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ABSTRACr We have examined the steady-state and time-dependent electrical prop-
erties of a model membrane system. The model assumes that the directed velocity
and energy of ions moving through the membrane are determined by the applied
electric field, ionic diffusion forces, and central elastic collisions between ions and
membrane molecules. A simple analysis of the steady-state electrical properties of
the model yields results identical with ones obtained previously using a more com-
plex analysis procedure. The time-dependent conductance changes of the model in
response to a step change in electric field strength when there is solution symmetry
display three qualitative patterns dependent on the nature of the ion-membrane
molecule interaction. One of the patterns of conductance change is quite similar
to that observed in the sodium conductance system of a number of excitable tis-
sues: an initial conductance rise to a maximum (activation) followed by a decay
to a final steady-state value (inactivation). However, the correspondence between
the time-dependent model behavior and known experimental behavior of excitable
systems is only qualitative. We conclude that the classical ion-membrane molecule
interactions we consider are not involved in determining time-dependent conduc-
tance processes in the excitable systems for which comparison is possible.

INTRODUCTION

In the short period of time that excitable membrane biophysics has been a well-
defined field of inquiry, many data have accumulated about the time-dependent and
steady-state electrical properties of a number of systems. In parallel with this ex-
perimental effort there has been a concerted effort on the part of theoretically in-
clined individuals to explain the data at varying levels of sophistication. Cole (1968)
has given a thorough review of these data and modeling efforts.
One of the most widely used approaches in the modeling of excitable membrane
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behavior has earned the title "electrodiffusion theory" because of its dual considera-
tion of electric field and concentration gradient-induced ion movement through the
membrane. This approach, based on the Nernst (1888, 1889), Planck (1890 a, b)
equations for ion transport, was particularly successful in treating data on total
membrane ionic currents. As information accumulated about membrane currents
carried by specific ions through individual pathways, electrodiffusion theory was
noticeably deficient in several respects (Cole, 1965, 1968).
The failure of the electrodiffusion approach may be one of basic concept or formu-

lation. Recently, a series of theoretical inquiries has raised the possibility that it is
the latter. Mackey (1971 a, b) analyzed a steady-state electrodiffusion model for
membrane transport using a kinetic theory approach. The model includes the effects
of high electric field strengths on ionic energy, and the effects of various types of
ion-membrane molecule interactions. In the absence of ionic concentration gradients
across the membrane, the model membrane chord conductance is a nonlinear func-
tion of electric field strength. For one type of ion-membrane molecule interaction,
the membrane slope conductance is negative for certain values of the field strength.
Further, the ionic selectivity of the model is large and is a function of electric field
strength. Mackey and McNeel (1971 a, b) extended this model to situations where
ionic concentration gradients exist across the membrane. The model predicts recti-
fication ratios in excess of those expected from traditional electrodiffusion theory,
and in accord with those found experimentally. Also, the "nonindependent" be-
havior exhibited by one-way ionic currents through the potassium channel of the
squid giant axon membrane (Hodgkin and Keynes, 1955) could be accommodated
by this treatment, which considers the influence of applied and equilibrium fields
on ionic mobility and the ionic diffusion coefficient in the membrane.
These results seemed sufficiently encouraging to warrant examining the non-

steady-state properties of the model. However, the model analysis used in the above
communications was statistical in nature and required large expenditures of com-
puter time. The extension of the analysis to cover time-dependent situations prom-
ised to be even more time consuming, therefore in this paper we present a simplified
analysis of the same model.

Steady-state calculations for the model based on the two analyses are in satisfac-
tory agreement. We examine the time response of the model membrane conductance
after the application of an electric field across the membrane. This response is de-
pendent on the applied electric field strength, and the nature of the ion-membrane
molecule interaction.

THE MODEL

Assumptions

Hille (1970) has reviewed the extensive experimental evidence that ion penetration
in the excitable plasma membrane occurs at specific widely spaced locations. It is
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only transport through these sites that we deal with. All assumptions relate to these
ion-permeable regions.
We assume that the movement of an ion through one of these ion-permeable re-

gions is modulated only by interactions (collisions) with the membrane molecules
lining the transport site. Ion-ion interactions are assumed to be unimportant. The
way in which ion-membrane molecule interactions influence transport coefficients,
and consequently the model membrane electrical properties, is determined by two
factors. The first is the frequency of collisions between ion and membrane molecule,
and the second is the ionic energy loss during a collision. In general, both factors are
complicated functions of ionic and molecular parameters and the force between ion
and membrane molecule during an interaction.
Knowledge about the molecules adjacent to ion-permeable regions is almost

nonexistent, and we postulate that they may be replaced by an effective membrane
molecule. To characterize these membrane molecules we assume that the force be-
tween ion and molecule during a collision is central. This assumption gives a simple
expression for the ion-membrane molecule collision frequency. The ionic energy
loss per collision is determined by ion and membrane molecule masses.

Development

Consider an ion of charge q (coulombs), mass m (g), energy u (dynes), and number
density n (number per cubic centimeter) moving through an ion-permeable region
of a membrane with directed velocity vd (centimeters per second) under the influence
of an externally applied electric field E (volts per centimeter) and a concentration
gradient. The ion is under the influence of a force due to the electric field (qE) a
force due to the concentration gradient, [-d(nu)/dx)/n, and a rapidly fluctuating
force (ff) due to its interaction with membrane molecules. The force balance equation
for the ion is

1 a(mnvd) = qE + 5f _ I d(nu) (1)

n at n clx

The microscopic nature of the fluctuating force is unknown, but must be charac-
terized in order to proceed. This is done by making plausible assumptions about the
average properties of the fluctuating force. If the frequency of collisions between
ions of total velocity v and membrane molecules is v(v) (collisions per second), then
the deceleration experienced by an ion due to a collision is assumed to be -v(v)vd,
where vd is the directed ionic velocity averaged over many collisions but over a time
much less than v-1. So we take

if = -mv(v)Vd. (2)

If Eq. 1 is averaged over many collisions, the result combines with Eq. 2 to give

I O(mnvd) -
qE - mh'(v)Vd - a(nu)O (3)

n a t n
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The total ionic velocity (directed plus thermal) appearing in Eq. 3 must not be
confused with the directed ionic velocity. Even in the face of strong forces, vd << v,
so we will alternately consider v to be a function of ionic energy u, v = v(u).
We also need to know how u varies with various parameters, e.g., time and electric

field strength. The rate of change of the ionic energy a is the difference between the
rate at which the ion gains energy from the external electric field qvdE and from the
concentration gradient -vd[d(nu)/dx]/n, and the rate at which it loses energy
through the rapidly fluctuating force operating during collisions vdT. Thus, an energy
balance equation

I
at = qvdE + vd_d * d(nu) (4)
nat ~~~n Olx

may be written. Knowledge of the behavior of TF is needed in order to proceed.
We assume, under the same averaging procedures, that the rate of loss of ionic

energy is proportional to the difference between ion energy and scatterer thermal
energy u, times the fractional ion energy loss per collision t and the collision fre-
quency:

Vd= -(u - us)v(u). (5)

Averaging Eq. 4 and substituting Eq. 5 in the result yields

1 O(nu) = qvdE -t(u - u.)v (U) _ vd cl(nu) (6
n clt n Ox(6

We have not yet considered the specific energy dependence of the collision fre-
quency and energy loss per collision. It is through t and v that the unique nature of
the different collision processes is introduced.
For elastic collisions, if two particles interact centrally then the collision frequency

may be written as a simple function of the magnitude of the relative velocity between
scatterer and incident particle. If the force between ion and the fixed effective mem-
brane molecule is given by Fi, = -K;r , where r;, is the ion-scatterer separation
and a and K,. are constants, then (Chapman and Cowling, 1958) the collision fre-
quency is given by v(u) = #uP'2, where p = (a - 5)/(a - 1) and

8= 27rn.A(a)[Ki,(m + m.)/mm,]2Ia-1

is a constant involving the scatterer mass m., number density ni, and A(a) is a pure
number. The average fractional ionic energy loss per collision is independent of
ionic energy for elastic interactions and is given by t = 2m/(m + m.).

Thus, for dominant elastic collision processes we may write Eq. 3 as

1 (mnfd) - qE _M#pdU12 - 1 a(nu)
n at n Ox(7
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Eq. 5 becomes

Vdg = -WU - UOUP",

and Eq. 6 therefore takes the form

'(nu) = qdE (U _ U8)UPI2 __d a(nu) (8)
n a n dx

To write an equation for current density through the membrane we must solve
Eq. 7 and 8 for the velocity Pd. Once vd has been obtained, the constitutive relation

j = qnVd (9)

will give the connection between vd and ionic current density j (amperes per square
centimeter).
To deal with Eq. 7 and 8 it will be convenient to use the following dimensionless

variables:

V = id/ VT N = n/no

I = j/qvTno E = qE/mvovT

U = U/8 t = Pot

L = XPO/VT P0 = f3up/2

UJ = mV2/2 = kT. (10)

With the definitions of Eq. 10, Eqs. 7 and 8 become

1 a(NV) - E -VUp'2 1 (NU)
N cOT~N aOL (1

and

1 a(NU) E N a(NU)]+ (1 - U)Up'2, (12)

respectively, and Eq. 9 becomes

I = NV. (13)

Steady-State Behavior

If in the steady state, a concentration gradient exists across the membrane, Eqs. 11-
13 become

I = (NElUp'2) - (l/2Up12)[d(NU)/dL], (14)
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and

0 = 21E - (I/N) [d(NU)/dL] + tN(l - U)UPI2. (15)

We assume E and U to be independent of L, which implies that v is also independent
of L. In the statistical analysis of this model, Mackey and McNeel (1971 a) have
shown that U independent ofL is a logical consequence of the constant field assump-
tion. If the membrane is of thickness k, and if at L = 0 (a) the conditions N = N1
(1) and so =S01(S02) hold, then s(L) = sl + (Vo2 - poi)L/ and E = -dIo/dL =
-pOm/6, where pOm = 'PI - VO2 is the membrane potential.
With the above assumptions and boundary conditions, Eq. 14 is easily integrated

to give

1=IE1-Niexp(2AE/U) (16
Up/2 1 - exp (23£/U)

The expression for the current density requires knowledge of how U depends on E
and N1. We obtain this by integrating Eq. 15, again obtaining an expression for I,
and equating the result with Eq. 16. The result is the transcendental equation

tUP(U- 1) 2 1 -N1 exp (23E/U)1 17)
£2 N1L 1-exp (23E/U) (

which implicitly gives U = U(E, N1).
From Eq. 16 as (E/U) >-(28)-'1nNi, I 0. We define the value of E such

that I 0 as the equilibrium field Ee and the corresponding membrane potential,
the equilibrium potential sp.. From Eq. 17, as I -* 0, U -> 1, and the equilibrium
field is given by

Ee = -(26)-'lnNi. (18)

Use of the equilibrium field defined by Eq. 18 allows us to write Eqs. 16 and 17 in a
more symmetric form; namely

E(N1)"12 sinh [(E - UE)/UII 19)
Up/2 sinh [IE/U(

and

Up(- 1) = 22 sinh [(E - UE.)/U (20)

respectively.
The generalized Goldman equation derived above, Eq. 19, in conjunction with

Eq. 20 has behavior virtually identical with that described by Mackey and McNeel
(1971 a, b) for the same model analyzed in a more complex manner. Comparison
between the two analyses indicates that UVp/2 plays the role of a dimensionless
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mobility ,u while 2-' U(2-P)12 is a dimensionless diffusion coefficient D. The advantage
of the present model analysis is that U may be obtained as the solution of a tran-
scendental equation. Previously, the numerical computation of three integrals was
required to determine 4(E, Ee) and D(E, Ee).

Because of the similarity of the results obtained with the two methods of analysis,
we reproduce none of the steady-state calculations for the analysis used here. This
model predicts rectification ratios close to those observed experimentally (Mackey
and McNeel, 1971 a). One-way fluxes and flux ratios qualitatively similar to those
found biologically (Hodgkin and Keynes, 1955) are predicted by this model. The
Goldman (1943) formulation of electrodiffusion theory is deficient in these respects.

It should be noted that in a steady-state situation with no concentration gradient
across the membrane, Eqs. 14 and 19 become

I = EU-P"2 (21)
and

(UP(U- 1) = 2E2. (22)

For small field strengths, (2E2/t) << 1, U 1 (the ionic energy has not been in-
creased significantly over its thermal energy) and the chord conductance Gc = U-p/2
is approximately constant. For large field strengths, (2E2/t) >> 1, U >> 1 so Eq. 22
may be solved approximately to give U - (2E2/t)1/(P+1). Thus for high field condi-
tions the conductance is given by GC --' (2E2/t)-PI2(P+1) and GCis a decreasing (in-
creasing) function of electric field strength forp > 0(-1 < p < 0.) This is the same
conclusion reached in Mackey (1971 a) using a more complicated kinetic theory
analysis for the same model.
Forp < -1 the situation is not as simple, for U is an increasing function of E only

to a certain value of E. To determine for what values of E the dimensionless energy
is defined, we must examine the behavior of the equation (2E2/t) = (U - 1)/Ur,
where m = -p > 1.

If we let f(U) = (U- 1)/UUm, it is a simple matter to show that (df/dU) > 0
for 1 < U < m/(m -1). At U= m/(m - 1), (df/dU) = 0 and f=

1- )/m]m-1. For any given m value our formulae are applicable for

0< EJ<[ (m-1 ], m>.

For p = -1(m = 1) the formulae are applicable for E < (t/2)1I2.
Two classes of classical interactions are characterized by p < 0: for ion-perma-

nent dipole collisions p = -1 (m = 1), and for ion-fixed charge (coulombic)
collisions p = -3(m = 3). For these two classes of interactions, the normalizing
constants relating dimensionless E values to actual membrane potentials may be
calculated from first principles. When this is done the Emax values for which our
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formulae apply, i.e. [Em/(t)lI2] = 0.707 for p = 1, [Emax/(Q)12] = 0.273 for
p = -3, correspond to membrane potentials much greater than those likely to be
encountered in biological situations (cf. Table II, Mackey, 1971 a).

Time-Dependent Behavior

In this section we examine the time-course of the model conductance changes in re-
sponse to an "instantaneously" applied electric field. Valuable insight into the
mechanisms of these changes is provided by examining the response of the system in
the absence of concentration gradients, so we confine our attention to this situation.

In the absence of a concentration gradient, the model equations become

dV/d( = E - VUPI2, (23)

and

dU/dl = 2VE + t(1 - U)Up12, (24)

respectively. This system has no simple closed solution except for p = 0, but we
may obtain numerical solutions, and approximate solutions to a simplified system.

If a field E is suddenly applied across the membrane, the initial effect will be to
accelerate the ions so i z 0. For short times (t << Po7l or I << 1) there will be
little change in ionic energy, as this is accomplished through collisional energy
losses. Hence, for I << 1 we expect UT -- 0. If there is no field across the membrane
before £ is applied, U -' 1 and the early time behavior will be approximately de-
scribed by I + V = E. Thus

0(t) = (WIE) = 1 - exp(-I). (25)

In Fig. 1 the full behavior of 0(t), computed from Eqs. 23 and 24, is shown for
a range of E and p = ?z, 2, 1, and 4. (p = }3 corresponds to a classical induced-
dipole collision; p = 1 characterizes an ion-neutral particle interaction, cf. Mackey,
1971 a.) At early times (t << 1), when accelerative effects are expected to dominate,
d(z) is indeed closely approximated by Eq. 25 which is shown as a dashed line for
each value of p. The deviation from the behavior predicted by Eq. 25 will arise as
collision-induced ionic energy losses become appreciable. The behavior in Fig. 1
illustrates that increases in p and/or E enhance the early appearance of these phe-
nomena, as would be expected.
The numerical solutions of Eqs. 23 and 24 shown in Fig. 1 indicate that G(Q)

reaches a maximum, then declines to a final steady-state value. If we denote the
maximum value of 0(1) reached at time tm as Gm, then both Cm and Itm are decreasing
functions ofp and E as indicated in Figs. 2 and 3, respectively.

Within the context of the model presented here, the maximum in the 0(t) vs. t
relation simply implies that a point (-= 0) has been reached where the accelerating
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FIGURE 2 The variation in the maximum conductance of the model (Gm) with respect to
the applied electric field (E) for a range ofp > 0. t = 10-1.

effect of the electric field on the ion is exactly balanced by the collision-induced
deceleration. Thus, at the maximum, the net force on the ion is zero even though
the ionic energy is still changing. As the exchange between electric field and collision-
induced energy changes continues, the ion exhibits net deceleration (J < 0) charac-
terized by U > 0 until a steady-state with P = U = 0 is obtained. The dependence
of this steady state on the electric field strength is given by the solutions of Eqs. 21
and 22 above.

In real (as opposed to dimensionless) time the ionic acceleration due to the ap-
plied electric field has a characteristic time of vo-h, while the ionic deceleration due
to collisions has a characteristic time of (vo)-1. In Figs. 1-3 we used t = 108 in
our numerical computations, assuring the separation of these two characteristic
times by a factor of 103 and the resultant appearance of the maximum in G(Q) with
respect to time.
To obtain an approximate quantitative picture of the above events we may pro-

ceed as follows. For t >> 1 (t >> v6-1) we expect that the primary source of time vari-
ation arises from energy changes. Therefore we approximate the model withV 0
and U 00, so

V EEU-p/2 (26)
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FIGuRE 3 The effect of E~, the applied electric field strength, on the time (im) to maximum
conductance in the model when p > 0. t = 10- throughout.

and

dU/dt = 2VE + t(l - U)UPI2. (27)

If we combine Eqs. 26 and 27 the result is

UP'2(dU/dt) = 2E2 + t(l - U)Up'2. (28)

If in Eq. 28 we set UP/2 = R and take R to be approximately independent of 1, we
obtain U(t) -1 + (2EP/tR)[1 - exp(- Rt)]. Now R will range from 1 to U(t --
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oo )p/2, so we can get an approximate idea of the extremes of behavior exhibited by
the system.

For small values of E, R -' 1, U(t) 1 (2P/t)[1 - exp(- t)], and the chord
conductance is approximately

0(t) 1 + (2E2/t)[1 - exp(-tt)]}-pI2. (29)

For large E, R is approximated by (2E2/t)PI2(P+1), so U(t) (2E/tR2) [1 -

exp(-tRt)] and the chord conductance varies

0(t) - (2E2/t)-pl2(P+1)[l - exp(-tRt)]-p/2 (30)

In Eq. 29, as t -- o, G(t) -* 1 for small E as described in the section on steady-
state behavior. For large field strengths, G(t) as given by Eq. 30 approaches the
limiting approximate value given in the steady-state section. The characteristic time
for changes in G(t) is also seen to differ from that of Eq. 25 by a factor of t as dis-
cussed above.
As in the steady state, interactions characterized by p = 0 provide a natural

dividing line for the time-dependent behavior. When p = 0 we have, from Eq. 23.
0 = 1 - exp (-t). Thus G rises exponentially and maintains a constant steady-
state level. From Eqs. 29 and 30 we see that 0 will be a decreasing (increasing)
function of t for p > 0 (-1 < p < 0), which is intuitively reasonable. For p < 0,
as t increases the ionic energy increases. But the frequency of collisions is decreasing
at the same time, therefore the conductance goes up. Eventually a balance is reached
between collisional energy losses and field-induced energy gains. Qualitatively the
same behavior is exhibited for p < -1, but with the above noted restrictions on E.
Exactly the converse argument serves to explain the behavior when p > 0, for in
this case the collision frequency increases as ionic energy increases. Thus, the con-
ductance decreases until a balance is again attained.

All of the computed solutions for Eqs. 23 and 24 presented here have been for
p > 0. When p = -1, -2, or -3, and t = I03, the solutions are well described
by Eq. 25 for t < 10. With this value of t there is a very wide separation in time
between electric field and collision-related phenomena, and it is more pronounced
than with p > 0. In any case, the behavior of 0(1) in response to a step change in
E will initially follow the dashed curve as shown in Fig. 1, remain at a constant
value (= 1) for some time, then rise to a second steady-state value.

DISCUSSION

The time-dependent behavior exhibited by the conductance of this model when
p > 0 is strikingly similar to the known behavior of the sodium conductance in a
number of excitable systems (cf. Cole, 1968), In response to a step change in the
applied electric field, the conductance rises to a maximum and then decays to a
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lower steady-state value. Both the maximum conductance and the time to maximum
vary with respect to the membrane potential, and this variation is at least qualita-
tively similar to that found experimentally.
Many interpretations of sodium conductance data have started with the assump-

tion that the activation-inactivation sequence is the result of two separate mecha-
nisms operating independently (Hodgkin and Huxley, 1952). The activation-inacti-
vation pattern displayed by the conductance in this model is not a result of the
action of two completely separate mechanisms. Rather, it is due to the subtle inter-
play of two interdependent physical processes, and inactivation of the conductance
is a process intimately tied to activation. Indeed, Hoyt (1963, 1968) and Hoyt and
Adelman (1970) have been able to fit voltage clamp data on gNa using a model in
which activation-inactivation is a coupled process, and explain the results of certain
inactivation experiments not resolved by the Hodgkin-Huxley formulation of the
process.
The conceptual similarity between the Hoyt model and the one we are consider-

ing in conjunction with the results of the two models might seem to imply that the
molecular mechanisms we consider play a significant role in the determination of
time-dependent transport processes in excitable membranes. However, this inter-
pretation fails on at least three points.

First, we must note that the characteristic time (vo7l) of this model differs from
that found experimentally by at least three orders of magnitude (cf. Mackey, 1971 a).
Second, the effect of temperature on the time parameters of this model may be
shown to be quite small (Qlo -,' 1.1) with respect to those found experimentally
(Qio 2-3). The temperature dependence of the steady-state model conductances
is more in accord with those found in excitable systems. Finally, this model would
predict a sensitivity of the time parameters to ionic properties almost as great as
those observed in the steady-state conductance. Experimental data (Binstock and
Lecar, 1969; Chandler and Meves, 1965; Meves and Chandler, 1965; Moore et al.,
1966), indicate no change in the time constants of sodium conductance activation
and inactivation when current through the sodium channel is carried by a number of
monovalent sodium ion substitutes.

It is for the above reasons that we feel we must reject classical elastic, central
ion-membrane molecule interactions as the source of time-dependent conductance
changes observed in most excitable membrane systems, even though they may serve
to explain steady-state behaviors.
Receivedfor publication 30 July 1972 and in revisedform 21 March 1973.
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