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Abstract. This paper analytically explores the properties of simple differential- 
difference equations that represent dynamic processes with feedback dependent 
on prior states of the system. Systems with pure negative and positive feedback 
are examined, as well as those with mixed (positive/negative) feedback 
characteristics. Very complex time dependent behaviors may arise from these 
processes. Indeed, the same mechanism may, depending on system parameters 
and initial conditions, produce simple, regular, repetitive patterns and com- 
pletely irregular random-like fluctuations. 

For the differential-delay equations considered here we prove the existence 
of: (i) stable and unstable limit cycles, where the stable cycles may have an 
arbitrary number ofextrema per period; and (ii) chaos, meaning the presence of 
infinitely many periodic solutions of different period and of infinitely many 
irregular and mixing solutions. 
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I. Introduction 

The hallmark of our universe is its ubiquitous complexity. Though we are 
accustomed to the near chaos in our social systems, in the sciences we are 
conditioned to accept data with apparent regularities. Indeed, the rejection of 
sufficiently irregular (complex) data "for cause" is common. Historically the 
avoidance of complex behavior by theoreticians was rooted in the lack of 
mathematical techniques appropriate for the study of nonlinear systems. 

However, irregular behavior has been the subject of a flurry of attention by 
scientists with diverse interests in the last few years (cf. May, 1976; Gurel and 
R6ssler, 1978; and Helleman, 1980 for representative reviews and work). This 
interest was in part kindled by the work of Lorenz (1964), and by the rediscovery (Li 
and Yorke, 1975) and popularization of some of the analytic results of Sharkovski 
(1964) related to the regular and irregular behavior exhibited by the solutions of 
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simple difference equation models of the type 

xi+l = H(xi), i = 1 ,2 ,3 , . . .  (1.1) 

for suitably defined nonlinear functions H. 
Interest in discrete processes like (1.1) was heightened by applications in 

population biology, xi representing population size in the ith generation for species 
with Separated generations. With H ( x i )  = rx i (1  - x~) the discrete logistic equation 
is obtained (for this and more general discrete population models see Gucken- 
heimer et al., 1977). 

For one-dimensional nonlinear discrete time models of the type (1.1) there are a 
few techniques available from ergodic theory that give sufficient conditions for the 
appearance of completely irregular behavior (Lasota and Yorke, 1977; Pianigiani, 
1979a, b; RueUe, 1977; Collet and Eckmann, 1980). These techniques do not apply 
to discrete time systems of two or more dimensions, e.g. of the type 

xi  + 1 = F ( x i ,  Yi), 

Yi+ 1 = G ( x i , y i ) .  (1.2) 

The situation is even bleaker for the understanding of the behavior of continuous 
time systems modeled by nonlinear differential equations. Few general techniques 
are available to predict the behavior of a given system and the investigator is forced 
to rely on numerical simulations. 

However, a class of delay-differential equations has recently been discovered 
that is amenable to analytic treatment (Peters, 1980; Walther, 1981 a; an der Heiden 
et al., 1981 ; an der Heiden and Walther, 1982). In the present paper we consider a 
prototypical model from this class which is particularly relevant to applications and 
outstanding in its diversity of behavior. 

Section 2 offers a description of processes resulting from the interaction of 
production and destruction. We identify a variety of biological systems to which 
these concepts are applicable and which are related to our specific model. There are 
several types of feedback involved. In the cases of pure negative or pure positive 
feedback a nearly complete picture of the dynamics can be obtained. This is given in 
Sections 3 and 4 respectively. These also serve as an introduction to the discussion 
of the much more complicated behavior with mixed feedback considered in 
Sections 5 -  7. We show how the combination of negative and positive feedback 
creates an infinity of new types of dynamical behavior. 

Section 5 demonstrates the existence of stable limit cycles showing a spiral 
structure. These orbits spiral around an unstable limit cycle. The number of 
revolutions ranges from one to infinity depending on the value of a single 
parameter. In the limit the cycles evolve into an orbit which is homoclinic to the 
unstable limit cycle. 

In Section 6 a large domain of parameters is determined where depending on 
initial conditions, the equation has infinitely many periodic and uncountably many 
aperiodic solutions. The erratic structure of most of the aperiodic solutions and 
their mixing trajectories come to what Li and Yorke (1975) called "chaotic" 
motion. 

Section 7 reveals that there is a realm of arbitrary complex and irregular time 
behavior still to be discovered. New types of bifurcations are discussed in parallel 
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with a series of illustrations showing the evolution of complexity. This section may 
be read independently of Sections 4 - 6 .  

2. Modeling Processes of Production and Destruction 

Consider a process characterized by a time dependent quantity x (a single variable, 
a vector or a function of space), x = x ( t ) .  Often it is possible to equate the rate of 
change ( d x / d t )  to a balance between the production rate p, and the destruction (or 
decay or consumption) rate d, of x: 

d x / &  = p  - d. 

Table 1 lists a few biological examples, with references, where this concept has been 
or may be applied. 

In many cases, through feedback or other interactive mechanisms production 
and destruction depend on the quantity x itself:p = p ( x )  or q = q ( x ) .  In general the 
dependence is complicated since the production (or destruction) at time t depends 
not only on x ( t )  but also on the past history x(7), 7 ~< t, of  the variable x. This may be 
formally represented by 

d x / d t  = p ( x , )  - q ( x , ) ,  (2.1) 

where x, denotes the function defined by x , ( t ' )  = x ( t  - t ' ) ,  t '  >10 .  Here p and q are 
functionals and (2.1) represents a functional-differential equation (Hale, 1977). 

For most applications the dependence on the past history may be made explicit 
by an integral 

f, y i ( t )  = K,-(t, t ' ,  x ( t ) ,  x ( t ' ) )  d t ' ,  i = p ,  q ,  
- -  o 0  

or more specifically 

y i ( t )  = 9 i ( t  - -  t ' ) f ~ ( x ( t ' ) )  d t ' ,  i = p ,  q ,  

where the function yp (or yq) gives the prescription for evaluating the total influence 
of the history of x on the present production (or destruction). The function g~ (the 
kernel) specifies the weight to be attached to some func t ion f  of x at each point of 
time in the past. 

If the kernel functions 9p, gq can be written as sums of exponentials then the 
integro-differential equation d x / d t  = p ( y p ) -  q ( y q )  is equivalent to a system of 
ordinary differential equations possessing no explicit dependence on prior history 
(MacDonald, 1978). 

If the present effects stem from a very narrow region in the past, the kernel 9 is 
sharply peaked about some previous time, say t - r, with, in the simplest case, a 
constant delay r > 0. In the limit g ( t  - t ' )  = ~ ( t  - t '  - r ) ,  the Dirac delta function, 
and Eq. (2.1) acquires the form of a difference-differential equation 

d x / d t  = p ( x ( t  - zx)) - q ( x ( t  - r2)). (2.2) 

It will be evident to the reader after having read this paper that a general discussion 



T
ab

le
 1

. S
om

e 
bi

ol
og

ic
al

 a
nd

 e
co

no
m

ic
 to

pi
cs

, w
he

re
 p

ro
du

ct
io

n 
(p

) 
an

d 
de

st
ru

ct
io

n 
(d

) 
pl

ay
 a

 r
ol

e 
fo

r 
th

e 
dy

na
m

ic
s 

of
 a

 r
el

ev
an

t q
ua

nt
it

y 
(x

). 
T

he
 n

um
be

rs
 r

ef
e r

 t
o 

lit
er

at
ur

e,
 

w
he

re
 m

at
he

m
at

ic
al

 m
od

el
s 

of
 t

yp
e 

(2
,3

), 
(A

) 
ha

ve
 b

ee
n 

ap
pl

ie
d 

to
 t

he
 p

ro
ce

ss
es

 

A
re

a 
x 

p 
d 

~ 
(d

el
ay

) 

Po
pu

la
ti

on
 b

io
lo

gy
 [

6]
, 

[1
8]

 

H
em

at
op

oi
es

is
[2

],
 [

 1
9]

, [
20

], 
[2

9]
 

N
eu

ro
ph

ys
io

lo
gy

 [8
],

 [
10

],
 [

11
], 

[3
] 

R
es

pi
ra

ti
on

 [
5]

, 
[1

9]
 

M
et

ab
ol

ic
 r

eg
ul

at
io

n 
[1

0]
, 

[1
8]

 

A
gr

ic
ul

tu
ra

l c
om

m
od

it
y 

m
ar

ke
ts

 [-
1 ]

 

Po
pu

la
ti

on
 s

iz
e 

C
on

ce
nt

ra
ti

on
 o

f 
bl

oo
d 

ce
lls

 

Im
pu

ls
e 

fr
eq

ue
nc

y 

C
O

z-
co

nc
en

tr
at

io
n 

C
on

ce
nt

ra
ti

on
 o

f e
nd

 p
ro

du
ct

 

C
om

m
od

it
y 

pr
ic

e 

R
ep

ro
du

ct
io

n 
ra

te
 

R
at

e 
of

 s
te

m
 c

el
l 

di
ff

er
en

ti
at

io
n 

E
xc

it
at

or
y 

po
te

nt
ia

ls
 

W
ho

le
 b

od
y 

C
O

2-
 

pr
od

uc
ti

on
 r

at
e 

m
R

N
A

-s
yn

th
es

is
 

D
em

an
d 

fo
r c

om
m

od
it

y 

D
ea

th
 r

at
e 

1/
bl

oo
d 

ce
ll

 l
if

et
im

e 

In
hi

bi
to

ry
 p

ot
en

ti
al

s 

R
es

pi
ra

to
ry

 C
O

2-
 

el
im

in
at

io
n 

ra
te

 

E
nd

 p
ro

du
ct

 
co

ns
um

pt
io

n 

Su
pp

ly
 o

f c
om

m
od

it
y 

G
en

er
at

io
n 

ti
m

e 

C
el

l c
yc

le
 ti

m
e 

Sy
na

pt
ic

 a
nd

 c
on

du
ct

io
n 

ti
m

e 
de

la
ys

 

C
ir

cu
la

ti
on

 t
im

e 
fr

om
 l

un
gs

 
to

 b
ra

in
 

T
ra

ns
fo

rm
at

io
n 

m
R

N
A

 t
o 

en
d 

pr
od

uc
t 

C
om

m
od

it
y 

pr
od

uc
ti

on
 t

im
e 

e~
 O
 



The Dynamics of Production and Destruction 79 

of the behavior of solutions to systems like (2.1) is out of reach. Instead we study 
here a special case of (2.2), namely the equation 

d x / d t  = f ( x ( t  - z ) )  - a x ( t )  (2.3) 

with a constant a > 0. 
This equation has been used to understand a variety of problems in various 

areas of biology, as listed in Table 1 (an der Heiden, 1979; Glass and Mackey, 1979; 
Mackey and Glass, 1977; Wazewska-Czyewska and Lasota, 1976). 

Equation (2.3) may be thought of as representing a process where the single 
state variable x decays with a rate a proportional to x at the present, and is produced 
with a rate dependent on the value of x some time in the past. There are several 
different forms that the production rate func t ionfmay take. Two extreme types are 
those wheref i s  a monotone decreasing or increasing function o f (  = x ( t  - z). The 
first case corresponds to a pure negative feedback, the second to positive feedback. 
Generally, the maximal production rate is attained neither at ~ = 0 (negative 
feedback) nor for very large values of ~ (positive feedback), but rather at some 
intermediate value. Thus the general situation is characterized by a production 
funct ionf tha t  is a "humped" function ofx( t  - z). This type we call mixed feedback 
and it is the main subject of this paper. 

Since [ - c t x ( t ) ]  describes destruction the quantity x must be nonnegative, 
x ( t )  >>. O. Sincefdescribes production it is logical to assume that f :  ~+ - .  ~+ is a 
nonnegative function. By rescaling the time axis it can always be ensured that z = 1. 
Therefore we study the equatio n 

d x  
d t  ( t )  = f ( x ( t  - 1)) - ~x(t), (A) 

with a constant ct > 0. 
A solution to Eq. (A) is a continuous function x: [ -  1, ~ )  ~ [~+ obeying (A) 

for all t >  0. The continuous function tp: [ - 1 , 0 ] ~  R+, ~o( t )=x( t )  for all 
t e [ -  1,0], is called the initial condition to x. 

It is well known that if f is piecewise continuous, nonnegative and bounded then 
to any continuous, nonnegative initial condition q~ there corresponds a unique, 
nonnegative, continuous solution x = x~ to Eq. (A), which is defined for all t > 0. 

3. Negative Feedback 

Throughout  this section f is assumed to be monotone decreasing: 

~1 ~ ~2 implies f(~l) ~f(~2). 

The main results in the literature on Eq. (A) under this condition are summarized as 
follows: I f f i s  additionally differentiable then there is a.critical value/~ =/~(~) such 
that the unique stationary solution x = 2, d g / d t  = 0, f (g)  = ~2, is 

(i) locally asymptotically stable i f f ' (2 )  </~(~), 
(ii) unstable i f f ' (2 )  >/~(ct). 
I f f ' (g)  >//(c0 then Eq. (A) has a non-constant periodic solution. Proofs of this. 

periodicity result are rather lengthy and intricate (Chow, 1974; Kaplan and Yorke, 
1977; Hadeler and Tomiuk, 1977). Also it is not known whether the periodic 



80 U. an der Heiden and M. C. Mackey 

solution is unique and stable. However ,  as we show, there is a special, t hough  
admit tedly extreme, case where a complete  character izat ion is easily obtainable.  
Ano the r  reason to investigate this case is that  it facilitates unders tanding of  the 
si tuation with mixed feedback. 

We define a piecewise cons tant  funct ion f :  ~ + ~ R + by 

( c  if 0 ~ < ~ <  b, 

f ( ~ ) = ~ 0  if b < ~ ,  
(F1) 

where b and c are positive Constants. (We shall point  out  in the end tha t  the results 
below are not  an ar tefact  o f  the discontinuity.)  

With  the nonlineari ty  (F1) any  solution to Eq. (A) satisfies, whenever  
0 ~< to < t, 

x(t) = X(to) e x p ( -  e(t - to)) if x(s - 1) > b for  all se(to, t), 

(3.1a) 

and 

x(t) = 7 - (7 - X(to))exp(-  ~(t ~ to)) if x(s - 1) <~ b for  all s e (to, t), 

(3.1b) 

where y = c/~. Thus  any solution is a cont inuous  function which is piecewise 
composed  of  two types of  exponentials ,  one approach ing  0, the other  approach ing  
y = c/~ at a rate ct. I t  is easy to see tha t  solutions start ing with values between 0 and  V 
are bounded  between 0 and y forever. Moreover ,  for  a rb i t ra ry  initial condit ions,  
x(t) approaches  the interval [0, y] as t ---, ~ .  

The following two theorem8 characterize the behavior  of  the solutions to (A) in 
case of  the nonlineari ty (F1). 

Theorem 3.1. Let the function f be given by (F1). I f  7 = c/~ < b then x = y is a 
globally asymptotically stable stationary solution to Eq. (A). 

Proof. Obviously  x = V is the only constant  solution. Let x be any solution. Then  x 
obeys (3 .1)and,  since 7 < b, there is to ~> 0 such that  x(t) < b for all t E [to - 1, to]. 
Hence x obeys (3.1b) for  all t > to. Q.E.D.  

Theorem 3.2. Let the function f be given by (F1). I f  y > b then Eq. (A) has an 
asymptotically orbitally stable periodic solution x = 2. The period of  2 is larger than 
2. The orbit of  Yc attracts all orbits corresponding to monotone initial conditions. 

Proof. Let q~ be such that  there is some w ~ ( -  1,0) with 0 ~< ~0(t) < b for  all 
t e ( -  1, w), q~(t) > b for  all t ~ (w, 0). For  t ~ (0, w + I) the solution x = x~ obeys 
(3.1b), to = 0. Since x(0) > b and ? > b we obtain x(t) > b for  all tE(w,w + 1), 
x(w + 1) > 1. I t  follows f rom (3.1a) with to = w + I tha t  

x(t) = x(w + 1 ) e x p ( -  ~(t - w - 1)) 

for all t~(w + 1, tl + 1), where t = tl is the first t ime satisfying tl > w + 1 and 
x(q)  = b. In part icular  

x(t) = b e x p ( -  c~( t -  h ) )  for  all t ~ [ t l , t l  + 1], x(tl + 1) = b e x p ( -  ~). 

(3.2) 
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This result shows that  the solution is independent  ofq~ for all t > tl (up to a shift in 
time). 

Since x( t )  < b for  all t 6 ( t l ,  tl + 1), the solution obeys (3.1b) with to = tl + 1 
for all t ~ [ t l  + 1, t2 + 11, where t2 denotes the first time satisfying t2 > tl + 1 
and x ( t z ) = b .  Again, since x ( t ) > b  for  all t~( t2 ,  t2 + 1), we have x ( t ) =  
x(t2 + 1 ) e x p ( - ~ ( t - t 2 -  1)) for  all t6[ t2  + 1,t3 + 1], where t3 is the first t 
satisfying t3 > t2 + 1, x(t3) = b. In part icular  

x( t )  = b e x p ( -  a(t - t3)) for all t~ [t3, t3 + 1]. (3.3) 

Compar ing  (3.3) and (3.2)shows that  x on the interval [ q ,  t31 is just one cycle of  a 
periodic solution ~. 

Analogous  considerat ions hold for solutions corresponding to initial condit ions 
where the presumed inequality on q~ is reversed or which are totally above or below 
b. All their orbits converge to the orbit  of  ~. 

To  prove the asymptot ic  orbital  stability of  2, let T be the period of  ~ and let 
e > 0 be such that  ~(t3 + t) - e > b for all t e [ t3  - 1 - e, t3 - ~], t3 - 1 - e > t2. 
Ifc~ = 6(~) > 0 is sufficiently small and the initial condit ion ~b near to the orbit  of  if, 
i.e. there is t* > 0 with [~(t) - if(t* + t)[ < 6 for all t e l -  1,01, then 

Ix~(t) - :~(t* + t)] < e for all t~ [0, T1 

and hence there is some time 7~ [t*,  t* + T ]  with 

x~,(t) > b for  all t~ It, t + T] .  (3.4) 

This inequality implies that  x~ satisfies a relation as in (3.3) for  some time t** 
instead of  t3, i.e. the orbit  of  x6 is on the orbit  of  ~ for all t > t**. Q.E.D. 

An illustration of  the periodic solution ~ is given by Fig. 5(a) where the 
parameters  are b = 2, c = 4, ~ = 0.6. 

R emark  3.3. In a similar, but  technically more  complicated,  fashion it is provable 
that  Theorems 3.1 and 3.2 also hold for cont inuous nonlinearities f :  ~+ --. ~+ 
satisfying f (~)  = 0 for all ~ > b + 6, f ( r  = c for  all ~ ~ [0, bl and f mono tone  on 
[b, b + 61, if ,~ is positive and sufficiently small. (This type of  a cont inuous 
approximat ion  to a step funct ion we owe to H.-O. Walther  who used it in [271). 

The considerat ions in the p roo f  of  Theorem 3.2 can be extended to obtain the 
following criterion fo r  periodicity, which will be helpful later to show the existence of  
complicated limit cycles. 

Lemma 3.4. Let  b > O. Let  f :  R+ --* ~+ be a piecewise continuous function satisfying 
f (~)  = O fo r  all ~ > b. Assume x is a solution to Eq. (A) having the following property: 

There are two times tl and t2, t~ < t 2 such that x( t )  > b 
f o r  all t~[ t x ,  t~ + 1] and fo r  all t~ [ t z ,  t2 + 1]; (P) 
additionally x ( t )  < b f o r  some t e  It1, t21. 

Then x is periodic f o r  t > t2. The corresponding periodic orbit is asymptotically 
orbitally stable. 

Proo f  The solutions to (A) obey (3.1a). In particular 

x ( t ) = x ( t i +  1 ) e x p ( -  c~(t-  t i -  1)) for all t ~ [ t i +  1 , ~ +  1], 
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b 

Fig. 1 Fig. 2 

Fig. 1. Extreme case of  a negative feedback nonlinearity 
Fig. 2. Extreme case of  a positive feedback nonlinearity 

where ~ is the first t ime obeying ~ > ti and x(7/) = b, i = 1,2. Since x(t)  < b for  
some t~ It1, t2], we have 72 > 71. The t ime courses of  x on the two intervals 
[ti, t~ + 1], i = 1,2, are identical. Hence [ t l ,  t2] corresponds  to one period of  x, 
which is periodic for all t > 71. The stability proposi t ion  is proved as that  o f  
Theorem 3.2. Q.E.D.  

4. Positive Feedback 

In this section f :  ~+  -+ ~+ is assumed to be a mono tone  increasing, bounded  
function. There  seems to be no investigation of  Eq. (A) with respect to positive 
feedback in the literature. Here again we study the extreme situation w h e r e f i s  a 
step function or a smoo th  function near to a step function, allowing us to obta in  
nearly complete  insight. 

Let f be defined by 

{~ if 0 ~ < ~ < 1 ,  (F2) 
f ( ~ ) =  if { >  1, 

where c > 0 is constant .  Then for ,any solution x to Eq. (A) and for any two times 
to, t with 0 ~< to < t, the following relations hold:  

x ( t ) = X ( t o ) e x p ( - ~ ( t - t o ) )  if x ( s ) <  1 f o r a l l  s t [ t o -  1 , t -  1], (4.1a) 

and 

x( t )  = ]: - (]: - x ( t o ) ) e x p ( -  ~(t - to)) if x(s) > 1 

for all s e [ t 0 -  1 , t -  1], ]:=c/~.  (4.1b) 

For  all ~ > 0 and all c > 0 Eq. (A) has the constant  solution 21 = 0. 

Theorem 4.1. Let the function f be given by (F2). If]; = c/a, < 1 then the stationary 
solution xl  is globally asymptotically stable. 

Proof. Since ]: < 1 it follows f rom (4.1) that  to each solution x there is a t ime T > 0 
such that  x(t)  < 1 for all t > T. There  x(t)  for  all t > T + 1 evolves according to 
(4.1a) with to = T + 1. Hence x approaches  0 as t + oo. Q.E.D.  

I f  ~ > 1 then there is a second cons tant  solution 22 = ~. 
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Theorem 4.2. Let the function f b e  9iven by (F2). If7 > 1 then the constant solutions 
xl  = 0 and x2 = 7 to Eq. (A) are (locally) asymptotically stable. 

Proof It  follows f rom (4.1) that  solutions x~, converge exponentially towards  xl  if 
their initial condi t ion ~0 satisfies 0 ~< q~(t) < 1 for all t ~ [ -  1,0]. Similarly x~ 
converges exponentially towards  ~2 if ~0(t) > 1 for all t ~ [ -  1,0]. Q.E.D.  

The p roo f  o f  the last theorem shows that, if 7 > 1, solutions to initial condit ions 
larger than 1 converge to ~2, and those to initial condit ions smaller than 1 converge 
to $a- However,  what  happens if the initial condit ion oscillates a round  the level 1 ? 
Answering this question leads to the discovery o f  unstable periodic solutions 
playing an impor tan t  role for the unders tanding of  more  complicated behavior  in 
the following sections. 

Theorem 4.3. Let the function f b e  #iven by (F2). If7 > 1 then Eq. (A) has an unstable 
periodic solution ~c. This solution separates domains of  attraction of the stationary 
solutions xl  and x2 ; its (smallest) period is between 1 and 2. There is exactly one 
minimum within one cycle of x. 

Proof A set D of  (continuous) initial condit ions is defined as follows: ~o e D if there 
is some w = w(~0) e [0, 1] such that  q)(t) > 1 for all t e [ -  1, - 1 + w), q0(t) < 1 for 
all t e ( -  1 + w, 0), ~0(0) = 1. 

A map  V: D --. [0, 1] is induced by V(q~) = w. Because o f  (4.1) a solution to 
q) ~ D, V(q~) = w, satisfies 

x(t) = 7 - (7 - 1 ) e x p ( -  at) for all t e [0, w], (4.2) 

x(t) = x ( w ) e x p ( -  ~(t - w)) for all t e [w, 1]. (4.3) 

Observe that  the solution x on [0, 1] is uniquely determined by w. Hence x for all 
t > 0 only depends on w. This is denoted by writing x = xw. The values 

xw(w) = 7 - (7 - 1 ) e x p ( -  aw) (4.4) 

and 

Xw(1) = xw(w) exp( - e(1 - w)) = [7(e ~w - 1) + 1 ] exp( - c 0 (4.5) 

are increasing with respect to w. 
There is a unique w = w2 e(0,  1) obeying xw2(1) = 1. For  all w ~> w2 we have 

x~(t) > 1 for all t e (0, I), hence Eq. (4.1 b) with to = 1 applies for all t > 1 and xw(t) 
converges to 2z = 7 as t ~ oo. 

Assume w <~ wz. Then there is tl e [w, 1] such that  x~(tl) = 1. If  w increases 
f rom 0 to w2 then tl = tl(w) increases f rom 0 to 1. 

For  w e [ 0 ,  w2] and t~ [1 ,  1 + t i]  we have 

xw(t) = 7 - (7 - xw(1) )exp( -  c~(t - 1)). 

I t  follows that  Xw(1 + q)  is an increasing function o f  w; 

Xo(1 + tl) = e x p ( -  c 0 < 1, x~2(1 + tl) = 7 - (7 - 1 ) e x p ( -  c 0 > 1. 

There is a unique w~(O,  wz) obeying xw,(1 + t l ) =  1. For  w e [ 0 ,  Wa] we have 
x(t) < 1 for all t e ( t l ,  tl + l). Therefore for these w the corresponding solutions 
converge to 0 as t--,  oo. 
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Assume we  [wl, Wz]. Then there is t2 = tz(w)e [1, 1 + t l]  obeying x~(t2) = 1. 
Define another  initial condit ion ~k = ~(w) by 

~w(t) = Xw(t2 + t) for all t ~ [ -  1,0]. 

Obviously O w s D  and ~Ow(1 - (tz(W) - q(w)))  = 1. Define a cont inuous map 

F:  [wa, w2] ~ [0, 1] by F(w) = V(Ow) = 1 - (t2(w) - tl(W)). (4.6) 

It  follows f rom 

xw(1) = e x p ( -  ~(1 - q) )  and 1 = 7 - (7 - Xw(1))exp(-  ~(t2 - 1)) 

that  

hence 

exp(--  ~(t2 -- tl)) = Xw(1)(7 - 1)/(7 - Xw(1)), 

exp(~F(w)) = exp(~)xw(1)( v - 1)/(7 - Xw(1)), (4.7) 

F(w) = w + (log(7 - 1) + logxw(w) - log(7 - Xw(1))/c~. (4.8) 

The function F allows to determine the time course of  the solutions to r e D with 
V((p) = we  [Wl, w2]: I fF(w) ~ wl then x~(t) converges to 0 as t ~ oe. I fF(w) >/w2 
then x~(t) converges to y as t ~ oo. I f F ( w ) ~ ( w l ,  w2) then x~ evolves for t > t2(w) 
just as x~,(t) evolves for t >  0, where ~keD obeys V(~k)= F(w). Therefore the 
iterates o f  F determine the evolution o f  x~. The function F has the properties:  

F(wl)  = 0, F(w2) - 1, F is differentiable, and 

dF/dw > 1 for all w e [wl, w2]. (4.9) 

It  follows that  F has a unique fixed point  Wp ~ (w~, w2). With respect to iterates 
F"(w), n = 1,2 . . . .  , this fixed point  is unstable. 

Thus, we have the following conclusions:  I f  q~ e D obeys V(rp) = wp then for 
t > t2(wp) the solution xo is periodic with minimal period between 1 and 2. This 
periodic solution is unstable since q~ e D, V((o) < Wp implies that  x~o(t) --, O, and 
~o ~ D, V(~o) > wp implies x~(t) ~ 7 as t --. ~ .  Q.E.D.  

Remark 4.4. Theorems 4.1 - 4 . 3  also hold if the nonlinearity f is cont inuous and 
obeys f ( r  = 0 for all ~ ~ [0, 1 - 6], f ( r  = c for all r ~> 1 + 6, f m o n o t o n e  on 
[ 1 -  3, 1 + 6], under the condit ions that  c > ~ and 6 = 6(c,~) is a positive, 
sufficiently small number.  For  details o f  the p roof  the reader is referred to an der 
Heiden and Walther  (1982). 

For  the next section we need 

Lemma 4.5. The minimal value o f  the periodic solution ~ in Theorem 4.3 is the positive 
root o f  the quadratic 

z2 - (7 - (7 - 1) e-~ - V2)z - e-~7(y - 1) = 0. (4.10) 

Proof  According to the p roo f  o f  Theorem 4.3 the minimal value o f x  is z = x ~ ( l ) .  
Equat ion (4.5), Wp = F(wp), and Eq. (4.7) imply 

z/7 + e - ' / (  1 - 7) = e x p ( -  ~(1 - wp)) = z(7 - 1)/(7 - z), 

implying Eq. (4.10). Q.E.D. 
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5. Mixed Feedback: Stable Limit Cycles of Spiral Type 

The behavior of solutions to Eq. (A) is much more complicated in the situation of 
mixed feedback. Here the nonlinearity f is not monotone, but has at least one 
"hump".  Mackey and Glass (1977), when they discovered the bewildering range of  
solution types by numerical experiments, used the smooth function 

f ( ~ ) = K - -  n >  1. 
1 + ~ " '  

However, until now all efforts to analytically verify these computer results were 
without success. Therefore, as a paradigm of mixed feedback we consider the 
piecewise constant function f :  ~ ~ IR given by 

{0c if 0 ~ < ~ < 1  ~ ~ > b '  (F3) 
f ( ~ ) =  if 1 ~ < ~ < b ,  

where b, c are positive constants satisfying ? = c/~ > b > 1. As in the previous 
sections generalizations to smooth, nearly piecewise constant nonlinearities are 
possible. Any solution x to (A) with (F3) obeys 

x( t )  = X ( t o ) e x p ( -  a(t - to)) if x(s - 1 )  > b or x(s - 1 )  < l 

for all s~(to,  t), (5.1a) 

x ( t ) = 7 - ( ? - X ( t o ) ) e x p ( - c f f t - t o ) )  if 1 < x ( s -  1 ) < b  

for all s E (to, t), (5.1b) 

whenever 0 ~< to < t. The nonlinearity (F3) can be viewed upon as a synthesis of 
(F1) and (F3). This observation gives some guide to the analysis. First it is easy to 
see that the periodic solutions 2 and x present in case of (F1) and (F2) respectively 
also exist for (F3) if the thresholds 1 and b are sufficiently separated. More precisely 
a stable limit cycle 2 oscillating around the level b exists i f  

be -~ > 1. (5.2) 

The proof  proceeds as that of Theorem 3.2, where it was shown that min, if(t) = 
b e - L  Similarly an unstable limit cycle ~c exists as a solution to (A) with ( F 3 ) / f  

? > 1 and 7 - (? - 1) e-~ ~< b. (5.3) 

These conditions are sufficient since it was shown in the proof  of Theorem 4.3 that 

maxx( t )  = ~}(wp) < 7 - (? - 1)e ~. 
t 

These cycles are simple in that they have only one minimum within one (smallest) 
period. If  condition (5.2) is violated (and hence 2 is no longer a solution) but (5.3) 
still holds, then limit cycles with arbitrarily many minima within one period are 
possible as described by the following theorem. The proof  explains that they wind n 
times around x, followed by a large excursion away from x towards an arc of 2, 
afterwards reentering the spiral structure (n --, oe as be -~ ~ z). 



86 U. an der Heiden and M. C. Mackey 

/ ; '  
+" I 

. ' / _ _ _  I 
wp . . . . . .  7 , , -  , 

s '  j i 

i i 

/ . s  / I 

o w, % w~ 

I ,  f 

Fig. 3 Fig. 4 

Fig. 3. Extreme case of a mixed feedback nonlinearity 
Fig. 4. The map P: [wl, 1] --+ [0, 1] in the situation, where wp = w(b) is a homoclinic point 

Theorem 5.1. Let the function f b e  given by (F3). Let ? = c/~ > 1. Let the positive root 
z o f  Eq. (4.10) satisfy 

? - (7 - 1) e -~  ~< ze~ < 7 and 7(7 - 1 + e -~ ) -  1 ~< ze ~. (5.4) 

Then there is a sequence (b,). = 1,2 .... o f  numbers b, = b,(ct, c) satisfying the following 
conditions: 

(i) ? - (7 - 1) e - "  < b,, b ,+ l  < b,, boo = l i m , ~  b, = ze ~, b, <~ min(e~,?),  
(ii) for  every b ~ [boo, bl) there is an asymptotically orbitally stable periodic 

solution x = Xb to Eq. (A), 
(iii) t fb  6 (b, + 1, b , ]  then Xb has exactly no + n minima within one smallest period, 

where no is a f i xed  number not depending on b, 
(iv) the (smallest) period o f  Xb converges to oe as b ~ boo. 
(v) there is exactly one maximum o f  Xb the value o f  which is larger than b, 

(vi) for  all b~[boo,bl] the periodic function x, oiven in Theorem 4.3, is an 
unstable solution to Eq. (A) with (F3). For b = boo the orbit o f  x attracts all orbits 
corresponding to initial conditions (p > b. 

Proof  Let b~[ze~,bmax), bma x : min(7, e~). Cons ider  the initial cond i t ion  
~ o ( t ) = 7 - ( 7 - b ) e x p ( - c ~ ( t +  1)), t ~ [ - 1 , 0 ]  (which is on  the orbi t  2 o f  
T h e o r e m  3.2). Then  x~o(0) = ? - (7 - b) e -"  > b and  x~(t) = x(0) e x p ( -  a t )  for  all 
t E [ 0 ,  t l + l ] ,  where  tl is the first t > 0  obey ing  x ( q ) = b .  In  par t icu lar  
x~o(tl + 1) = be -~. Since b < e" we have  x~(tl + 1) < 1, and  there is t 2 E ( t l ,  tl + 1) 
with x~o(t2) = 1, x~(t)~ (1, b) for  all t e (tl ,  t2). There fo re  

x ~ ( t ) = 7 - ( 7 - X ( t l +  1 ) ) e x p ( - c ~ ( t - t l -  1)) for  all t S [ t l +  1 , t 2 +  1], 

i m p l y i n g  x~ , ( t  2 -t- 1) = y - (Y - be-~)/b, since 1 = b e x p ( - ' ~ ( t  2 - -  h)) .  
b >~ 7 ( Y -  1 + e - ' )  -1  implies x~(t2 + 1)>~ 1, and  there exists t3~(t2, t2 + 1) 

such tha t  x~(t3) = 1. Fo r  t > t3 the solut ion x~ evolves jus t  as the solut ion x~ 
co r r e spond ing  to the initial cond i t i on  ~ = ~k(b) sat isfying ~k( t )=  x~o(t3 + t), 
t ~ [ -  1,0] .  Obv ious ly  ~9 e D, where  D is def ined in the p r o o f  o f  T h e o r e m  4.3, the 
reader  is a s sumed  to  be famil iar  with here. w(b)=  V(q0 = 1 - ( t 3 -  t2) is 
cons idered  as a func t ion  o f  b. 
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Since 

and 

it follows that  

be -~ = e x p ( -  c~(tl + 1 - 8 2 )  ) 

1 = 7 - (7 - be-~)exp(  - ~(/3 - -  t~ - 1)) 

e x p ( -  0~(t 3 - -  t 2 )  ) = be- ' (7  - 1)/(7 - be- ' ) .  

Hence w(b) = ~ 1 log[b(7 _ 1)/( 7 _ be- , ) ]  is an increasing function o f  b obeying 
w(ze ~) = wp (because o f  Lemma 4.5) and 

1 if e ~ ,  
Wma x = w ( b m a x )  = 

c~-11og(7 - 1)/(1 - e  ~) < 1 if 7 < e ' .  

The solution Xb = Xq,(t) evolves as described in the p roo f  of  Theorem 4.3 for all 
t ~ [0 ,  t * + l ] ,  where t * > 0  is the first time observing Xb( t* )=b .  As 
b ~> ? -  ( 7 -  1) e-~ the following holds:  For  b~(ze ' ,bm,x)  let n ( b ) ~ N  w {0} be 
the smallest number  such that  F"~b)(w(b)) ~ (wz, 1]. Then between 0 and t* the solu- 
tion Xb intersects the level 1 exactly at 2n(b) times 0 < zl < - - .  < r2,1b) < t*, 
rai - ~2i-1 = Fi(w(b)) ~< 1. For  tE('C2n(b),'Cantb ) + l) we have b > Xb(t ) > 1. Hence 

x~o(t) = 7 -- (7 -- Xb(rZ,~b) + 1))exp(-- e(t -- z2,~b) -- 1)) 

for all t e  [z2,(b) + 1, t* + 1]. In particular on [t*, t* + 1] the solution xb equals ~o 
(up to a time shift), therefore Xb is periodic with period t* + t3 + 1. Lemma 3.4 
implies that  Xb is asymptotical ly orbitally stable, x~o has exactly n(b) + 1 or  n(b) + 2 
minima per period. Let no e N w {0} be the minimal number  such that  

F-"~ ~ (w(ze'), Wmax] , W n = F-"-"~  n = 0, 1 , 2 , . . . .  

Then there are values b, ~ (ze ~, bm,x] obeying w, = w(b,) and having the properties 
described in the theorem. Q.E.D.  

Remark  5.2. By essentially the same, but technically difficult, arguments  it can be 
proved that  Theorem 5.1 also holds for cont inuous  functions f obeying 

{0 if O < ~ < l - 6 o r ~ > ~ b + 6 ,  

f ( ~ ) =  if 1 - 6 < ~ < ~ b - 6 ,  

f a rb i t r a ry ,  but m o n o t o n e  on the intervals [1 - 6, 1 + 6], [-b - 6, b + 6], i f6  > 0 is 
sufficiently small. 

Remark  5.3. The condit ions o f  Theorem 5.1 are not  contradictory.  E.g. if 7 = 2 and 
> log 3 then they are simultaneously verified. Let the condit ions o f  Theorem 5.1 

hold and let b ~ [ze ~, min(7, e ')] .  The p roo f  o f  this theorem shows that  for every 
initial condit ion ~o~D obeying V(q~) ~> wp and q~(t) < b for all t ~ [ -  1,0], the 
solution xr oscillates a round  the threshold 1. The times 0 < ~ < ~2 < " ' "  with 
x,,(x~) = 1 satisfy the one-dimensional  difference equat ion 

T2i  - -  T 2 i - 1  = / ~ ( ' g 2 ( i -  1) - -  "L'2(i- 1 ) -  I ) ,  
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where F: [wl, 1-] ~ [0, 1] is defined by 

f F(w) if w e [ w l ,  w2] (see (4.8)), P(w) 
(w(b) = a - ~ l o g [ b ( y -  1)/( 7 -  be-O] if we(w2,1] .  

Note that for b = b~ we have F(w) = w v for all ws(w2,  1]. In this case wp is an 
unstable, but with respect to all W E [wp, 1] attractive fixed point of F. 

This situation is of particular interest, since we have here an intersection of the 
unstable and stable manifold of the fixed point wv, meaning that w v is a homoclinic 
point. As may be imagined from Fig. 4.1, the smaller a perturbation w of wp (i.e. the 
smaller w - w v, w > wv) the more iterations of P are necessary to return to Wp (i.e. 
the larger is n = n(w) with F"(w) = wv, indeed limw~wp n(w) = oe). Consequently 
there are arbitrarily small perturbations of )~ leading to arbitrarily long lasting 
excursions away from x followed by a rapid return to x. 

Remark 5.4. It is often argued that unstable structures are either never or only 
exceptionally observable in nature. However, as the above example shows, it may 
be that the unstable manifold associated with the unstable structure is connected 
with (i.e. intersects) the stable manifold. In this situation the process again and 
again approaches the unstable structure arbitrarily close. Clearly, each time this 
occurs the unstable structure can be observed. 

6. Mixed Feedback: Chaotic Behavior 

It is a peculiarity of the choice of parameters e, b, c in Theorem 5.1 that Pis constant 
on the interval (w2, 1 ]. For  other parameters but with more computations it should 
be possible to construct a map Pfor  the differences r21 - zzi- 1 which is not constant 
on (w2, 1] and equal to F on [wl, wz]. 

Indeed, an der Heiden and Walther (1982) succeeded in constructing such a 
map. However, in order to avoid too long computations of trajectories they 
presupposed a nonl ineari tyfwith three steps instead of two with (F3). It was then 
possible to find in the neighborhood of a homoclinic orbit an infinity of  periodic 
and aperiodic solutions, characteristic of chaotic behavior. The chaoticity found 
was roughly of the following kind: 

Given any sequence (nl,n2 . . . .  ) of  natural numbers, then there is an initial 
condition ~o such that the corresponding solution xo oscillates nl times with 
(relatively) small amplitude around some level, afterwards x~ describes a large 
amplitude excursion, followed by n2 small amplitude oscillations, followed by a 
large excursion etc. with n3, n4 . . . . .  Embedded in the regime of such aperiodic 
solutions there are infinitely many periodic solutions of spiral type described in the 
previous section. The proof was given for continuous nonlinearities near to a 3-step 
function. 

In this section we prove the existence of another type of chaotic motion in which 
the relation between large and small amplitudes is reversed. Moreover it is sufficient 
to consider a two-step nonlinearity. Compared with the previous paper the 
discussion here has a more global character. We do not rely on the concept of a 
homoclinic orbit, but apply the one-dimensional folding condition (6.7) of Li and 
Yorke (1975). However, despite substantial differences in the analysis and 
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techniques all approaches [Peters, 1980; Walther, 1981; an der Heiden and 
Walther, 1982 (the first two deal with dx/dt  = g(x(t  - 1))] have in common the 
reduction of the problem to a discrete system of dimension one in order to apply 
known criteria. The condition of Li and Yorke was first applied by Peters (1980). 

Again, for simplicity we restrict the investigation to piecewise constant 
functions f i n  Eq. (A). By techniques used in Walther (1981) and an der Heiden, 
Walther (1982) the results may be generalized to smooth nonlinearities. 

Contrary to the previous section we now choose b, the threshold of negative 
feedback, near the maximum of x, the unstable periodic solution associated with 
positive feedback (Theorem 4.3). This maximal value is given by 

X m a x  = (7 - -  Z)/(]) - -  1), (6.1) 

where z is the positive root of the quadratic (4.10). (Expression (6.1) follows from 
(4.8) by Xmax = Xwp(Wp), Z = Xmi, = Xwp(1) and wp = F(wp)). 

The nonlinearity of Eq. (A) considered in this section is slightly more general 
than (F3), namely 

{ ~  if { < 1 ,  
f ( ~ ) =  if l~<r 

if b < r  
(F4) 

where the constants obey b > 1, d ~< c, and 7 = c/~ > b. For technical reasons we 
allow d < 0. The transformation y = x - d/~ again leads to an equation with 
nonnegative nonlinearity. 

Theorem 6.1. Let  the funct ion f be given by (F4). Let  ~ and 7 = c/~ satisfy 

7/(7 - 1) 2 q- z < 1, (6.2) 

where z is the positive root o f  the quadratic (4.10). Then there are numbers 
# = #(or, 7) > 0 and d* = d*(7, 7, b) ~ 1 with the fol lowing property:  I f  

(~ - z)/(7 - 1) < b < (7 - z)/(7 - 1) + # and d ~ d* (6.3) 

then Eq. (A) has infinitely many periodic solutions and uncountably many aperiodic, 
mixing solutions. 

The conclusion may  be s tated more explici t ly  as fo l lows:  
There is a sequence T1 = {Xk; k = 1 ,2 , . . .  } o f  periodic solutions and an 

uncountable set T2 o f  non-periodic solutions to Eq. (A) satisfying: 
(i) to each x ~  T1 roT2 there corresponds a sequence O < tx < t2 < " " ,  

limi~ oo ti = 0% such that x ( t  0 = 1, x ( t )  ~ 1 f o r  all t v~ ti, i = 1,2 . . . . .  
(ii) there is a continuous map G: I--+ J o f  intervals I c J c [0, 1] such that to 

every x ~ T1 u T2 there corresponds a vx ~ I obeying 

t2 i  - t z i - 1  -~ G i ( v x ) ,  i =  1 ,2 , . . . ,  

(iii) f o r  x = xk ~ Tx 

Gk(Vx) = Vx, Gi(vx) ~ v~, 1 <~ i < k,  

t2k + 1 -- tl is the (smallest) period o f  Xk, 
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(iv) the sets $1 = {vx: x 6  Ta}, 82 = {1)x: X ~  T2} obey 

l im_~,p lGi(v) -Gi(v ' ) '  > 

l iminf]Gi(v)  Gi(v,) ] = / f  v , v '~S2 ,  v ~ v', (LY) 
i--~ oO 

l imsuplGi(v)  - Gi(v')[ > 0 i f  I) czS1, u'~_S 2. 
i--+ oo 

Remark  6.2. (LY) specifies the condi t ions  of  Li and  Yorke  0975)  for chaot ic  
m o t i o n  with  respect  to one-d imens iona l  maps .  I t  also specifies a type o f  mixing  
behavior .  

Proo f  o f  Theorem 6.1. We use here the mater ia l  o f  the p r o o f  to Theorem 4.3. Let  x be 
the per iod ic  solut ion to Eq. (A) in case o f  (F2). This  solut ion also solves (A) in case 
o f  (F4) if  b ~> Xm~x. Assume  b > }m,x" Let  

q~eDb = { q ~ D :  q)(t) < b, t ~ [ - 1 , O ] } ,  w 2 > w =  V(cp) > wp, 

and xw the c o r r e s p o n d i n g s o l u t i o n  to (A) with (F4). Then 

Xw(W) = 7 - (7 - 1 ) e x p ( -  ~w) > Xwp(Wp) = x . . . .  xw(w) < Xw2(W2). 

Assume 

Xmax < b < Xw2(W2). (6.4) 

Then there is a unique  ~ = ~(b) ~ (wpl WE) obeying  x~(~) = b. The  values ~(b)  and  b 
are re la ted by  e x p ( - ~ )  -- (y - b)/(y - 1). 

Let  wE [wp, ~). Then xw(t) < b for all t~  [0, 1] and  (4.5) implies that  Xw(1) is an 
increasing funct ion o f  w; x~(1) = be-~(7 - 1)/(7 - b) < 1. F o r  t~  [1,1 + t l (w)]  the 
solut ion Xw increases,  and  Xw(1 + tl(w)) is an increasing funct ion o f  w; 
Xw(1 + t l (~) )  = 72(b - 1 ) / ( b ( 7  - 1)) + e -"  > b. F o r  w = if(b) = F - ~ ( ~ )  we have 
x~(1 + q(w))  = b. 

Let  0 < t~(w) < tz(W ) < " " " denote  the successive t imes obeying  Xw(tz(w)) = 1, 
and  1 < ~l(w) < ~2(w) < " ' "  the successive t imes with xw(zi(w)) = b. 

F o r  w e [wp, ~ ]  we have t2(w) - tl(W) = 1 - F(w). F o r  w ~ [wp, w) the inequal i ty  
x~(t)  < b holds  for all t e ( 1 ,  t4(w)), and  t4(w) - t3(w) = 1 - FZ(w), in par t i cu la r  
t4(w) - t3(w) = 1 - FZ(w) = 1 - F(~) .  F o r  w E [ w , ~ ]  it fol lows f rom (5.1) tha t  

Xw(t2(w) + 1) = x~(q (w)  + 1 ) e x p ( -  ~(1 - F(w))), 

which is increasing with respect  to w. F o r  these w we also observe t2(w) < Zl(W) 
< tl(W) + 1. Hence Xw(t) increases as a funct ion o f  te ( t2(w)  + 1,~l(W) + 1) and  

X w ( ~ l ( W )  + 1) = ~ - (~ - x ( t ~ ( w )  + 1))(~ - b) / (~  - 1) 

(since e x p ( -  ~(zl(w) - tz(W)) = (7 - b)/(7 - 1)) increases as a funct ion of  w. 
Let  us write b = b(e) ~- Xm~x + e, e > 0. Then 

limx~ib)(Zl(~(b)) + 1) = Xwp(t2(Wp) + 1 + wp) = Xw,(1 + wp) = 7 -- (7 -- z) e-~w", 
e ~ O  

where z is the min imal  value o f  ~ (see L e m m a  4.5). To ob ta in  an es t imate  o f  
e x p ( -  ~wp) observe tha t  Wp as a fixed po in t  o f  F satisfies 

7 - (7 - 1) e x p ( -  uwp) = Xw~(Wp) = (~ - x~(1) ) / (7  - 1) = (7 - z)/(7 - 1), 
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hence 

e x p ( -  c~wp) = (72 - 2~ + z)/(7 - 1) z > (72 - 27)/(7 - 1) 2. 

Condi t ion (6.2) implies 

Xw~(l + wv) < 7(1 - e x p ( -  ~wp)) + z < 7/(7 - 1) 2 q" Z < 1. 

Thus there is a # = #(c~, c) > 0 such that  b e (x . . . .  Xma~ + #) implies (6.4) and 

Xw(~Cl(W) + 1) < 1 for all we[w,v~].  

With this p let the first condit ion of  (6.3) hold (note (6.1)) in the following: 
Fo r  w e (~, ~]  the solution x~ satisfies 

x~(t)  = d/c( - (d/c( - x~(~l(w) + 1 ) ) e x p ( -  c~(t - Zl(W) - 1)), 

t e ( r l (w )  + 1,%(w) + 1), 
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xw(%(w) + 1) = die - (d/c~ - x~(rl(w) + 1 ) ) e x p ( -  c~(T2(w) - zl(w))). (6.5) 

these w there is a unique t3(w), T2(w)< t3 (w)<  t2 (w)+ 1, obeying 

xw(t3(w) + 1) > 1, if d = c 

lira Xw(t3(W ) "~- 1) = - -  00.  
d ~ - o o  

There is exactly one d = d(w) such that  Xw(t3 + 1) = 1. For  all d e  [d(w), c] we have 
t3(w) < Zl(W) + 1 < t4(w) ~< t3(w) + 1 and the quanti ty t4(w) - t3(w) is an increas- 
ing function o f  d (for fixed w); 

t4(w) - t3(w) = 1 - FZ(w) if d = c, 

t4(w) - t3(w) = 1 if d = d (w) .  (6.6) 

Define for each d ~< c: 

Fd(w) = 0 if We [0, wl],  

Fd(w) = F(w) if w e [w l, ~].  

For  w s [# ,  F(v~)] define 

~1 - -  [ t4 ( r - ' (w) )  - t3(F-l (w))]  if d(F- l (w) )  ~ d ~ c, 
Fa(w) 

if d <~ d ( r  - l(w)). 

Since the times t~(W), z~(w) depe.nd cont inuously  on w, for fixed parameters  e, b, c, d 
the function Fe: [0 ,F (# ) ]  ~ [0, 1] is cont inuous.  

and 

F o r  

x~( t3(w))= 1. Hence xw increases on (z2(w)+ 1, t3 (w)+  1) and, since 
e x p ( -  ~(t3(w) - %(w))) = l/b, we obtain 

xw(t3(w) + 1) = 7(1 - l /b) + xw(~z(w) + 1)/b for all we( r} ,~ ] .  

For  each fixed w ~ (w, ~]  it follows f rom the first part  o f  (6.3) that  xw(t3(w) + 1) is a 
decreasing function o f  d satisfying 
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Let us assumed/~ ~< 1. T h e n x w ( z 2 ( w )  + 1) < 1 and hence t4(W ) > "C2(W ) -[- 1 for 
all w s (w, ~]. This implies that for these w the function 

~b(t) = ~,p<w)(t) = xw(t4(W) + t), t e E -  1,03, 

is an element of Db. Therefore it follows from the construction of Fa that for every 
w ~ [wp, F(~)] satisfying 

Fk(w) ~ [wp, F(~)], k = 1, 2 . . . .  

the corresponding solution Xw obeys 

Xw(tEk -- t2k-1)  = 1 -- Fk(w)  

(this has just been shown for k = 1, and it follows in the same way for k + 1 if 
established for k). 

We can now apply the following theorem of Li and Yorke (1975): Let / ,  J be two 
intervals, I c J. Let G: I ~ J be a continuous function. Assume there is r s I such 
that G i ( r ) ~ / ,  i =  I, 2, 3, and 

Ga(r) ~< r < G(r) < G2(r). (6.7) 

Then there i sa  sequence $1 = {vl, v2 . . . .  } c I and an uncountable set $2 ~ I such 
that $1 and $2 are invariant with respect to G and 

Gk(1)k) = l )k ,  Gi(1)k) ~ l )k ,  1 <~ i < k ,  for all Vk E $1, 

and (LY) holds (see Theorem). 
Note that Li and Yorke originally assumed I = J; however inspection of their 

proof  shows that their result can be generalized as indicated. 
We now identify 

I = [0, F(~)], G(w) = Fd(w), J = G(I) ,  r = w(b) = F f  ~(~(b)). 

Condition (6.7) is satisfied if Ga(r) = F2(~) ~< &. It follows from the observation 
with (6.6) that there is exactly one d = 3 = 3(~, c ,b )  obeying F ~ (~ )=  w and 
F2(~) < ~ for all d < 3. Therefore the theorem is proved for all b and d satisfying 
(6.3) with # as given above and d* = min(~, 3). Q.E.D. 

R e m a r k  6.3. A similar result can be proved for continuous nonlinearities f 
approximating (F4)just as the function defined in Remark 5,2 approximates (F3). 

Theorem 6.1 does not tell whether the chaotic domain is attracting or repelling. 
A detailed analysis of the function Fd is in preparation and will clarify related 
questions. 

7. Mixed Feedback: More Types of Behavior and of Bifurcations 

The patterns of solutions exhibited in Sects. 5 and 6 and also in an der Heiden and 
Walther (1982) do by far not exhaust the rich dynamics of Eq. (A) with mixed 
feedback nonlinearities. It has become a well established supposition that among 
the oscillatory solutions to delay-differential equations such as (A) or the simpler 
one, dx /d t  = 9 (x ( t  - 1)), those are predominant and stable which oscillate slowly, 
i.e. successive extrema are spaced apart at least the length of  the delay. This 
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convict ion was substant ia ted  by Wal ther  (1981) who proved  the density of  slowly 
oscillating solutions. However ,  he presupposed  nonlinearit ies o f  negative feedback 
type. Already the solutions described in Sects. 5 and 6 are not  slowly oscillating in 
the strict sense, though  in a mild fo rm (every second pair  o f  min ima  has a distance of  
more  than one delay time). In this section we show that  very rapidly  oscillating 
solutions do exist. We give an idea how they m a y  arise th rough  a series of  
bifurcations.  However ,  our  unders tanding  is not  well developed,  since these 
solutions are by far  more  intricately s t ructured and irregular than those for which 
proofs  of  chaos  exist. A reduct ion to one-dimensional  discrete dynamics  seems to be 
impossible in general. We also give a series of  i l lustrations bo th  to help in the 
analysis and to s t imulate  compar i son  with similar structures in nature.  

Let  us consider Eq. (A) with a nonlineari ty  given by (F3) .  To  facilitate the 
calculat ions we assume 7 = c/c~--4 and b = 2. Possible generalizations are 
indicated at  the end of  this section. 

Let  us start  with some initial condit ion ~o satisfying q~(t)> b = 2 for all 
t e ( - 1 , 0 ) .  Then  according to (5.1a) the corresponding solution x decays 
exponent ia l ly  in the t ime interval [0, tl + 1], where t~ is the first t ime obeying 
x( t l )  = 1. In par t icular  

x(t)  = 2 e x p ( -  e(t - tl)) for  all t e [ t l ,  tl + 1] 

and 

x ( q  + 1) = 2 e x p ( -  e) for all e > 0. (7.1) 

In  Figs. 5 - 8, showing x versus t for var ious values of  e, we indicate tl (note that  the 
vertical lines are spaced apar t  just  the delay time, here normal ized to 1). For  
t e  [ t l ,  tx + 1] the solution x only depends  on ct, and hence the same holds for  all 
t > t~. Therefore ,  if relevant,  we shall write x,  instead of  x. We meet a first 
al ternative:  either x~(tl + 1)/> 1 or x~(tl + 1) < 1. Let ea be defined by 
2 e x p ( -  cq) = 1. 

Assume c~ ~< cq. Then,  since 1 < x~(t) < b for  all t e ( t l ,  t~ + 1), Condi t ion 
(5.1b) with to = t~ + 1 implies that  x increases after tl + 1, more  precisely 

x( t )  = 7 - (~ - x(t l  + 1 ) ) e x p ( -  c~(t - t~ - 1)) for all t e [ t~  + 1, tz + 1], 

where t 2 is the first t ime obeying t 2 > tx + 1 and x(t2) = b. In the time interval 
( t2,  t 2 -t- 1) the solution x has the same p rope r ty  as the initial condi t ion ~0, namely  to 
exceed 1. Therefore  the previous a rguments  prove  that  there will be a first time 
t* > t 2 d- 1 with x( t*)  = b, and x obeying the relation (7.1) with t* instead of  tl. 
Thus  we have shown that  [tx, t*]  cor responds  to one (smallest) per iod of  a periodic 
solut ion to (A), which is a stable limit cycle as following f rom L e m m a  3.4. This cycle 
is simple in that  there is just  one m i n i m u m  within one (smallest) period. Figure 5a 
shows this oscillation for c~ = 0.6. In s u m m a r y  we have proved:  I f~  < ~ then there 
is a stable limit cycle with exactly one minimum within one period. 

A new type o f  solution occurs when c~ exceeds ~1, since i f x  crosses the threshold 
1 f rom above  at t ime t, then at t ime t + 1 there must  be a m a x i m u m  of  x (as 
following f rom (5.1)). I f x  crosses 1 f rom below at t then there has to be a m in imum 
at t + 1: Assume c~ > cq. Then  x(t l  + 1 ) <  1 and there is a t imez l  S( t l ,  t~ + 1)such 
that  x(z~) = 1. For  te ( ta  + 1,Zl + 1) the solution obeys (5.1b) with to = t~ + 1. 
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Fig. 5. The analytic solutions to Eq. (A) in conjunction with the mixed feedback nonlinearity (F3), for 
various values ofc~, but fixed b = 2, c/e = 4. The vertical lines here and in Figs. 6 - 8 are spaced one time 
unit (=  delay time) apart. Horizontal lines in all figures correspond to x = 0, 1, 2, 4. (a) ~ = 0.6, (b) 

= 0.8, (c) c~ = 0.86, (d) e = 0.88, (e) e = 0.9, (f) ~ = 0.98. Note that, according to Eqs. (5.1), the figures 
have to satisfy: If at time t the solution x crosses the threshold 1 or 2, then x has an extremum at time 
t + 1. Beginning and end of  one period are indicated by tl and t*respectively 

T h e r e f o r e  d u r i n g  t h i s  t i m e  i n t e r v a l  x i n c r e a s e s  f r o m  b e x p ( -  c0 t o  

x ( r t  + 1) = ~ / -  (y - b e - ~ )  e x p (  - c~(rl - t l ) )  = 2 + e x p ( -  ~), 

s i n c e  1 = b e x p ( - c ~ ( r t -  t~)). I t  f o l l o w s  t h a t  t h e r e  a r e  u n i q u e  t i m e s  1:2, 

t2E(tl-t- 1,1:1 + 1) s a t i s f y i n g  x ( r 2 ) =  1, x(t2)= b. S i n c e  x(t)< 1 f o r  tE(1:1,1:2), 
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Condi t ion (5.1a) with t o = zl + 1 implies that  x decreases during [zx + 1, "C 2 "-1- 1] 
and x(z2 + 1) = x(z l  + 1 ) e x p ( -  0~(z2 - Zl))- 

Because o f  

and 

we obtain 

X(tl + 1) = e x p ( -  e(tl + 1 - zl)) 

1 = 7 - (7 - x( t ,  + 1 ) ) e x p ( -  c~(~2 - tl - 1)) (7.2) 

e x p ( -  ~(% - "/71) ) .~- x ( t  1 .Jr_ 1)(]1 - 1) / (7  - x ( t  1 -~- 1)),  ( 7 . 3 )  

hence 

xa(z2 + 1) = (2 + e-a)2e-a3/ (4  - 2e - ' )  = 3 e - ' ( 2  + e-~)/(2 - e-a). 

I f  ~ increases f rom ~1 to go then x~(z2 + 1) decreases f rom 2 + e x p ( -  cq) to 0. 
There is 0~ 2 ~> ~1 such that  xa2(Za + 1) = 2. 

For  t e ( z2  + 1, tz + 1) the solution again increases and 

xa(t  2 + 1) = 7 - -  (7 - -  X~(Z2 + 1 ) ) e x p ( -  c~(t2 - %)). (7.4) 

As e x p ( -  e(t2 - %)) = (y - b)/(7 - 1) = 2, we obtain 

x~(t 2 -}- 1) = ~ + 2e-~(2 + e-a)/(2 - e -a) for all c~ > cq. 

For  c~S(el,e2] we have x~(t) >1 2, tE(t2, t2 + 1). Thus for these c~, after t = t2 + 1 
the solution decreases exponentially to 2 e x p ( -  ~). This last value is obtained for 
t = t* + 1, where t* is the first time with t* > t 2 + 1 and x(t*)  = 1. 

Again [ t , ,  t*] is one period o f  a stable periodic solution. However,  there are 
exactly two minima within one cycle, namely those at t = tl + 1 and at t = z2 + 1. 
In  summary :  For each ~ ~ (~1, ~2] there is a stable limit cycle having 2 minima per 
(smallest) period. 

Figure 5b shows an example of  this type o f  limit cycle (e -- 0.8). A second 
change of  behavior  takes place at ~ = cq. At  this value the min imum x~(z2 + 1) 
crosses the level b f rom above giving rise to the phenomenon  o f  period doubling: 

Assume c~ > c~2. Then there is t 3 e ( z l  + 1,r2 + 1) such that xa(t3) = 1. For  
t e ( t2  + 1, t3 + 1) Condi t ion  (5.1a) applies with to = t2 + 1, x decreases on this 
interval and 

x,(t3 + 1) = x,(t2 + 1 ) e x p ( -  e(t3 - t2)). 

By calculations similar to (7.2) and (7.3) we arrive at 

e x p ( -  ~(t3 - t2)) = (4 - x(z l  + 1))/x(zl + 1), 

hence 

xa(t 3 -{- 1) = ~(2 -- e-a)/(2 + e -~) + 2e - ' .  

xa(t3 + 1) is a decreasing function o f e  with xa~(t3 + I) < 2 and xo~(t3 + 1) = ~. As 
long as xa(z2 + 1) > 1 we have xa(t2 + 1) > 2, since xa(tz + 1) = 2 if and only if 
x a ( z 2 + l ) = l .  Therefore,  as long as x a ( z 2 + l ) >  1 and c~>ct2 there is 
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t46('C 2 + 1, t 2 + 1) satisfying x,(t4) = 1. Since 

x~(t4 + l) = y - (y - x~(t3 + l ) ) e x p ( -  ~(& - t3)), 

there is another  min imum o f  x at t3 + 1 and a maximum at & + 1. 
N o w  assume ~ = ~2 + e, e > 0. Then 

limx,(z2 + 1) = 2, l im(& - t3) = 0, limx~(& + 1) = x~(t3 + 1) < 2. 
e ~ 0  e ~ 0  e---~ 0 

For  sufficiently small e it follows that  x~(t4 + 1 ) <  2 and t h a t  x~(t)> 1 for 
te( tz ,  t2 + 1) - (t3, t4). The latter relation implies that  x,(t)  for t > t2 evolves just  
in the way as x,(t)  for t > 0 if e is very small. In particular there are first times 
1 + t2 < t5 < za < z4 obeying x(ts) = 2, x(z3) = x(v4) = 1. The min imum at t5 + 1 
satisfies x,(t5 + 1) > x,(tx + 1) = 2 e x p ( -  , )  (since x~(& + 1) > x~(t3 + 1)). 
Hence x4 - ~3 < v2 - Xa. Moreover  ~3 - t5 > tz - ,Zz.  These relations imply for 
small positive e that  x,(z3 + 1) > x~(zl + 1), x,(z4 + 1) > x,(z2 + 1). Indeed, a 
detailed calculation shows x,(z4 + 1 ) >  2. There is a time t6e(v4,z3 + 1) with 
x(t6) = 1. Since x increases during [z4 + 1, t6 + 1], we obtain x~(t)> 2 for 
t~ (t6, t6 + 1). Hence there is a first tv > t6 + 1 with x(tv) = 1 and x on (tl, tv) is just 
one cycle o f  a periodic solution. The courses o f  x,  on (q ,  ts) and on (ts, tv) are very 
similar for small e. Therefore t7 - t~ -o 2(t5 - t~) as e -~ 0: when ~ crosses ,2 f rom 
below then there is an abrupt doublin9 of  the period. More  exactly, if ~r(,) is the 
period o f  x~ then we have the relation 

lim 7~(~Z 2 -'[- e )  • 27r(,2). (7.5) 
1 : ~ 0 +  

In summary :  There is a number ~3 > ~2 such that for all ~ ( ~ z ,  "3) Eq. (A) has a 
stable limit cycle with 5 minima per (smallest)period. The period ~r(ct) satisfies relation 
(7.5). An  example o f  such a periodic solution is shown in Fig. 5c (a = 0.86). 

It is possible to continue these considerations beyond ~3. However,  they become 
very intricate and lengthy. Instead we present a sequence of  computer  drawn 
solutions using the formulae (5.1). The p a r a m e t e r ,  is varied in small steps f rom 

= 0.6(Fig. 5a) to a = 6 (Fig. 8a). The last example (Fig. 8b) is f o r ,  = 20. Lemma 
3.4 is very helpful to detect a periodic solution in the computer  plots:  We started 
with an initial condit ion q~(t) > b = 2, t ~ [ -  1,0]. Then, clearly, according to 
(5.1a), there is a first time t~ satisfying x (h )  = 2, x(t) > 2 for all t~(t~ - 1, q). I f  
there is a second time t*,obeying this condition,  namely x(t*) = 2 and x(t) > 2 for 
all t ~ ( t * - l , t * ) ,  then by Lemma 3.4 the solution x on the interval [tx, t*]  
corresponds to one cycle o f  a stable periodic solution. The criterion is robust  against 
small numerical errors. 

The numerical results may  be interpreted as follows: We calculated 0~ 2 ~ 0.85, 
~3 ~ 0.87. A s ,  crosses ~3 f rom below, at the four th  min imum the value o f  x,  crosses 
the threshold 1 f rom below. Therefore at a3 one min imum and one maximum 
disappear by merging. This is the reverse process we observed at ~a. Thus  at values 
o f  ~ slightly above ct3 aperiodic solution with 4 minima per period occurs. The period 
does not  change discontinuously at ~3. For  an example see Fig. 5d (~ -- 0.88). 

A s  a increases beyond 0~ 4 ~ 0.9 the four th  min imum of  x,  crosses the level b 
f rom below, creating a new minimum one time unit later. Therefore Fig. 5e shows a 
stable periodic solution with five minima within one period at a = 0.905. The 
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periods for ~ between a2 and ~4 are nearly equal, namely n ( ~ ) ~  6. The next 
dramatic change in the period occurs at ~ = 0.98, where the sixth minimum of  x, 
crosses b from above. The period jumps from about 6 to about 9 (see Fig. 5f, 

= 0.98). Therefore the factor 2 obtained at ~2 is not universal. 

Fig. 6. As  in Fig. 5 with (a) ~ = 1.0015, 
(b) ~ = 1.0125, (c) c~ = 1.001 

~ V  

/ V '  , 
~, A A .   ,jvv ,,,v, \,/ 

b 

v ,V 
L r 

/ , A, ,  ^ v /A  A A  A~! 
V V  " v v v  \ 

, ,  ! , ,  [ 

Fig. 7. As  in Fig. 5 with (a) c~ = 2.75, t = 0 to 
50, (b)c~ = 2.7, t = 0 to 75, (c)c~ = 2 .775G = 0 
to 25 

1 ' i 1 ~  = ' ' L I  o 

I , ~J~JF ! i  ~!~ 1'! !~ ' ! ! l~  F~!! I  J'IILELI 
I i l  ~ I :  !" L il^.k.i.l,k .. ,iN;I k, i A 

~ ! ' [ ! I I ! ' ! ' !  F! ! I~,  !'~! !~! F! ,~!TF~q 

I!  ' I II I b 

I\iAI/ILIVI N I~ tN~f E]AilkNVJ 1 I~ V~/JL~/~ 

ItklNVikl A\MM INiAIIN~I~I 

V 1 A V/~/~ IkI~/R/I/VI k AI/\IN~/I~1 
, I I 'q  kl '~ ~ i ",,/ tq '~ k l q ~  I l ~ I , ,  : . . . . . . . . . . .  11, I 

:11' I I I Ill t c 

IIk IAIIIMV4 I. ~ l ~11 '~ NlllV'~vlV~ll'~ tll hl IUl 



98 u. an der Heiden and M. C. Mackey 

There  may  also be discrete reductions inperiodas o+ increases. E.g. for c+ = 1.0015 
there is a periodic solution with n(m) ~ 12.2 and 13 min ima  per per iod (see Fig. 6a) 
(the beginning and end o f  a period are always denoted by tt and t* respectively). 
However ,  for ct = 1.0125 the per iod is only abou t  7 (see Fig. 6b). This reduction in 
period is due to the crossing of  the threshold b f rom below by the 7th m i n i m u m  of  x+ 
as m increases f rom 1.0015 to 1.0125. Another  example  of  period reduction is given 
by the pair  c+ = 1.001 and ~ = 1.0015 (see Fig. 6c, a respectively). For  c+ = 1.001 the 
period is abou t  15 (16 min ima  per period). 

It  should be noted that  L e m m a  3.4 is a sufficient, but  not  necessary, criterion for  
periodicity. Indeed for m = 2.75 the solution, after a long t ransi tory oscillation, 
approached  a periodic cycle (as far as Fig. 7a shows), not  obeying this criterion. Its 
period is abou t  3.6. Ano the r  example  with m = 2.7 is shown in Fig. 7b, where a 
period zr(c+) ~ 11.2 seems to be present. However  for c+ = 2.775 again a stable limit 
cycle obeying L e m m a  3.4 occurs with ?r(m) ~+ 20.2. 

The  last p h e n o m e n a  to be discussed here are made  apparen t  by Figs. 8a (c+ = 6) 
and 8b (c+ = 20) and occur for large c+. Even after a long time the solutions do not  
show a repetitive pattern.  Ins tead the mot ion  acquires the character  o f  randomness  
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Fig. 8. As in Fig. 5 with (a) ct = 6, t = 0 to 150, 
(b) ct=20, t = 0 t o 5 0  
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and a high degree of irregularity. Two other features should be observed in these 
figures. First there may be many  oscillations within one time unit ( =  the 
normalized delay), even if the initial condition is monotone. Therefore within one 
delay time there may be a very rich structure, which is sustained despite (or 
because?) of  the delay. 

Second, there is a fairly regular building up of irregularity from a simple initial 
condition. The details of  successive creation of new "spikes" during the first time 
units can be well understood on the basis that every crossing of the thresholds 1 or b 
implies an extremum one time unit later (see figures). 

However the complexity of  structures, as illustrated by Figs. 8a, b, not only 
seems to prohibit analytical understanding, but rather to make it meaningless. A 
statistical approach to these deterministic systems would perhaps be more suitable. 

Finally we like to give up the restriction b = 2, V = 4. To that purpose the 
following theorem gives a condition that the solutions do not fade away towards the 
stable steady state 0, but oscillate permanently around the upper threshold b. 

Theorem 7.1. Let  the funct ion f be given by (F3). Let 

7 >~ b2/(b - 1). (7.6) 

I f  the initial condition q~ satisfies b < q~(t) <~ 7 f o r  all t o [ -  1,0], then there is a 
sequence (t~)i= x,2 ..... 0 < ti < ti+ 1, limi_~o ti = 0% such that 

X~o( tl) = b, x~( t ) v L b i f  t :~ ti, i = 1 , 2 , . . . .  

P r o o f  Condition (5. la) implies that there is a first time tl > 0 with x( t l )  = b. Let t" 
be some time satisfying x(7) = b, let z be the first time satisfying ~ > 7, x(z)  = 1. 
Then 

x(z  + 1) > 1. (7.7) 

To prove (7.7) realize that 1 < x( t )  < b for all t e (f, z), where ~ ~< ~ < z and z - f is 
at least as large as the time needed for x to decay according to (5.1a) from b to 1. 
This means 

e x p ( -  ~(~ - r)) ~< 1/b. 

It  follows from (5.1b) that 

x ( r +  1 ) = y - ( y - x ( ? +  1 ) ) e x p ( - ~ ( z - ~ ) > y - 7 / b > / b ,  

since x(f  + 1) > 0. 
From (7.7) we can conclude that if there is some finite time T > 0 with x( t )  ~ b 

for all t > T then x( t )  > 1 for all t > T. Hence either x( t )  > b for all t > T, or 
1 < x( t )  < b for all t > T. In both cases Eqs. (5. la, b) imply that there is some t > T 
with x( t )  = b, contradicting the definition of T. Q.E.D. 

Condition (7.6) of  Theorem 7.1 is independent of  the decay rate ~ in Eq. (A). It  is 
our  impression that in a large domain of  values b and V obeying (7.6) a kaleidoscope 
of different solution types occur when c~ varies from 0 to ~ ,  ranging from very 
simple patterns for small values of  c~ to solutions with unbounded complexity as 
tends to ~ .  
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We finish with a speculation on nonlinearitiesfwhich are not necessarily near to 
a step-function. 

Conjecture. Let f :  E+ ~ R+ be a continuous, bounded function satisfying 
(i) f h a s  exactly two inflection points, namelyf"(1)  = f" (b )  = 0, b > 1, 

(ii) limr f(~) = 0 = limr ~ f(~), 
(iii) S~f(~)d~ >/6 2. 

Then it may be that as a increases from 0 to ~ the equation 

d x ( t ) / d t  = a f ( x ( t  - 1)) - ~ x ( t )  

shows increasing, unbounded complexity in the behavior of its solutions. 
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