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A simple growth model for synchronous tissue cell populations is analyzed to 
assess the long term consequences of three growth control mechanisms. 

The model classifies cells as either proliferating (population, P) or non-prolifer­
ating (population, N) and takes into account the probability of P cells moving 
into N (probability a), of N cells moving to P (probability B), and N cells dying 
(probability 6). The mechanisms of growth control examined are sensitive to the 
number of cells in the controlling population (P or N) and operate by alterations 
in the probability of cell movement along one of the three available pathways: 
P to N (mitotic inhibition), N to P (mitotic stimulation), or N to death. We 
have determined the criteria for the tissue to attain a stable steady-state size 
if control is operating on one cellular flux and the probability of cellular move­
ment along the other two pathways is constant. 

Insight into the kinetic and steady state characteristics of a tissue utilizing one 
of these growth control mechanisms is obtained by examining the tissue growth 
characteristics when no control is operating. 

I NDEX TERMS: Mathematical model, proliferation, growth control, cell number 
homeostasis, tissue growth, synchronous division 

THE BASIC MODEL 

In the hypothetical synchronous tissue denote by P and N the num­
bers of cells in the proliferating and non-proliferating pools respectively. 
P and N are generally functions of time, and in the discrete formulation 
of the model used here the generation time, T v, will be assumed constant 
and used as the basic unit of time measure. Rather than deal with the 
time durations, tm == mT v ( m == 1,2, . . . ) , time is denoted by the 
dimensionless parameter m == tm/ T v, an integer. To denote the temporal 
(m) dependence of the cell population size the notation Pm and Nm is 
used. 

The tissue model is schematically illustrated in Figure 1. In the model 
during the mth generation a fraction am of the cells in P may transfer 
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FIGURE 1 
A schematic representation of the cell tissue kinetic model under investigation. Prolif­

erating cells have a population P, the non-proliferating cells have a population N. The 
probability per generation time that a P cell will become an N cell is a, the probability 
that an N cell will re-enter P is B, and the probability that an N cell will die is l>. (B + l> 
~ 1). Any, or all, of the three probabilities a, B, and l> may change with time, as may P 
and N. M, R, S, and G denote the mitotic, post-mitotic, DNA synthesis, and pre-mitotic 
eel: cycle phases respectively. 

to N; a fraction ~m of the N cells may go to P; and a fraction bm of 
the N cells die and are removed from observational capacity. Any or 
all of the probability ( or transfer fraction) parameters am, ~m, bm may 
depend on the populations Pm- 1 and Nm - 1 or on m, and it is through 
the dependence of transfer fractions on pool population sizes that the 
element of control is introduced. By definition the transfer fractions 
are pure numbers between O and 1; ~m + bm ~ 1 for all m. In terms of 
current concepts related to cellular kinetics, a control mechanism op­
erating on the probability that a cell will transfer from P to N would 
be related to a process· of mitotic inhibition (Bullough and Deol, 1971). 
Conversely, triggers of mitotic activity would presumably operate via 
the probability of cell transfer from N to P (Baserga, 1965). 

The model may be formally described by the following set of coupled 
difference equations: 

Pm== 2 (1 - am)Pm - 1 + ~mNm - 1 (1) 
and 

Nm == (1 - ~m - bm)Nm - 1 + amPm- 1 (2) 

These equations are written for m ~ 1. Po and No respectively 
denote the numbers of cells in the proliferating and non-proliferating 
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pools between t == 0 and t == T P• Equations 1 and 2 are 'conservation 
of cell' equations and do not explicitly contain any of the elements of 
control. Thus ( 1) is an expression of the fact that, during the mth 

generation the number of cells in Pm is determined by the sum of the 
number of cells that entered P from N , ~mNm- 1, and the number of 
cells left in P from the (m - l ) th generation time, 2 ( 1 - •am)Pm-1, 
where the factor 2 accounts for mitosis. amPm-1 of the cells in P trans­
ferred to N. In equations ( 1) and (2) we have implicitly assumed that 
the transit time for a cell in N to return to P , as well as the lifespan 
of an N cell, are both equal to T P· While probably unrealistic biologi­
cally, this assumption aids in obtaining a first quantitative character­
ization of the model tissue characteristics. 

For the totally asynchronous tissue ( cells passing through mitosis 
continuously) the discrete time difference equation formulation is in­
appropriate and recourse must be taken to a continuous time repre­
sentation. The continuous time differential equation analogs to ( 1) and 
(2) are 

P (t) == - P (t) + 2 (1 - a) P (t - T P) + ~N (t - TP) (3 ) 
and 

N (t ) == aP (t ) - ~N (t + T N) -- bN (t + TD ) ( 4) 

where any or all of a, ~, and b may depend on P , N , t , T P, T N (the 
transit time between entry of a cell into N and its exit back into P ), 
and TD (the lifespan of a cell remaining in N ), and X (t) denotes a 
time derivative. 

Various authors have analyzed specific cases of the model presented 
here. Burns and Tannock ( 1970) utilized a continuous model with 
a == 1 ( obligatory passage of cells through N before re-entry into P) , 
constant ~ and b, TN == TD == 0, and equal a priori probability of 
cellular death from P and N. We assume P cells do not die. Good 
( 19 72 , 19 7 3 ) has also analyzed a similar model with control over a ; 
~ and b constant ; and in the first instance TP == T N == TD == 0 (Good, 
1972 ), relaxing this later to TP == TD == 0 with T N =;I= 0 but small 
(Good, 1973) . Woolley and DeRocco ( 1973) have considered in some 
detail the relaxation of a synchronous proliferating population to an 
asychronous one. 
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THE CONSEQUENCES OF No CoNTROL 

Before examining the effects of various control mechanisms on growth 
in the model of Figure 1 and equations 1 and 2, the behaviour of the 
model in the absence of any dependence of am, Bm, and/ or ()m on the 
cellular populations will be examined for constant T p • In this case 
am== a, Bm == B, and ()m == () are all constant, and the only constraint 
on equations 1 and 2 is B + () ~ 1, for B + () > 1 would imply that a 
fraction of cells greater than one was lost from the nonproliferating 
pool per generation time. 

In Appendix 1 the large m properties of the analytical solutions to 
the coupled linear difference equations 1 and 2 for constant coefficients 
are discussed. The interested reader may refer to that section for the 
basis of the following discussion. 

As shown in Appendix 1 there is a crucial relationship between 
a, B, and() that determines the qualitative growth patterns of the model 
tissue described by equations 1 and 2. If a "critical" value of a is 
defined by (see equation lA.8, Appendix 1) 

Uc == (B + ()) / (B + 2()) 

then for a < ac, the total tissue cellular population will be an increasing 
function of the growth time. The tissue growth pattern is "exponential" , 
and the tissue cell number doubling time is a function of a, B, and ()_ 
A decrease in a and/ or (), and/ or an increase in B, serves to increase 
the tissue growth rate. Qualitatively this is expected, for the result of 
all three of these changes is to increase the number of cells engaged in 
mitosis. Also, not unexpectedly, the effect of changing a is much more 
potent than changes in B or ()_ Thus, in the no control model when 
a < ac, tissue growth will be exponential and the total tissue cellular 
population will increase indefinitely. 

When ac < a ~ 1 the behaviour of the tissue growth pattern is the 
reverse of the behaviour of a < ac; tissue evolution as a function of the 
number of generation times is properly termed regression. Changes in 
a, B, or () have the effects one would qualitatively expect on the tissue 
cell number regression rate. Thus in the absence of control if tissue cell 
population trans£ er probabilities are such that ac < a ~ 1, the tissue 
will eventually regress and disappear. 

The growth or regression in the absence of control are separated by 
the kinetic characteristics of the tissue when a == ac· As shown in Ap-
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pendix 1 when a = ac the tissue always approaches a steady state size 
defined by a, ~' b and the initial conditions. The approach to this non­
zero steady state may be via growth or regression; the path is dependent 
on the initial relationship between the number of proliferating and 
non-proliferating cells. 

Thus the model in Figure 1 and equations 1 and 2, in the absence of 
any specific growth control mechanism, leads us to conclude that unless 
the kinetic determinants of the model tissue are so arranged that 
a == ,ac, the tissue will either regress and disappear, or grow indefinitely. 
The requirement that a priori a == ac for tissue homeostasis to be 
maintained seems to be particularly strenuous, and does not allow for 
any correction on the part of the organism in response to external 
alterations of P and/ or ( e.g., wounding reactions). However, it will 
be clear from our considerations of control mechanisms that the re­
quirement a = ac, is of special import for a steady state tissue size to 
be reached and maintained. 

GROWTH AND I TS CONTROL 

Why Control? 

If the pre- and post-uterine growth patterns of normal mammalian 
organisms is examined, the most constant feature is that overall volume 
as a function of time generally follows a sigmoid curve (Laird, 1969). 
Initially it grows slowly, then goes through a phase of rapid growth, 
and finally attains a constant size ( negligible growth rate ) . At the level 
of the individual tissues growth becomes more complex as embryo­
genesis and organogenesis proceeds, involving different growth rates, 
relative sizes and time scales in different tissues. Certain tissues may 
also achieve maximum size and then regress at some time prior to 
maturity of the organism. These differential growth phenomena are well 
described by the law of allometry (Laird, Barton, and Tyler, 1968). 

It has been a matter of some interest (Laird, 1969) that the sigmoidal 
pattern of growth observed in normal pre- and post-uterine tissue, and 
some tumor systems, is empirically described by the Gompertz equation: 

V(t) = Voexp {A[l - exp( - Bt) ]}. 

In this equation V ( t ) and Vo are measures of tissue volume at general 
times (t) and zero time respectively, and A and B are adjustable para­
meters. Although the Gompertz equation can empirically describe a 
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variety of growth data, its basic usefulness is limited because the para­
meters A and B have no discernible connection with experimentally 
measurable cell kinetic characteristics. 

In spite of this limitation, the fitting of growth data to the Gompertz 
function has established some interesting and suggestive relationships. 
Laird ( 1966), using normalized weight and time, was able to fit the 
accumulated growth data from the embryos of 15 mammalian and 
avian species with a single set of parameters ( A,B) for the Gompertz 
function. Similarly Laird ( 196 5), using the same normalization pro­
cedure, was able to fit the combined growth data from 12 different tumor 
systems in three different species with a single set of parameters. The 
implications of this work are open to debate. We share with Laird 
( 1969) the feeling that, at the very least, they imply the existence of 
inherent growth control mechanisms operating across species and tissue 
types for the lifetime of an organism. Whether the expression of this 
control is achieved in a similar fashion for normal and neoplastic tissue 
is unknown, but evidence summarized by Bullough and Deol ( 1971) 
would strongly support a common mechanism. 

The foregoing, in conjunction with the results obtained from the 
simplified conceptual model when the transfer probabilities are all 
constant (no control), provides strong incentive for examining the con­
sequences of control of cell tissue kinetics at biologically reasonable 
points within the model. 

Possible Points of Control 

Several hypotheses have been advanced to account for the regulation 
of growth. One is that the availability of diffusion limited nutrient 
supplies restricts growth (Burton, 1966; Summers, 1966). This hy­
pothesis, formulated for solid tumours, is untenable for other tissues 
such as blood, whether normal or abnormal, and Laird ( 1969) has 
argued quite convincingly that nutrient deficiencies cannot generally 
be the primary source of tissue growth regulation. Thus, although such 
deficiencies may play a role in regulation, we assume here that they are 
not operating. 

Other workers have suggested that growth control might be exercised 
via changes in the generation time (Laird, 1964). It is well known that 
in normal embryonic tissue the generation time decreases as growth 
increases. Further, there is abundant evidence from ascites tumor sys-
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terns (Frindel et al., 1969; Lala and Patt, 1966, 1968) that the genera­
tion time increases as ascites tumor growth progresses. Thus, a variable 
generation time may be a source of control in some normal and neo­
plastic tissues. However, based on the growth characteristics of the no 
control model, control of generation time cannot be the sole source of 
tissue volume maintenance unless T P becomes much larger than the 
life span of the tissue. This does not, however, rule out its importance 
for tissue responses to an external stimulus; or its interplay with other 
control mechanisms. Again, we assume that in our model changes in 
T P are not operating. 

Other mechanisms proposed for the control of growth implicate the 
proliferating pool of cells as the control site (Baserga, 1968). On 
teleological grounds the proliferating pool seems a logical choice. If 
the goal of a cell is to minimize its energy expenditure, then it is perhaps 
reasonable to suppose that it will prefer to refrain from going through 
the metabolically expensive process of DNA synthesis in preparation 
for mitosis unless required to by overall tissue needs. 

Mitotic Inhibition. Bullough (1965, 1967, 1969) and subsequent 
investigators (summarized in Bullough and Deol, 1971) have mar­
shalled an impressive body of experimental evidence from different 
sources arguing for the existence of intrinsic tissue specific mitotic in­
hibitors. The hypothetical control scheme is envisioned as follows. A 
tissue specific protein ( chalone) is produced by the cells of a tissue. 
Chalone, in the presence of adrenaline, inhibits mitotic activity. Thus, 
a decrease of chalone concentration ( due, e.g., to a loss of cells in a 
tissue and the resultant decrease in absolute chalone production) in­
creases activity in the proliferative pool of cells and the tissue mass is 
gradually built back up to its previous level. The cellular origin of the 
mitotic inhibitor (proliferating and/ or non-proliferating cells) is un­
specified, but its action seems to be confined to the late Rand G phases 
of the cell cycle. Although we have included the possibility that cells 
in P are the source of the mitotic inhibitor ( see below) it seems much 
more likely that it derives from cells in N. The differentiated cells that 
perform tissue specific functions are in N, and when they exist in 
sufficient numbers they would be the likely candidates to limit further 
production. 

Riley ( 1969) has analyzed a simple one component tissue model 
incorporating the chalone concept and demonstrates that it leads to a 
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stable tissue size. Goods ( 19 7 3) model included a form of mitotic 
inhibition control also suggested by the chalone concept. A more com­
plex model has been proposed for the red blood cell-stem cell tissue 
system involving two basic control mechanisms (Kirk, Orr and Hope, 
1968). In their model chalone is produced by the stem cell population 
which, in turn inhibits stem cell mitotic activity. In addition erythropoi­
etin, produced by the juxtaglomerular cells of the kidney, acts to control 
eventual stem cell differentiation into red blood cells. They have pro­
posed equations describing this four component system, and the results 
calculated from their model are in satisfactory agreement with available 
data. This model is specifically designed for the erythrocyte series, and 
has not been generalized. 

In the context of our model the mitotic inhibitor hypothesis may be 
viewed as a control of the fraction ( am) of cells leaving P. We postulate 
that increasing amounts of chalone will increase the transfer of cells 
from P to N, and thus decrease the number of cells going through 
mitosis. The origin of chalone could be cells in P and/ or N so two possi­
ble control functions, given in Table 1, are examined. In writing these 
control functions it has been tacitly assumed that the concentration of 
chalone is proportional to the number of cells involved in producing it. 
We make no specific statements about the loss of chalone from the 
system through metabolism, but assume only that it is lost as chalone 

TABLE 1 
SUMMARY OF THE VARIOUS CONTROL FUNCTIONS EXAMINED FOR THEIR ABILITY 

TO GIVE STABLE TISSUE SIZES 

Point 
of Control Origin of Control Control Function 

a. Xm-1 = p m-1 or Nm-1 
xm-1 

am= 
A+Xm-1 

Xm-1 = p m- 1 or Nm-1 Bm= 
(1- ()) 

A+Xm-1 

Xm-1 = p m- 1 or Nm-1 ()m= 
(l - B)Xm-1 

A+Xm-1 

The factor A that appears throughout has the dimension of cell number, and the factors 
( 1 - ()) and ( 1 - B) in the Bm and 6m functions respectively ensure that B + 6 ~ 1 for 
all m. The value of A determines the size of the control population of cells at which the 
control function is at its half maximal value. 



• 

M. C. MACKEY AND J. W. COMBS 485 

producing cells disappear, either through transfer to another pool or 
death. 

Note that in the case of a-control small populations of mitotic 
inhibitor producing cells give am • 0 so most cells will tend to be left 
in P. On the other hand, as the number of cells producing the mitotic 
inhibitor becomes large the probability of cells being transferred from 
P each generation time approaches 1. The parameter A controls the 
behavior of a with respect to P or N. The potentiating role of adrenaline 
in the chalone hypothesis can be qualitatively mimiced by having A a 
monotonic decreasing function of adrenaline concentration. An increase 
in adrenaline levels will decrease A and increase the corresponding 
transfer fractions from P to N. 

Mitotic Stimulation. It is also of interest to examine the consequences 
of control by mitotic stimulation, i.e. cells stimulated to re-enter P from 
N in response to an appropriate signal. With respect to the model being 
considered here, this reduces to a control operating on Bm. Baserga 
( 1968) has reviewed the extensive biochemical evidence supporting this 
concept, and the review of Epifanova and Terskikh ( 1969) lends 
further support to the concept. As in the case of mitotic inhibitor, 
biochemical evidence would implicate late R and G as the cell cycle 
sites of mitotic stimulator action. 

If the action of the mitotic stimulator is to control the fraction of cells 
re-entering P ( and, thereby, the number going through mitosis) then 
P and/ or N cells could be the stimulus source and two possible expres­
sions for Bm are shown in Table 1. The qualitative behaviour of this 
type of control is different than the a control, for an increase in the 
controlling population of cells decreases the number of cells re-entering 
P. The factor ( 1 - b) in the numerator of the control equations insures 
that Bm + b ~ 1. As in the mitotic inhibitor control, cells in N seem to 
be the logical source of a mitotic stimulator. 

Bronk, Dienes, and Johnson ( 1970) have examined the early time 
growth patterns of a continuous model with mitotic stimulator control 
operating and find many of the early time behaviours exhibited by our 
model under B control. Most of their considerations were, however, for 
a tissue with no cellular death and their model does not apparently 
exhibit non zero stable steady state solutions. In light of the results 
obtained here ( see below) this is expected. 

Burton (1971) and Burton and Canham (1973) have analyzed an 
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intriguing model for contact inhibition where control is mediated via 
an oscillating concentration of mitotic stimulator and cell-cell commu­
nication is via tight junctions. Their work was inspired by the results 
of Loewenstein ( see Loewenstein, 1968), and they are able to explain 
the heretofore paradoxical observation that small cell populations ex­
hibit contact facilitation, and that contact inhibition is the observed 
state for larger cell aggregates. They do not consider the role of time 
lags ( e.g., the generation time) in stability, but do give some quite in­
teresting conclusions about the possible role of asychrony in determin­
ing cellul population stability. 

Cellular Death. Laird ( 1969) suggests that the characteristic growth 
patterns described by the Gompertz equation are due to controlled 
cellular death as tissue mass increases. It is difficult to argue convinc­
ingly for or against this hypothesis on the basis of available experi­
mental evidence, but it is known that there is significant cellular death 
in some tumor systems (Steel, 1968; Steel and Lamerton, 1969). 

In an effort to examine the consequences of controlled cellular death 
we have included a form of control in which the fraction of cells in 
N that die per generation time is an increasing function of the number 
of cells in the controlling population (N or P). The control functions 
appropriate for this hypothesis are also given in Table 1. The term 
( 1 - B) plays the same role as does ( 1 - b) in the B-control case, 
insuring that B + bm ~ 1. 

THE CONSEQUENCES OF CONTROL 

We are interested in the long term behaviour of the model of Figure 
1, described by equations 1 and 2, when "control" is operating according 
to one of the schemes considered above. Specifically, do these simple 
quantifications of hypotheses related to tissue growth control actually 
predict equilibrium cell populations P oo and N oo ? Under what conditions 
will these equilibria, if they exist, be stable with respect to changes in 
P and/ or N? All of the mathematical baggage necessary to answer these 
questions is summarized in Appendix 2; we give here the conclusions. 

For every type of control mechanism proposed, the determination 
of P oo and N oo and the requirements for their existence are easily ob­
tained. The determination of the stability at P oo and N oo is rather more 
difficult. The results of the determinations for the existence of P oo and 
N oo, their values and the requirements for their stability are presented 
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in Table 2. There, for each point of control discussed earlier ( a, ~' ~) 
and each possible controlling cellular population (P or N ) are shown 
the stable steady state pool sizes, P oo and N oo and the conditions under 
which they are attained. 

With respect to the criteria set forth in Table 2 for the existence 
of stable tissue size, some interesting comparisons can be made with 
the previous results of our model growth characteristics in the absence 
of control. The last column in Table 2 gives the relation that the un­
controlled probabilities must satisfy for the tissue to reach a stable 
steady state. What is even more illuminating is the behaviour of the 
controlled probabilities as a steady state is approached. In Table 3 
the values of each of the six possible control functions at the initial 
time ( m == 0) are shown, as well as their final value when a steady 
state has been reached. The first important point is that the controll­
ing cellular population (P or N ) has no effect on the eventual steady 

TABLE 2 
T HE STEADY STATE P ROLIFERATING AND NON-PROLIFERATION C ELLULAR POOL SIZES P RODUCED 

BY EACH T YPE OF CONTROL, AND THE CRITERIA FOR THE T ISSUE TO REACH 

Point of Origin of 
Control Control 

p 

(l 

N 

p 

N 

p 

T HIS S TEADY STATE 

Steady State Population 

p -A (-f3_+_6) ·N __ P_oo_ 
oo- 6 ' oo - {3 + 26 

A(/3 + 6) (/3 + 26) P (,Q 

Poo= 6 ;N<X)= 13+ 

A(l - a- a6) 

6(2a - 1) (
1 -a. ) 

;Noo = P oo - 6-

_ A( l - a - a6) . _ ( 1 - a) 
p <X) _------, <X)_ p <X) --

( 1 -a.)(2a.- 1) 6 

AP ( 1 - a) ( 2 a - 1 ) 
P -----· N - P 

cr.i - 2a - 1 - a./3 ' oo - oo 13 

Criteria 
for Steady 

State 

1 1 
-<a<--
2 1 + 6 

0 < 6:::;; 1 

1 
--< a 
2-/3 

A(32(1- a) ( 2a- 1 ) 
N P

00
=--------;N<X)= P

00 
--- 0 </3:::;; 1 

(2a. - 1) (2a. - 1 - a/3) 13 
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TABLE 3 
THE CONTROL FUNCTIONS AT m = 0 (INITIAL POPULATION X

0 
= Pb OR N0 ) AND 

WHEN THE TISSUE HAS REACHED A STEADY-STATE 

Control Function 

Point of 
Control 

a 

Origin of 
Control 

X=PorN 

X=PorN 

X =P orN 

Initial 

XO 
a= 

o A+Xo 

f3o= 
A(l - 6) 

A+X0 

60= 
Xo(l- f3) 

A+X0 

The criteria for the attainment of a steady state are given in Table 2. 

At Stable 
Steady State 

f3+6 
a • 

f3 + 26 

f3 • 
6(2a - 1) 

1-a 

6 • 
f3(1 - a) 

Za- 1 

state value of the controlled probability. Secondly, for control by 
mitotic inhibition the tissue settles down in a steady state such that 
a • ac. This is the requirement in the no control model for growth 
or regression to a stable non-zero tissue size (a== ac). If the steady 
state values for the controlled ~ and c> probabilities are examined it 
can be shown quite simply that the limiting forms of these control 
functions are such that the tissue adjusts to make a == ac• Thus, the 
result of every control mechanism examined here, if it is to lead to a 
stable tissue size, is to force the tissue into a situation such that a == ac 
irregardless of the origin and point of control. 

It is to be noted that only with mitotic inhibition (a) control by 
P or N do we always achieve a stable tissue mass. If either the prob­
abilities ~ ( mitotic stimulation) or c> ( cellular death) are the single 
controlled pathways, then stability is achieved only for a suitable com­
bination of a and c>, or a and ~' respectively. A further point of interest 
in Table 2 is the requirement for non-zero cellular death (c> # 0) in 
order for a stable steady state to be achieved. Steel ( 1968) has main­
tained that cellular death is important for tissue homeostasis and his 
data, in conjunction with our results, support this contention. 

The results presented in Table 2 also lead to another conclusion: 
if a tissue is to have a maximal safety factor with respect to main­
taining a constant size, then it would seem imperative to include some 
form of control over the probability of cells leaving the proliferating 

• 
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pool ( a control). It is clear that with ~ or b control alone, fluctuations 
in an uncontrolled probability could leave a tissue growing in an un­
restrained fashion. 

In reality it would be expected that a given tissue probably has 
potential control over a, ~, and b. The degree of control at each point 
may change with a number of parameters but a tissue would seem to 
retain the maximum in flexibility by having all three growth control 
mechanisms in its repertoire. 

From the results of our analysis of the no control model, and a 
knowledge of the initial ( m == 0) value of the control functions quali­
tative statements may be made about the early growth patterns of the 
model with control. Thus by examining the initial control functions 
given in Table 3 to see if they correspond to the a == ac, a > ac, or 
a < ac cases of the no control model we are able to characterize early 
growth patterns. For example with a control by P, if (A/ Po) > > 1 
so ao < < 1 and ao < ac, then the tissue cell population will initially 
be an increasing function of m. As control becomes more influential 
tissue growth will decelerate and finally a constant size is approached. 
Conversely, if (A/ Po) < < 1 so ao ~ 1 and ao > ac then the cell popu­
lation will decrease with time until control is felt strongly enough to 
lead it to level off at a non-zero steady state size. Exactly the same 
considerations apply to all of the control mechanisms examined here 
for the determination of the qualitative nature of the model early 
growth characteristics. 
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APPENDIX 1 

To determine the way in which Pm and Nm, from (1) and (2) with 
constant coefficients, behave with increasing m proceed as follows. 
Equation 1 may be rearranged to give 

~Nm== Pm+l - 2 (1 - a)Pm (lA.1) 

and this, when substituted into (2), yields immediately 

Pm+2 - [2(1 - a)+ (1 - ~ - ~)]Pm+l 

• 

,. 



.. 
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+ [2 (1 - a ) (1 - B - B) - aB]Pm == O (lA.2) 

From ( lA.2 ), the characteristic equation for the system, ( 1) and ( 2), 
is given by 

A2 
- [2 (1- a)+ (1 - B- B) ]"-

+ [2 ( 1 -a)( l - B- b)- aBJ == O (lA.3) 

The solutions of the characteristic equation, 

"- ± == ¼ [2 ( 1 - a ) + (1 - B - B) ± v'DJ (lA.4) 

wherein the discriminant of ( lA.3), D , is given by 

D == [ 2 ( 1 - a) + ( 1 - ~ - B) ]2 - 8 ( 1 - a ) ( 1 - ~ - B) + 4aB 

( lA.S ) 

will give all the information needed to determine the behaviour of Pm 
and Nm for large m since the general solution of ( lA.2 ) is (Jordan, 
1960) . 

( lA.6 ) 
when A+ # "--, or 

Pm== (ri' + mr/)"A.m (lA.7) 

when A+ == L == A. In ( lA.6 ) and ( lA.7), the constants r1, r 2 and 
ri', r / are determined from known values of Pm and Nm at a given m. 

Note that D as defined by ( lA.S ) may be written in the alternate 
form 

D == [ 2 ( 1 - a) - ( 1 - ~ - B) ]2 + 4a~ 

thus illustrating that D ~ 0 for all values of a, B, and B. Hence, A+ and 
L will always be real. Further, inspection of ( lA.4) shows A+ ~ L 
for all a, B, and B and from the fact that the coefficient of A in ( lA.3) 
is non-positive, A+ must be non-negative. 

Now define A* as 

l* == maximum of ( lA+ 1, IL 1) 

so the long term (large m) behaviour of Pm and Nm will be determined 
by A* . There are 2 distinct cases: 

Case 1: A+ == L == "A. , thus l * == !Al. In this case, with increasing 
m, if: (i) "A.* > 1, Pm and Nm increase exponentially; (ii ) l* == 1, 
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Pm and Nm increase linearly; or (iii) A* < 1, Pm and Nm decrease 
exponentially to zero. 

Case 2: A+ ¥= L. For this situation, with increasing m, if: (i) A* > 1, 
Pm and Nm exponentially increase; (ii) A*== 1, Pm and Nm approach 
a steady state through either exponential growth or regression; or (iii) 
A* < 1, Pm and Nm decrease exponentially to zero. 

With the above considerations in mind, the determination of neces­
sary and sufficient conditions for A* ~ 1 will give the constraints be­
tween a, ~' and () necessary for finite steady state tissue size in the 
absence of control. Manipulation of ( lA.4) shows that the necessary 
and sufficient condition for A* ~ 1 is a ~ ac, where ac is defined by 

ac == (~ + ())/(~ + 2()) (lA.8) 

It is of interest to know how a, B, and() affect the tissue growth rate. 
A decrease in a at constant B, () has the effect of increasing A* ( and 
thus the growth rate) for 'A* > 1. If the rate of change of ac with 
respect to ~ and () is calculated, 

aa () 

a~ (~+2()) 2 
~o (lA.9) 

and 
aac B 
i}() (~ + 2())2 

~o (lA.10) 

Thus, an increase in ( ac - a) corresponds to an increase in growth 
rate. From equation lA.9 an increase in B increases ac, and thus the 
growth rate. Further from (lA.10) an increase in () decreases ac and 
therefore the growth rate also decreases. It is to be noted that the effect 
of a change in a on the growth rate is much more pronounced than the 
effect of a change in B or ()_ Thus, since growth comes about by cells 
going through mitosis, a decrease in a and/ or an increase in ~ will 
serve to increase the number of cells in the proliferating pool. In addi­
tion a decrease in the rate of cell death from the non-proliferating pool 
will make the contribution of the proliferating pool to growth felt even 
more. 

The above comments about the effects of a, B, and a on the tissue 
growth rate for A* > 1 can be extended to the 'A* < 1 case. A decrease 
in a will bring 'A* closer to one and this results in a slower decline to 

, 

• 
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zero tissue volume. An increase in ~ and/ or a decrease in b has the 
same effect. 
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APPENDIX 2 

The stability_ theorem presented here is due to Bellman ( 194 7) and 
Perron ( 1929) ... 

Consider the system of two first order difference equations 

~X1(m ) = F1(X 1, X 2) 

~X2( m) = F2(X1 , X 2) 

where the difference operator, ~ , is defined by 

M (m) = f (m + 1) - f (m) 

and the Fi (i = 1,2) are real valued functions. 

(2A.1) 

DEFINITION: The set of singular points P for the system ( 1) is defined 
by the solutions of 

F1 (X 1, X 2) = 0, F2(X1, X 2) = 0. 

Assume there is at least one P , Po= (po, qo) . With the transformations 

X1 = po+ Z1(m) 

X 2 = qo + Z2(m) 

the system of equations 2A.1 become 

~Z1(m) = F1(po + Z1, qo + Z2) 

~Z2(m) = F2(po + Z1, qo + Z2) 
(2A.2 ) 

DEFINITION: A set of solutions (X 1, X 2) to the system of difference 
equations 2A.1 are absolutely stable (unstable ) at Po if and only if 
(Z1, Z2) approach ( diverge from ) (0, 0) for large m. 
DEFINITION: A set of solutions (X 1, X 2) to the system of difference 
equations 2A.1 show limit cycle behaviour at Po if and only if (Z1, 22) 

• oscillate uniformally about (0, 0) for large m. 
If, in equations 2A.2, F1 and F2 are expanded about (po, qo) we 

have immediately that 
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~Z1(m) == a11Z1(m) + a12Z2(m) + '\JJ1(Z1, Z2) 

~Z2(m) == a21Z1(m) + a22Z2(m) + '\JJ2(Z1, Z2) 
wherein 

(i,j==l,2) 

00 II 
z1n- j z; ( a•F, ) 

'\JJ1(Z1, Z2) := L L 
(n-j)!j! az1 n- j az2j (pO,qO) n=2 j=O 

and 
00 n 

Z111 - j Zi ( a"F. ) 
'\JJ2(Z1, Z2) := L L 

(n-j)!j! n=2 j=O az1n- j az2j (pO,qO) 

With the definition of ~, equations 2A.3 may be rewritten as 
Z1(m + 1) == (1 + a11)Z1 + a12Z2 + '\JJ1(Z1, Z2) 

and 
Z2(m + 1) == a21Z1 + (1 + a22)Z2 + 'ljJ2(Z1, Z2) 

(2A.3) 

DEFINITION: The characteristic equation, f ('A), of the system of differ­
ence equations 2A.1 at the singular point Po is 

f(A) == - 0 
1

1 + a11 - A a12 I 
a21 1 + a22 - A 

and the solutions ('-1, '-2) of f ('-) == 0 are the (generally complex) 
characteristic roots of the system (2A.1) at Po. 
DEFINITION: Denoting by !Ail, i == 1,2, the modulus of Ai (absolute 
value if real) define 

'A*== max(lAil, lA2l) 

THEOREM: for a system of difference equations 2A.1 the stability 
characteristics of the solutions X1, X2 near the singular point Po are 
determined 'by the characteristic roots of the system at Po such that: 

1. For A* < 1 the solutions are absolutely stable. 
2. For A* > 1 the solutions are absolutely unstable. 
3. For A*== 1 the solutions show limit cycle behaviour. 
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