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Abstract. The time evolution of slowly evolving discrete dynamical systems 
xi+ 1 = T(ri, xi), defined on an interval [0, L], where a parameter ri changes 
slowly with respect to i is considered. For certain transformations T, once ri 
reaches a critical value the system faces a non-zero probability of ex t i nc t i on  

because some x j  r [0, L]. Recent ergodic theory results of Ruelle, Pianigiani, 
and Lasota and Yorke are used to derive a simple expression for the probability 
of survival of these systems. The extinction process is illustrated with two 
examples. One is the quadratic map, T(r ,  x )  = rx(1 - x ) ,  and the second is a 
simple model for the growth of a cellular population. The survival statistics for 
chronic myelogenous leukemia patients are discussed in light of these extinction 
processes. Two other dynamical processes of biological importance, to which 
our results are applicable, are mentioned. 

Key words: Ergodic theory-  Extinction- Cell populations-Leukemia. 

I. Introduction 

The recent discovery that simple point to point transformations may display a 
spectrum of dynamic behaviours (including chaotic or stochastic-like behaviours) 
as a single parameter is varied has excited and intrigued a number of biologists 
[cf. May (1976) for a review]. Probably the simplest and most widely known 
example is the quadratic transformation 

T(r,  x )  = rx(1 - x ) ,  x ~ [0, 1]. (1) 

There is a large literature characterizing the dynamics of this transformation for 
various values of the parameter r (Li and Yorke, 1976; Lorentz, 1964; May, 1976; 
Pianigiani, 1979a; Ruelle, 1977; Smale and Williams, 1976). 

One of the most effective ways of describing the chaotic behaviour that 
transformations such as (1) may display is via the techniques of ergodic theory. If it 
is possible to prove the existence of a continuous stable invariant density with 
respect to any transformation T, then the statistical properties of the system may be 
immediately calculated. Thus, the chaos may be statistically characterized. 

0303 - 6812/80/0010/0333/$02.60 



334 A. Lasota and M. C. Mackey 

For the quadratic map (1), when r = 4, the density is known and thus all 
properties of the chaotic behaviour of this map may be computed. For many years 
this was the only regular convex function for which such results were available, no 
doubt contributing to the popularity of (1) in studies exploring the implications of 
"chaos" for biology. The recent elegant demonstration by Ruelle (1977) and 
Pianigiani (1979b) that the existence of a stable invariant density may be proved for 
a much larger class of convex regular functions than (1) opens a number of new and 
interesting possibilities for those interested in understanding biological phenom- 
ena. 

Here, the time evolution of a dynamical system xi + ~ = T(rl, xi) defined on an 
interval [0, L], where the parameter ri changes at a small constant rate with time (i), 
is considered. For a certain class of transformations T(r, x) which satisfy the 
Pianigiani-Ruelle conditions (cf. section II), once rl reaches a critical value the 
system faces a non-zero probability of extinction because some x~ r [0, L]. For such 
a slowly evolving system, a simple equation giving the distribution of survival times 
is derived in section III. The nature of this extinction process is first illustrated in 
section IV by assuming that the quadratic transformation (1) is evolving slowly with 
respect to r, and comparing the analytic results with actual survival times from 
computer experiments. In a second example (section V) the extinction of a renewing 
cellular population, with a slowly increasing maximum cell production rate, is 
considered. As a concrete example of such a process, this mechanism is related to 
the survival of patients with chronic myelogenous leukemia. 

Throughout this paper the evolution and extinction of systems is discussed in 
terms of distributions of points rather than speaking of distributions of measures. 
Although this sacrifices some degree of preciseness, it makes the arguments more 
directly applicable to biological problems. For an analogous treatment from a 
measure-theoretic point of view, see Lasota and Yorke (1979). 

II. Mathematical Preliminaries 

In this section, the concept of density and some simple properties of densities are 
introduced before stating a theorem which summarizes the recent results of Ruelle 
(1977) and Pianigiani (1979b) of importance for the problem of extinction in slowly 
evolving systems. 

Let an interval [0, L] be given. A density on [-0, L] is an arbitrary real valued 
function f ( x )  satisfying f ( x )  >~ 0 for all x s [0, L] and 

j 'L f (s)  = ds 1. 
0 

The notion of density may be easily, but quite precisely understood in the 
following way. Suppose N points are distributed through the interval [0, L] in some 
fashion. These points are said to be distributed according to a densityf(x) if any 
subinterval [a, b] of the total interval [0, L1, which is sufficiently large with respect 
to the distance between points, the number of points in the interval [a, b], Nt,,bl, is 
given by 

Nt,,,bl = N f (s)ds .  (2) 
a 
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Suppose there is a function, or transformation, T(x) which takes all of the points 
x E [0, L] and maps them into the same interval, T(x)e [0, L]. Such a transfor- 
mation is also written T: [0, L] -, [0, L]. The inverse image of an interval [a, bJ is 
written as T- l([a, b]). The density, or distribution,f (x), is said to be &variant with 
respect to T if the relation 

; f f(s) ds = f(s) ds (3) 
a T -  l([a,bl)  

holds for every interval I-a, b] = [0, L]. 
To understand the meaning of invariance, consider the following. Each of the 

original N points distributed in [0, L] according tof(x)  are transformed by T to a 
new value, and the new set of points has a distributionfl(x). What isf1(x)? Now 

N 1 ~a,bl = Nr-1(to,b1) (4) 

where N 1 is the number of points in [a, b] after one application of T. Thus [a,b] 
from (2) 

fl fl(s)ds = f r_l(ra,bj)f(s)ds. (5) 

Set a = 0, b = x and differentiate (5) with respect to x to obtain 

d 
f f(s)ds (6) fl(X) = dxx T-l([0,X]) 

as the new distribution of points after transformation by T. If the density f(x) is 
invariant, then by definition 

= f(s) ds (7) 
T l([a,b]) 

for each [a, b ] c  [0, L]. However, from (5) equation (7) may be rewritten as 

fl fl(S)ds= fl f(s)ds (8) 

and thus, if the densityf(x) is invariant, then f l  (x) = f(x). By induction,f,(x) = f(x) 
for any number of iterations of the transformation T(x). 

The second notion concerning densities which must be introduced is that of  
stability. An invariant densityf(x) is said to be stable (asymptotically) if, for any 
other density g(x), 

fr_,(ta,b~)g(s)ds~flf(s)ds (9) 

for each [a, b ] c  [0, L] as n ~ oe. 
Thus, if the N points are initially distributed on [0, L] according to g(x), after 

transformation by T(x) they will have a distribution gl(X). After n transformations, 
the distribution will be 9,(x), and by induction 
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f l  g,(s)ds -- f g(s)ds. (10) 
T - n ( [ a , b ] )  

Stability o f f (x )  requires, by definition, that the right-hand side of (10) approach 
~ f(s) ds, or that 

f l  g,(s)ds ~ f l f (s )ds .  (11) 

Thus if f (x) is a stable distribution, then for any other initial distribution g(x), the 
successive distributions g,(x) resulting from n applications of T will satisfy (11) as n 
tends to infinity. 

The following theorem summarizes the results of Ruelle (1977) and Pianigiani 
(1979b) on the existence of a stable invariant density for transformations T with 
certain properties. 

Theorem 1. Let T: [0, L] ~ [0, L] be twice differentiable, T(O) = T(L) = O, and 
assume that T(x) has a unique maximum at c ~ (0, L) such that T(c) = L. I f  there is a 
positive integrable function h(x) such that 

h(x) 
rh(X) - -  <~ I~ < 1, # > 0 

I T'(x)lh( Z(x) ) 

for all x ~ (0, L), x ~ c, and the derivative drh(x)/dx exists and is bounded, then there is 
a density f (x)  that is stable and invariant with respect to the transformation T. 

Remark. Although neither Pianigiani nor Ruelle considered the stability of the 
invariant density, stability follows from the fact that the transformation 
S = H T H -  ~, where H(x) = O ~ h(s) ds, a = L[~ L h(s) ds] - 1, is mixing (Rochlin, 
1964). 

III. The Extinction of Slowly Evolving Systems 

Consider a system whose evolution in time is described by the sequence of state 
variables Xo, xl, �9 �9 �9 xl . . . . .  The successive values of the state variables x are due to 
the operation of a transformation T(r, x), where r is a parameter that changes slowly 
with time. Thus, given an initial point Xo and taking r = ro + is, the sequence of 
state variables describing the system becomes Xo, xl = T(ro + ~,Xo) . . . .  , 
xi = T(ro + is, xi-a) . . . . .  

It is assumed that T(r, x) is defined on [0, Lr], and that: 

1) T(r, O) = T(r, L,) = 0 for all r. 

f 
< Lr for r < f, 

2) T(f, c~) = max T(r, x) = Lr for r = ~, 
x 

> L, for r > f. 

OT (~,c~) dL~ ~32T (~,c~) 
3) ~ -  > ~ e and ~ < 0. 

4) T(f, x) has a unique stable invariant density f(x). 
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If at any point in time xir  [0, Lro+i~], then the sequence of points terminates 
because Xi+l is undefined as are all subsequent values of the state variable. When 
this occurs, the system is said to be extinct. With two different initial conditions for 
the system extinction may occur at quite different times even though all other 
factors are equal. Our problem is to determine the asymptotic distribution of the 
times at which system extinction occurs. 

Extinction of the system will not be possible until ro + ie >>. ~, and thus the origin 
of the extinction times k is taken to be such that k = 0 when r = ?. For k > 0, 
r = ~ + ke. Suppose that, at r = ~, there are N points distributed on [0, Le) with the 
stable invariant densityf(x).  We assume that e is so small that the product (ek 3) 
remains bounded for all k of interest. [The reason we have assumed that (ek 3) is 
bounded will become clear from the following arguments.] Though the densityf(x) 
is invariant with respect to T(?, x), it is not necessarily invariant with respect to 
T(? + ka, x). However, it can be calculated that after k iterations (with ek 3 
bounded) the change in the densi tyf(x)  is of the order e 1/3 in a neighborhood of 
x = G. Thus in our computations we may use the f ( x )  invariant with respect to 
T(?, x) in calculating the distribution of extinction times. 

Suppose that after k iterations, the number of the initial N points remaining 
(i.e., those which have not become extinct) is Nk <~ N. Now 

N k - -  Nk+I = Nk f f ( x ) d x  (12) 
Bk 

where Bk = {x: T(? + ke, x) > Le + ks}. A rather elementary calculation involving 
the expansion of T(? + k~, x) about (~, G) and the expansion of Le + ks about ~ and 
neglecting terms of order e 3/~ and higher defines the set Bk as 

/2(ql  -- qz)ke /2(qi  - qE)ke 
- - -  < x < c ~ +  

c~ -  ~/  [T'I ~ ~ ~/  IT~I 

where ql = (c~T/&)(~,c~), q2 = (dL/dr)~, and T~ = (c~2T/c~xZ)(~,~). Thus (12) becomes 

Nk - g k + l  ~-- I&lf(c3 

where 

= N k M x ~ f ( G )  (13) 

M = 2 ~/~-qiT~[q2) 

From (13), 

Ark +1 ~-- NkE1 -- Mf(c~)xf-~] 

SO 

i=1  

Using ~ = 1  x / ~  = 2 k x f ~ / 3  + 0(el/3), (14) becomes 

Ark+ 1 = N e x p ( -  o-x/~- k a/z) 

(14) 

(15) 
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where a = 2 M f ( G ) / 3 .  Equation (15) is the main result of this section, and allows the 
probability of survival to time k ,  Pk = Nk /N ,  to be written as 

Pk+ 1 = exp(-- o-x//ek3/2). (16) 

From (15) and (16), it is clear why we have restricted our considerations to 
(xfe k3/2) 2 = (ek a) bounded. 

Although (15) and (16) were derived under the assumption that the initial 
distributionf(x) was invariant, since e is small by assumption the formulae are valid 
for any arbitrary initial distribution 9(x). This is becausef(x) is, by assumption 4, 
stable and thus for any initial distribution #(x) the sequence 9k(X) converges rapidly 
(in comparison with the extinction process) to fix).  

IV. The Slowly Evolving Quadratic Map 

As an example of the application of the results on system extinction developed in 
the previous section, consider the slowly evolving quadratic system defined by (1), 
so 

Xk+x = (? + ke)Xk(1 -- Xk). (17) 

Clearly for T ( r , x )  = rx(1 - x) ,  T(r,O) = T(r, 1) = 0, and T(4,�89 = 1 so f = 4 and 
ce = �89 The density for (1) when r = 4 is known exactly (Ulam and von Neumann, 
1947) and is 

1 
f ( x )  = (18) 

It is a simple matter to show that the conditions of Theorem 1 are exactly satisfied 
with 

1 
h(x)  = (19) 

, / ; ( i  - x) 

and the density f ( x )  is thus stable and invariant. 
A few simple calculations give ql = ~-, q2 = 0, T"(?, c~) = - 8, and f(�89 = 2/rt so 

the expression for the probability of survival to time k becomes 

Pk+l  = e x p [ -  (2n)x/e-k3/23. (20) 

Figure 1 displays two trajectories for the system 

xi+ 1 = (ro + ke)x~(1 - xl) (21) 

computed with r0 = 2.8, e = 0.01, and assuming two different initial values of Xo. 
These trajectories display a fascinating complexity which is, however, understand- 
able from previous characterizations of the behaviour of (1) for various values of 
the parameter r. For r < 3.0, the fixed point (r - 1)/r is stable, though increasing 
slowly, and the computed trajectories display a damped approach to the slowly 
increasing fixed point. This region corresponds to times i < 20. Once r = 3.0, at 
i = 20, the fixed point is no longer stable and the trajectories start to oscillate and as 



The Extinction of Slowly Evolving Dynamical Systems 339 

~.lo . . . . . .  I ~ " 1 '  T 

1,<" .6o - -  

20 

oJ . . . . . .  I . . . . .  I I 
0 ~Q ~ qej 

i 

I 

I 

120 

, i 
/ 

-t 

130 

.L I , ,  L 

i 
120 I$0 

Fig. 1, Two trajectories for the system (21), with ro = 2.8, e = 0.01, illustrating the effect of the initial 
condition xo on the dynamics and the time of  extinction. For the system at the top, xo = 0.38, while in the 
bottom panel xo = 0.36 

time progresses the amplitude of these oscillations also increases in response to the 
increase in r. Eventually, the trajectories become chaotic [cf. Li and Yorke (1975), 
Pianigiani (1979a), Ruelle (1977)], and it is only once this region has been reached 
that there is any significant difference in the behaviour of trajectories starting from 
different initial conditions. Once r = 4 at i = I20 the system is now capable of 
displaying behaviour not available for r < 4; namely, it will become extinct. In the 
top trajectory of Fig. I, with xo = 0.36, this extinction occurs after only 121 (k = 1) 
iterations, while in the bottom trajectory (xo = 0.38) it takes 148 steps (k = 28) for 
extinction to take place. 

Several experimentally determined distributions of survival times derived from 
a number of trajectories are shown in Fig. 2. A sequence of iterates was computed 
from (17) with ro = 4, ~ = 0.01, and a uniform distribution of initial conditions 
xo ~ (0, 1). The solid line is the survival probability expected on the basis of equation 
(20), while the filled and open circles and the crosses are, respectively, the survival 
probabilities determined for 50, 100, and 200 different initial conditions. 
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Fig. 2. The probability of survival of the system (21), with ro = 2.8, e = 0.01. The solid curve gives the 
theoretically expected result as predicted by (20). The points marked by 0, O, and • give, respectively, 
the numerically generated results with 50, 100, and 200 different initial conditions x0 uniformly 
distributed on (0, 1) 

V. A Renewing Cell Population 

As a second example of  the application o f  the results o f  section III ,  here we consider 
the dynamics of  a simple model  for a renewing, self-maintaining, cellular 
populat ion with a progressive increase in the cellular product ion rate. This example 
is o f  interest in that it illustrates the nature of  the extinction process for a system 
described by an asymmetric t ransformation,  and for which the interval length L 
varies. 

Consider a populat ion N of  cells which die, or  differentiate, at a rate 6 and which 
are produced at a rate/3. The popula t ion is characterized by some basic time unit  t,  
and between successive times ti and tl + t the change in cell numbers  is given by 

Ni+l - Ni = N~(/~ - 6)t. (22) 

It is assumed that  the popula t ion is self-maintaining by virtue o f  a cellular 
product ion  rate dependent on cellular numbers  according to 

O 
/~ = t i m - -  (23) 

O + N  

where /~,, is the maximal cell product ion rate and O is a parameter.  Thus  the 
complete populat ion dynamics are controlled by 

N ~ + ~ = N i  ( 1 - 6 t ) + ~ m t  O + N ~  " 
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Chronic myelogenous leukemia (CML) is a neoplastic disorder of the hemato- 
poietic system characterized by a progressive increase in the number of  circulating 
white blood cells. There is strong evidence (Wintrobe, 1976) for the clonal origin of  
CML, with the basic defect probably resident in the uncommitted stem cell 
population. In examining the available cell kinetic data in CML patients, one 
interpretation (Mackey, 1979) is that the defect is expressed as an inexorable 
increase in the maximum cell production rate within the stem cell compartment.  I f  
this is indeed the case, then the model of  this section offers a highly simplified 
paradigm for the behaviour of  the stem cell population in CML. To examine the 
nature of extinction in the model system (24) assume that the maximal production 
rate/~,, increases in the manner 

Since 69 simply scales the N~ without playing any role in determining the 
dynamics it is convenient to set x~ = NffO so 

X i  + 1 = X i - -  N -~- 

= r(B, xi) (25) 

where A = & - 1, and B = (rio + i0z. A few elementary calculations show that 
T(B,O)=T(B, LB)=O where L B = ( B / N ) - I .  Further, with A >  1, B =  
A(A + 1)2/(A - 1) 2 and ca = 2/(A - 1) so T(B, ca) = L~. Although the densityf(x) 
is not known analytically for (25), with 

1 
h ( x )  - 

~ / x ( L .  - x )  

it may be shown that the conditions of  Theorem 1 are satisfied for all A > 1. Thus 
conditions 1 through 4 of section I I I  are satisfied for (25) when A > 1. 

2.00 I I I l I [ 1 

1.00 

I 

0 I 
0 SO 100 150 200 250 

i 
300 350 

Fig. 3. This figure illustrates the evolution and extinction of the system (25) with A = 4.0, Bo = 8.0, 
er = 0.01, and Xo = 0.10 
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To calculate the probabi l i ty  of  survival of  the system (25) once B > B, note tha t  
ql = 2 / (A  + 1), q2 = 1/A,  T" (B ,  cn) = - 2 A ( A  - 1)/(A + 1), and thus M = 2/A .  
The final quant i ty  necessary to calculate the probabi l i ty  of  survival to t ime k for the 
system (25) is the densityf(r  Al though this cannot  be calculated analytically, it 
can be calculated numerical ly given A. For  A = 4, B = 100/9, c~ = ~, and 

(2 3 q 3) -~ 0.37. 
Figure 3 shows a t rajectory for  the system (25) computed  with A = 4, 

B = B0 + iez, B0 = 8, and ez = 0.01. The  qualitative behaviour  is very similar to 
that  displayed by (17). It  is only when i ~- 311 that  B = B and that  extinction is a 
possibility. In Fig. 3, extinction occurs for  k = 27. 

Figure 4 shows the results of  a number  of  numerical  experiments  on the system 
(25). A sequence of  iterates was compu ted  with A = 4, B = 100/9, ez = 0.01, and a 
uni form distr ibution of  initial condit ions on (0, 100/9). The  theoretical  results 
expected on the basis o f  (16) are indicated by the solid line, while the other symbols  
give the results of  numerical  calculations based on 50, 100, and 200 initial points  
uniformly distr ibuted on the interval. 

A number  of  studies have examined the survival statistics in groups  of  C M L  
patients,  and these results are mos t  interesting within the context  o f  this paper.  In 
every case with which we are familiar,  probabi l i ty  of  survival a length of  t ime t f rom 
diagnosis follows a distr ibution of  the fo rm p( t )  = e x p ( -  et"), with n - 1.5. Thus  
the da ta  of  Shimkin et al. (1950) gives e = 0.14, n = 1.56; while the da ta  of  
Win t robe  (1976) yields c~ = 0.16, n = 1.51. Fo r  the systems considered in this paper ,  
n = ~ [cf. equat ion (16)]. We speculate that  the close correspondence  between the 
statistical survival curves for groups of  C M L  patients,  and the predictions of  
equat ion (16) for  the extinction of  slowly evolving dynamical  systems presented 
here is not  fortuitous.  We suspect tha t  death  in C M L  patients  m a y  be a result of  an 
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e ,  ~ - - -  

lO 20 3 0  ~0 50 

k 

Fig. 4. The survival probability of the system (25) with A = 4.0, Bo = 8, ez = 0.01. Symbols as in Fig. 2, 
with initial conditions distributed uniformly on (0, 100/9) 
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Fig. 5. This illustrates two other types of transformations for which the extinction considerations of this 
paper are applicable. See the Discussion for details 
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extinction process similar to that outlined in section III,  and which the simple 
paradigm for a renewing cell population presented here displays as the maximum 
cell production rate increases. With respect to the behaviour of  (25) illustrated in 
Fig. 3, it is also interesting to note that some C M L  patients display marked 
oscillations in their circulating white blood cell count that is also reflected in more 
primitive precursor cells in the marrow (cf. Mackey, 1979). 

Interestingly enough, C M L  survival curves seem to be relatively unaffected by 
the use of  various therapeutic measures. Given the fact that these measures involve 
the use of cytostatic tools (drugs or radiotherapy), and that the utilization of these 
will have the effect of resetting the levels of proliferating cellular populations, if 
C M L  evolves in a fashion similar to (25) then the lack of effect of these therapies on 
population survival statistics is totally understandable within the context of the 
considerations here. Although these therapies currently employed may have no 
effect on the survival characteristics of  a population, if death in CML is due to an 
extinction process as outlined here it is clear that the use of  drugs may have a 
dramatic effect on lifespan for an individual. Specifically, in a given patient the 
results of  this paper indicate that therapy may dramatically shorten or prolong their 
lifespan. 

V. Discussion 

In the preceding sections we have presented a simple formulation within which 
extinction processes in simple dynamical systems may be considered. Although the 
procedure was illustrated with two examples in which extinction occurs because a 
state variable becomes negative, it may be extended to at least two other 
deterministic situations, touched on by May and Oster (1976), in which extinction 
takes place by slightly different means. 

In the first situation, consider that the population dynamics are evolving 
according to xi + 1 = T(ri, xO and that T is a regular, non-negative convex function 
with a single maximum at x = c (cf. Fig. 5a). In this case extinction may occur if the 
transformation is sufficiently steep such that T2(c) falls below a certain value 
corresponding to the minimum number of biological units necessary for repro- 
duction, e.g., two for organisms reproducing bisexually. 

A second example (cf. Fig. 5b) in which extinction may take place is one in 
which an Allee effect (Watt, 1964) alters the dynamics of Fig. 5a to produce a third 
fixed point 2. In this case, if T2(c) < T(~) then the system will also eventually 
become extinct. In both of these examples if the systems are evolving slowly, the 
results of section III ,  with appropriate changes of  variables, may be used to examine 
the extinction process. 
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