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ABSTRACT 

A small signal analysis of the single ion Nemst-Planck equation is carried out to 

determine the equivalent admittance of membrane ion penetration sites where only one 

ionic species may move through the site. In addition to the assumptions inherent in the 

Nemst-Planck formulation I assume that a spatially constant electric field exists within 

the membrane. The analysis shows that Nemst-Planck electrodiffusion systems display 

anomalous reactance properties qualitatively consistent with those found in the membrane 

of many excitable cells, and predicted by a small signal analysis of the Hodgkin-Huxley 

equations. A quantitative comparison between the results obtained and the small signal 

Hodgkin-Huxley expression appropriate for potassium current at the squid giant axon 

resting potential yields estimates of zero and infinite frequency conductances and the 

(anomalous) inductance that are within an order of magnitude of each other. This 

comparison also allows an estimate of the squid giant axon membrane potassium diffusion 

coefficient, D,- 7 x lo-to cm*/sec at 6.3”C and a resting potential of - 60 mV. 

INTRODUCTION 

Early attempts to characterize the electrical properties of excitable 
membranes utilized alternating current impedance measurements on the 
giant axon of Loligo and the excitable cell from Nitella. Transverse impe- 
dance measurements on both of these systems in the resting state gave data 
that were interpreted as arising from a membrane capacity (C,,,) of 
approximately 1 pF/cm2 in parallel with a membrane resistance (&,,) on 
the order of 103 ohm cm2 [ 14, 111. 

Further experiments, utilizing transverse impedance measurements dur- 
ing excitation in both Nitella and squid, conclusively demonstrated that the 
major change during an action potential was a transient decrease in R,,, 
[9, lo]. In addition to this transient change in membrane resistance during 
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excitation, it was noted that there was a small but consistent change in the 
reactive component of the membrane impedance. The effect could always 
be interpreted as a decrease in membrane capacity, and was most pro- 
nounced during the falling phase of the action potential. Similar results 
were obtained during the passage of current through the membrane [7]. 

Cole and Baker [7], using longitudinal impedance measurements, were 
able to extend their Loligo axon membrane data to frequencies much lower 
than was possible with transverse measurements. Some interesting 
phenomena came to light at frequencies below 250 cps. In this frequency 
range there was a clear indication that the reactive components of the 
membrane impedance could, under some conditions, become inductive. The 
data indicated the existence of a membrane inductive element on the order 
of 0.2 H cm2. Apparently, the impedance properties of the squid giant axon 
membrane derived from two different components. One, a high frequency 
region, always exhibited a capacitive reactance; while a second, low 
frequency, portion had a reactive element that was either capacitive or 
inductive. A number of experiments indicated that the low frequency 
reactive portion was likely to become inductive in lowered external calcium 
solutions or in high external potassium solution. Cole [3,4] hypothesized 
that the low frequency characteristics of the membrane impedance were 
associated with potassium movement across the excitable membrane. Oscil- 
latory behavior, also indicative of the existence of a membrane inductive 
element, was noted by Hodgkin and Rushton [19] in a small signal time 
domain analysis on the giant axon of Homarus. Similar results were noted 
by Weidmann [26] in Nitella. 

With the advent of the characterization and detailed analysis of excit- 
able membrane behavior in the time domain [18], it became possible to 
understand the origin of the frequency dependent behavior noted earlier. A 
small signal analysis of the Hodgkin-Huxley equations about the resting 
potential leads to a frequency domain equivalent circuit representation for 
the excitable membrane [ 1,6]. This analysis indicates that at low frequencies 
the reactance of the membrane should be inductive, with the majority of the 
contribution coming from potassium conductance activation. A small 
amount of the inductance derives from sodium conductance inactivation. 

The reactive element of the sodium conductance activation is capacitive, so 
at higher frequencies the sodium channel exhibits a net capacitance. 

Mauro, Conti, Dodge, and Schor [20] carried out a detailed experi- 
mental study of the small signal time domain electrical responses of the 
membrane of the giant axon of Todarodes sagittatus. They found excellent 
agreement between their results and the behavior predicted from a small 
signal analysis of the Hodgkin-Huxley equations. 

These small signal results from the linearized Hodgkin-Huxley equations 
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allow a qualitative understanding of the phenomena mentioned earlier. It 
was noted that during excitation the membrane impedance does not behave 
as if there were a pure resistive decrease, but rather as if there were a 
change in reactance, and that the deviation from the ideal is maximal 
during the falling phase of the action potential. This may be accounted for 
by the inductive behavior of the potassium activation system and the 
capacitive behavior of the sodium activation system, respectively. Both of 
these effects would tend to increase the series reactance of the membrane, 
interpreted as a decrease in membrane capacitance. 

It seems likely that the effects of elevated external potassium on 
membrane impedance are due to a decrease in membrane potential. The 
primary effect of this depolarization is to activate the potassium conduc- 
tance, and thus to increase the apparent membrane inductance. The fact 
that the inductive effect decreases past a certain potassium concentration 
may be due to competitive effects of the sodium system. The effects of 
external calcium alterations admit of a similar explanation. Frankenhaeuser 
and Hodgkin [15] have shown that an increase in calcium affects the 
membrane much like a hyperpolarization, which would tend to remove the 
potassium system from activity, with an attendant inductive effect. The 
effects of low calcium concentrations are much like the effects of high 
external potassium concentrations and can be explained in the same fash- 
ion. 

Although use of the linearized Hodgkin-Huxley equations gives qualita- 
tive insight into the ionic origin of the impedance properties noted in 
excitable systems, it gives little, if any, feeling for the mechanisms 
associated with ion transport that might give rise to inductive or capacitive 
effects. 

In this paper I analyse the small-signal admittance properties of a 
membrane model system in which it is assumed that ions traversing the 
membrane obey the Nernst-Planck electrodiffusion equation [21-241. Thus, 
the effects of ionic diffusion coefficients, equilibrium potentials, and the 
membrane potential in determining the reactive and resistive behavior of 
membrane transport elements may be evaluated. 

The decision to base an analysis of this type on electrodiffusion theory 
was made on a twofold basis. Cole [6] has extensively reviewed the proper- 
ties of excitable membrane systems and the attempts to model them. 
Although electrodiffusion theory, in the Nernst-Planck formulation, fails to 
explain or predict behavior contained in the full Hodgkin-Huxley formula- 
tion of axonal properties, it does offer considerable insight into sub- 
threshold properties. Cohen and Cooley [2] and Cooley, Dodge, and Cohen 
[13] observed that electrodiffusion model systems display time domain 
computed responses suggestive of systems with mixed capacitive-inductive 
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reactance properties. These considerations, coupled with Sandblom’s [25] 
computed frequency domain behavior in a linearized Nemst-Planck system, 
makes a general analytical study of anomalous reactance properties in 
electrodiffusion systems potentially interesting. 

ANALYSIS 

I assume that there exist discrete, spatially localized regions within the 
membrane through which ions move [17]. In this analysis the admittance 
properties of one class of ions moving through one type of ion permeable 
membrane region will be examined. It is assumed that the ions under 
consideration have a signed valence z, move in the x direction perpendicu- 
lar to the membrane surface, and have a number density fl which is a 

_ - 
function of both x and time t: N(X,i). Within the ion permeable regions of 
the membrane, the ions are characterized by a diffusion coefficient D 

(cm*/sec) and mobility 1 [(cm/sec)/joule/cm)]. There is a potential, @(K,i) 
across the membrane. The ionic current density, r(amp/cm*) is given by 

[21-241 

where q = ze (coulombs). 

In addition to Eq. (l), the continuity equation is required: 

To deal with Eqs. (1) and (2) a knowledge of $?(a, i) is needed; this is 
normally derived from Poisson’s equation. However, in accord with much 
other work on electrodiffusion models, attention is directed here to situa- 
tions satisfying the Goldman [16] constant field assumption. 

It will prove convenient to deal with dimensionless variables, so let 

x=X/d, N=x/N,, 

t= tD/d*, cp=qe/kT, (3) 

w=Gd*/D, I = id/eDNi, 

where d is the thickness of the membrane, N, is the intracellular ionic 
number density, and w is the angular frequency. With the definitions of (3) 
Eqs. 1 and 2 become 
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I=-z E+Lh2? 1 ax ax 

and 

az aN 
__=-_z-, 

ax at 
respectively. 
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(4) 

(5) 

DETERMINA TION OF THE MEMBRANE ADMITTANCE 

The behavior of the electrodiffusion model for small perturbing time 

dependent voltages, &exp( -jot) with j= m, about a steady state 
voltage QI,, is of primary interest, so take 

Z(x,f)=Z,(x)+&exp(-jot), 

cp(x, t) = QAJ(~) + 6p, exp( -jut), 

N(x, t) = N,(x) + 6n exp( - jut). 

When these relations are substituted into (4) and (5) 
are obtained. The first, 

two sets of equations 

(6) 

describes the steady state ion flow; while the second set, 

and 

6i=-z d& 40 $f+zN -+z8ndx 
’ dx I 

(7) 

d8i 
dx = joz8n, (8) 

describe the perturbed state. 

Sea& State. Utilizing the Goldman constant field assumption and 
referring the potential at the inner border of the membrane (p’ = cpi at x = 0) 
to the potential at the outer membrane border (9 = CJJ~ at x = l), we have 
cpo(x) = cp,( 1 - x), where ‘p, = cpi - TV. Thus dq,/dx = - (pm, and (6) becomes 

IO=-z z-zN,cp, , 1 (9) 
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where the Einstein relation, D=pkT, has been used in writing (9). Given 
the boundary conditions TV,= 1 (Nd) at x =0 (l), assumed to be experiment- 
ally maintained, the integration of (9) yields 

wherein 
Na= a exp(zcp,x) + P, (10) 

and 

1 - Nd 

a= 1 -expzcp, (11) 

(12) 

(pe = z -’ In Nd is the ionic equilibrium potential. 

Perturbed State. Again make the constant field assumption with re- 
spect to the perturbing voltage ST, so 6~ = a~~,,( 1 - x) and (7) becomes 

‘W?@ 
1 

or, in conjunction with (8): 

d%n -j&n = _ - 
dNo d& 

dx2 
z&pm- - z’pm- . 

dx dx 

(13) 

(14) 

If the spatial Fourier transform of 6n is denoted by h(s,w) and (10) is 
used to calculate dN,/dx, Eq. (14) may be solved for 6n to give 

(15) 

Further denoting the Fourier transform of 6i by i”(s,w), 

l7 (s, w) = z* I Phn a&h -++ 
s s--WWl 1 - z(s - zcp,)ii (&cd) (16) 

results from (13). 
If Eq. (15) for ii is s_ubstituted into (16) for L the (spatial) Fourier 

transformed admittance, Y(x,w) = ;/a~~, becomes 

r(S,0)=z2 ;+z- 1 P CW4PI 

z-z% I S(S-zL(p,)+jw ’ 
(17) 
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from Eq. (16). 
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Let the real and imaginary parts of Y(s,w) be given by G(s,w) and 
B(s,w), respectively, so Y(s,o)= G(s,w)+jB(s,o). Thus, from (17), 

C(s,,)=z2 -+a- 
[ 

P ~%P(~ - zcp,> 
s S-Z% s2(s-cpmz)2+~2 

1 

and 

B (s,w)= 
Clz3qm0 

sys - zqJJ2 + cd2 . 

(18) 

(19) 

It is possible from (17), or from (18) and (19), to write an expression for 
Y(x,o), or G(x,o) and B(x,w). However, the resulting expressions are so 
complicated that the essential features I wish to discuss are obscured. 

THE BEHAVIOR OF THE TRANSFORMED 
MEMBRANE ADMITTANCE 

Following Cole and Cole [8], it will be convenient to discuss the 
behavior of Y(s, w) in the complex admittance plane, displaying B(s, w) as a 
function of G(s,o) with o as a parametric variable. 

From Eq. (18) it is easy to show that the transformed zero and infinite 
frequency conductances are given by 

and 

G,(s)=lj$s,w)=; (20) 

(21) 

respectively. Let 

and 

C,(s) = [G_&) + G&)1/2. (23) 

Then it is a simple matter to show that 

[G(s,o)-G2(s)]2+[~(s,~)]2=[G,(~)]2 (24) 

Thus, from Eq. 24, as o ranges from - cc to + co, Y(s,w) describes a circle 
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in the complex admittance plane of radius G,(s) with its center on the 
d(s,w) axis at G,(s). Only non-negative frequencies are of interest, so for 
this range of w the relationship is a semicircle. Further, from the require- 
ments for the existence of the transforms in (18) and (19) and the expres- 
sions for (Y and ,L? given in (11) and (12) 

G,(s) - G,(s) ’ 
a6 cs, g ! 

I 
>O(<O) 

au 

i (s, 0) 

if z(cp, - To,,) > 0 ( < 0). From all of the above considerations the complex 
admittance plane behavior of Y(s, w) is as illustrated in Fig. 1. 

The total admittance of a circuit consisting of a conductance G, in 
parallel with a series combination of a conductance G, and a susceptance B 

may be written as 

.iBG 
Y,=G,+- 

G,+jB ’ 

or, upon separation into real and imaginary portions, 

G,B 2 
Re[Yr]=G,+- 

G,2+ B* 

and 

Im[Y,l=&. 
2 

The susceptance of a pure capacitance is B = WC, while for an inductance 
B= -(wL)-I; therefore, comparison of the circuit equations from Fig. 2 
with equa$ons ll_and 12 immediately leads to the identification of G,(s) 

with G,, G,(s) - G,(s) with G,, and B with a capacitor C= LYZ”CP,/W’ when 
i(s,w) is positive and with an inductor L= ~(cxz~QJ,,J’>O when B(s,w) is 
negative. Thus, the admittance plane properties of Fig. 1 may be completely 
derived from the equivalent electrical circuit representations shown in Fig. 
2. 

Therefore, any ion transport system described by the Nernst-Planck 
electrodiffusion equations with constant electric field will display “a- 
nomalous reactance” properties if there is an ionic concentration gradient 
across the membrane and the membrane potential (pm is not identical to the 
ionic equilibrium potential q=. In a tissue such as the squid giant axon, with 
normal intra- and extracellular environments, the analysis of this simple 
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?(s,w) 7(5, w) 

IncreasingW 

Z(lq, - rp.)< 0 

FIG: 1. The behavior of the (spatially) Fourier transformed admittance f(s,w) 

= 6 (s, w) +ji (s, w), obtained from a small signal analysis of the Nemst-Planck single ion 

equation and the continuity equation. Susceptance, i(s,w), is shown as a function of 

conductance, 6&w), with o as a parametric variable. 6a and d, are, respectively, the 

zero and “infinite” frequency conductances and are given by Eqs. 20 and 21. A positive 

susceptance corresponds to a capacitance, negative to an inductance. The left hand plot 

shows the admittance plane behavior for r(cp, - v=),,)<O, where z is the ionic valence and 

‘p, and cp, are the membrane and ionic equilibrium potentials, respectively. On the right is 

the same diagram for z(cp, - TJ > 0. 

Increasing G, 
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FIG. 2. The equivalent circuit repreacntations for electnxbffusion membrane ele- 

ments giving rise to the complex admittance plane proper& shown in Fig. 1. 
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electrodiffusion model for ion transport predicts that near the resting 
potential, potassium ion movement should be associated with complex 
admittance properties containing an “anomalous” inductive element, while 
sodium movement should be associated with an “anomalous” capacitive 
reactance. These results are qualitatively consistent with the experimental 
behavior noted earlier, as well as the theoretical predictions of the small 
signal frequency domain approximation of the Hodgkin-Huxley equations. 

Up to this point the spatial Fourier transforms &,0(s) and G,(s) of G,(x) 
and G,(X) have been used exclusively. In a quantitative comparison be- 
tween the Nernst-Planck formulations presented here and the only set of 
data available, the the Hodgkin-Huxley equations in the small signal 
approximation, it will be essential to have expressions for the integrated 
zero and infinite frequency conductances. From Eq. 20 and 21, G,(x) and 
G,(x) are easily integrated to give 

Go, = 2 

and 

’ dx 
-1 

G v l- z’94nP 
cam= 

o G,(x) %-vb 

(24) 

(25) 

In accord with previous discussion, note that G,,--tz2 as q,,--f~~ and 
G _,-+ zs2 as cp,-+O. Thus the anomalous impedance properties displayed by 
the electrodiffusion system disappear in the absence of ionic concentration 
gradients. 

From the relations given above for B(w), G,(w) and G(o), the critical 
dimensionless frequency w,, defined as the solution of 

may also be calculated. In comparisons with e.g. the Hodgkin-Huxley 
parameters, however, w, is not as interesting as the dimensionless time 
constant of the system defined by w,T,= 1. When these determinations are 
carried through, 

results. It is easy to show that rC has a single maximum at q,,, = cp,, and r,+O 
for ‘pm-+ + co. Qualitatively these results are as found for the 7, of the 
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Hodgkin-Huxley formalism describing potassium current kinetics. 
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QUANTITATIVE COMPARISONS WITH DATA 

The Hodgkin-Huxley [ 181 equations, in the small signal approximation 
[20], afford an excellent opportunity to compare the present predictions of 
the Nemst-Planck formulation of electrodiffusion theory with experimental 
data. It is well known (cf. [5]) that electrodiffusion theory is unable to 
match the known sodium conductance characteristics in the squid giant 
axon membrane. However, the potassium channel steady state conductance 
is at least semi-quantitatively consistent with the predictions of electrodiffu- 
sion theory, so I will concentrate my attention on the small signal 
approximation to the Hodgkin-Huxley expression for potassium current. 

In the notation of Hodgkin and Huxley a small signal analysis of ZK 
yields the membrane equivalent circuit of Figure 2(b), where the circuit 
components are given by 

&C(V)= 

4&&(P- V,) &YJl-n)]-nW~) 
( 

% + P” 
(27) 

and 

LK(V)= (a.+p;)g,(V) * 
The corresponding circuit values predicted from this study are 

e20,& V+ V (xh/j%) -ev[e( V+ V,)lkTl 
&K(V)=-2 

dkT V- V, 1 -exp[e( I’+ V,)/kT] 
, (29) 

e2DK& 
&A V) = 7 - GA V), (30) 

and 

&(V)= - 
d3(kT)’ 1 -exp[e( V+ V,)/kT] 

e3Di(RiK- rdK) v+ v, (31) 

In Eq. 29 to 31 the theoretical results have been transformed back to 
dimensional form, and all potentials (p, are expressed relative to the resting 
potential V,. Thus V = (p, - V, and V, = gc - V,. 
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For the purposes of computation take T=6.3”C, and d= 75 A. Data of 
Hodgkin and Huxley indicate V,= - 60 mV and V,,x - 12 mV. I assume 
V, = - 60 mV, and V,,= - 11.2 mV, thereby implying that N,,/ NdK = 20, 
and thus N,K = 0.4 mole/ 1 if NdK = 0.02 mole/l. The constant 

G, = e2D,N,Tl,/dKT 

appears in all three equations, (29)-(31) and if D, has the units cm2 set-‘, 
G, will have the value 

G,= 1.95 X 106D, mho/cm2. 

No good independent estimate of D, is available, so it is of interest to 
calculate the values of D, which will bring the values for GK, &, and zK 
into agreement with the values predicted from the Hodgkin-Huxley equa- 
tions: 

Equations 26 through 28 give, at F=O (i.e., the resting potential), 
GK(0) = 3.67 X lop4 mho/cm2, gK(0)= 8.33 X 10m4 mho/cm*, and LK(0) = 
6.43 H cm2. In order to obtain an exact correspondence between the value 
for G,(O) predicted by the Nernst-Planck and Hodgkin-Huxley analyses, 
D, must be 10.66~ lo-” cm2/sec. With this value for DK, &(O)= 1.71 x 

10m3 mho/cm2 and EK(0)= 1.77 H cm2. Thus there is a discrepancy in the 
& values by a factor of 2.05 and in the LK values by a factor of 3.63. 

TABLE 1 

Predicted Values of cK, &, and zK at the Resting Potential for Three Different 
Potassium Diffusion Coefficient Values and the Corresponding Values Predicted 

by the Hodgkin-Huxley Equations. 

DK 
(10-‘0cm2/sec) 

10.66 
5.19 
5.59 

G(0) &c(O) G(O) 
(10-4mho/cm2) (10-4mho/cm2) (H cm2) 

3.61 17.10 1.77 
1.79 8.33 7.46 
1.93 8.97 6.43 

Hodgkin-Huxley 3.61 8.33 6.43 

In Table 1 the values of DK necessary to bring one of the three 
quantities being examined into exact agreement with values predicted by 
the Hodgkin-Huxley equations are listed. It would be possible to do a least 
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squares fit between Eq. 26 through 28 and 29 through 31 at V=O, simul- 
taneously determining the best values of D,, V,, and V,, but there hardly 
seems to be any point in such an expenditure of time. 

Mauro, Conti, Dodge, and Schor [20], Fig. 19(a) have plotted GK( V), 
gK( V), and LK( V) as obtained from the Hodgkin-H.uxley equations (see Eq. 
26 through 28) and the equations derived from this analysis, (29) through 
(31) show all of the same qualitative features. 

One of the most interesting features of Table 1 revolves around the 
values of DK necessary to bring the predicted values of cK(0), &JO), and 
E&O) into agreement with their actual values. Using three different data the 
necessary values of DK range between 5.19 x lo-” and 10.66 x lo-” cm’/ 
sec. The diffusion coefficient for K+ m free solution at physiological 

concentrations and the same temperature range is some five orders of 
magnitude larger than these values, thus supporting the conclusions of Cole 
and Moore [ 121 and Cole [6] that K+ diffusion with the membrane is much 
more restricted than in free solution. Cole’s [6] estimate for D, was 
5 X lo-‘O cm2/sec. 

I would like to express my warmest appreciation to Ms. Celia Lang for her 
meticulous typing of two versions of this paper and the drawing of figures. 
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