dF(r) . 

and positivity of  N results from the Cauchy inequality. Thus Pss ~> 0. 

Appendix C. Mother-daughter cell cycle time correlations 

Let 7"1 and T 2 denote the life t ime of  a mother  and its daughter  cell respectively. To calculate the 
point  density function f(h, t2) for (7"1, 7"2) we start from the obvious equality 

fa, la f ( t , s )  dtds=Prob(Tl�9149 

Io = P r o b ( r l  e am, T2�9 (C1) 

where A 1 = [tl, fi +el] ,  A2 = [t2, t2 +e2] and  the condition m1(0)= r means  that the mother  cell has  
an initial amount  r of  mitogen. We have 

Prob(Tl �9 Al, Tz �9  a21m, (0 )  = r) 

= Proh(T~ �9 A~lm~(O) = r)[Prob(t 2 ~ azlma(0) = r, T, = t~) + o(e~ e2)]. (C2) 

The conditions m~(0) = r and T~ = t~ are equivalent to the assumpt ion  that the daughter  cell starts 
with an initial amount  of  mitogen equal to �89 t~). Thus  

Prob(T1 �9 A~lml(0)= r) = - ~ a,(r, t) dt 
Jz~ I 

and 

Prob(T2 �9 A2lmi(0) = r, T1 = q ) =  - f a  a,(�89 tl), t) dt 
2 
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Subs t i tu t ing  this  into (C2) and  us ing  (C1) we immedia t e ly  obta in  an  express ion  for the  jo int  dens i ty  
d is t r ibut ion  func t ion  f(t~, t2): 

Io f ( t l ,  t2) = at(r ,  tl)~189 /1), /2)f, (r) dr. 

N o w  let us calculate  

E ( T 7  ) = t~f(tl ,  t2) dt I dt 2 = a,(�89 tl) , t2) dt2) trat(r  , t l ) f ,  (r) dt 1 dr. 

Since 

fo o - a,(�89 tl) ,/2) dr2 = 1 

we have  

E ( T ~ ) = -  t " a , ( r , t ) f , ( r ) d t d r = n  t ~ - l a ( r , t ) f , ( r ) d t d r  

fo o = n t " - la ( t )  dt (C3) 

In an  ana logous  fashion ,  

fo Io  E(T~  ) = t2f(t l ,  t2) dt 1 dt 2 

=fo~Io'~fo't~e~,(r, tOc,,(�89 tO, t2)f,(r, dt~dtzdr, 

and  subs t i tu t ing  �89 tl) = x or t 1 = ~-(r, x)  we obta in  

i~ E( T'~ ) = t" at(r , ~(r, x))~,(x, t)f, (r)~x(r, x) at dr dx. 

To s impl i fy  this  express ion  for E(T~  ) further ,  no te  tha t  if we set  t = r(r, �89 in (20), t hen  y = re(r, t) 
and  dy = din(r, t) = g(m(r, t)) dt so 

k ( x , r ) = - ~ { e x p [ - f  "(r 'x)4(m(r' t))  d t ] }  
.Io g(m(r, t)) g(m(r, t)) 

a,]} 
or us ing  (7), 

Hence  

and  

k(x, r) = -a~(r, r(r, x))'rx(r , x). 

- at(r, ~'(r, x))rx(r, x ) f , ( r )  dr = k(x, r) f , (r)  dr = f , ( x )  

E(T~ ' )  = - t"%(x, t ) f , ( x )  d t d x =  n tn- la(x ,  t ) f , ( x )  d tdx  

I; = n t " - l a ( t )  dr. 

(C4) 

(c5) 
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Finally 

E(T1T2) = t 1 t2f( t l ,  t2) dtl dt2 

Io fo fo ' = tl t2~ tl)~ r, /1), tz)f, (r) dt I dt 2 dr 

= - q a t ( r  , tl)a(�89 tl) , tz)f ,  (r) dt I dt 2 dr. 

Using the substitution �89 t 0 = x we obtain 

fo~ E(T1/'2) = - z(r, x)rx(r, x)at(r,  ~(r, x ) )a(x ,  t ) f ,  (r) at dr clx. (C6) 

In comparison with the case for sister cells, the numerator  

N = E ( T  1 T2) - E ( T , ) E ( T 2 )  (C7) 

in the mother -daugh te r  correlation coefficient is much  more complicated. To better unders tand the 
structure of  N we rewrite E( Tl T2), E ( T O  and E(Tz)  in a special way. Multiplying (C6) by the equality 

for f ,  (z) dz = 1 

we obtain 

Io IoI Io ' E ( T I T 2 ) = -  r ( r , x ) r ~ ( r , x ) a t ( r , ' r ( r , x ) ) a ( x , t ) f , ( r ) f , ( z ) d t d r d x d z  (C8) 

Further multiplying 

Io~ ' fo'fo E(T1)  = - tat(r , t ) f ,  (r) dt d r  = - r(r, x)rx(r, x)ee,(r, "c(r, x ) ) f ,  (r) dr dx 

by 

E(T2) = o~(z, t ) f .  (z) dt dz 

[see (C3) and (C5)] we have 

/o f/Io fo E (  TOE(  T2) = - ~'(r, x)'rx(r, x)at(r,  7(r, x))a(z, t ) f .  ( r ) f .  (z) dt dr dx dz. 

Setting 

(c9) 

fo l to(x, z) = - f .  (z)  r(r, x)~'x(r, x)at(r,  r(r, x ) ) f ,  (r) dr (C10) 

and using (C8) and (C9) we may rewrite the numerator  N in (C7) 

 olo Is N = a~(x, z )[a(x)  - a(z)] dx dz = [co(x, z) - oJ(z, x)][a(x) - a(z)] dx dz, (C11) 

where 

a(x)  = a(x ,  t) dt 

and S = {(x, z): 0 ~ x <~ z ~ l}. Observe that a(x)  is a decreasing function o f x  since a(x, t) is a decreasing 
function of  x for each fixed t. Thus in order to prove that N is not positive it is enough to verify that 

~o(x, z)<~ w(z, z) for x ~< z. (C 12) 
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Using (C4) we may rewrite (CI0) in the form 

~o(x, z) = f .  (z)u(x) 

where 

u(x) = k(x, r)'r(r, x)f. (r) dr. 

Thus inequality (C12) is equivalent to 

which simply means that the function 

u(x) u(z) 

f ,  (x) f ,  (z) 
for x<~z. 
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f dr ['l~ k(x, r)r(r, x)f, (r) dr (C13) U(X) 1 
,I  k(x, r)r(r,x)f, (r) = ~ - -  

f ,  (x) f ,  (x) Jo fo k(x, r)f, (r) dr 

must be increasing. 
Since r(r, x) is increasing in x this is easily demonstrated when ~b(x)=O for O<<-x<~ 1 (which 

means that the minimal amount of  mitogen necessary for mitosis is at least one half of  its maximum). 
In fact in this case k(x, r) is a product of two functions which depend only upon x and r respectively 
[see (20)] and (C13) may be rewritten as 

Io /Io f ,  (x) = r(r, x)8(r)f, (r) dr ~(r)f, (r) dr 

where 

~(r) = exp{ f f q(y) dy }. 

Since r(r, x) is strictly increasing in x the quotient u(x)/f. (x) is also increasing, which in turn implies 
that the correlation coefficient P,na is negative. 
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