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ABSTRACT A model for ion movement through specialized sites in the plasma mem-
brane is presented and analyzed using techniques from nonequilibrium kinetic
theory. It is assumed that ions traversing these specialized regions interact with
membrane molecules through central conservative forces. The membrane molecules
are approximated as massive spherical scattering centers so that ionic fractional
energy losses per collision are much less than one. Equations for steady-state mem-
brane ionic currents and conductances as functions of externally applied electric
field strength are derived and numerically analyzed, under the restriction of
identical solutions on each size of the membrane and constant electric fields within
the membrane. The analysis is carried through for a number of idealized ion-mem-
brane molecule central force interactions. For any interaction leading to a velocity-
dependent ion-membrane molecule collision frequency, the membrane chord con-
ductance is a function of the externally applied electric field. Interactions leading to a
collision frequency that is an increasing (decreasing) function of ionic velocity are
characterized by chord conductances that are decreasing (increasing) functions of
field strength. For ion-neutral molecule interactions, the conductance is such a
rapidly decreasing function of field strength that the slope conductance becomes
negative for all field strengths above a certain value.

INTRODUCTION

Attempts to develop a satisfactory theory of ion transport through cell membranes
have been largely based on the Nernst-Planck equations (Nernst, 1898, 1899;
Planck, 1890 a, b) describing ion transport in electrolyte solutions. Many aspects of
ion penetration through membranes are satisfactorily described by the constant-
field solutions of the Nernst-Planck equations (Goldman, 1943; Hodgkin and Katz,
1949). Cole (1968) has extensively studied and reviewed this electrodiffusion ap-
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proach and concludes that it cannot account for a number of phenomena charac-
teristic of early and late ionic current pathways in a squid axon membrane.

It is not known whether such failures are due to fundamental defects in the assump-
ions underlying the equations, or to approximations in their development which are
inappropriate for membrane ion transport, or both. Derivations of the Nernst-
Planck equations are based on the following explicit assumptions: (a) the average
directed velocity of an ion in an electric field is directly proportional to the field
strength (mobility independent of field strength); (b) Fick's first law holds; (c)
the diffusion coefficient and mobility are related through the Einstein relation. These
assumptions imply that the only possible source of nonlinear behavior in a homo-
geneous, one-phase membrane model system is concentration asymmetry.

In this paper, I specifically deal with the assumption of constant ionic mobility in
the membrane. A model, definable on a molecular basis, is analyzed to determine
the relation between ionic current flow and membrane potential in the absence of
concentration gradients. The motivation to study this particular problem is twofold.
First, the electrical properties of a number of laboratory-produced and naturally
occurring membrane systems with concentration symmetry have been determined
and reported in the literature. In many cases, the relation between ionic current
density and membrane potential is highly nonlinear. Secondly, in terms of furthering
our concepts about important forces within membranes, it is of interest to examine
the consequences of specific molecular mechanisms for membrane electrical prop-
erties.
The generalized relation between current density and membrane potential derived

here takes account of effects introduced by high electric field strengths when the
energy of an ion due to the electric field is of the order of, or greater than, its thermal
energy. Under such conditions ion currents are nonlinear functions of the electric
field strength. This behavior is expressed by giving mobility coefficients as implicit
functions of electric field strength and ion-membrane molecule interaction param-
eters.
The second paper of this series (Mackey, 1971) considers the ion-selective prop-

erties of the model as functions of ion-membrane molecule interaction parameters
and electric field strength for steady-state situations in the absence of concentration
gradients.

THE MODEL

Assumptions

There is much experimental evidence that ion penetration through excitable cell
plasma membranes occurs only at rare specific sites (Hille, 1970). The following as-
sumptions are made about the properties of these sites only, not those of the ion
impermeable regions. Some of these assumptions are justifiable from experimental
data or order-of-magnitude calculations. Others, however, are not easily justified
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(or rejected), but are necessary to make the calculations feasible. These assumptions
result in calculated ionic conductances that agree well with experimental data.

It is assumed that the passage of an ion through an ion permeable region is im-
peded by interactions (collisions) between the ion and membrane molecules, the
latter having no directed motion but possessing random thermal motion. These in-
teractions are assumed to be the only ones ofimportance, implying that ionic densities
in the membrane are low and that the independence principle is valid. The ion-
membrane molecule interactions are assumed to be determined by the following
characteristics:

(a) Spherical membrane molecules. The membrane molecules may be represented
by spherical particles of finite mass.

(b) Central interactions. The force between an ion and a membrane molecule
during a collision is central, conservative, and either attractive or repulsive. This is
related to characteristic a, but carries an added restriction: there are only binary
collisions between ions and membrane molecules, i.e., the scatterer centers (col-
lision sites) are widely spaced in comparison to ion diameter.

(c) Small collisional energy loss. During a collision, the fractional energy loss
(Q) by an ion is much less than one. This is equivalent to the assumption that the
mass of a scatterer, compared to the mass of an ion, is large but not infinite (i.e.,
t s 0). The assumption that t << 1 greatly simplifies an expansion used in the analy-
sis. Relaxation of this assumption requires the inclusion of more expansion terms,
and increases the mathematical complexity of the analysis. The restriction of col-
lisions to situations where t << 1 specifically excludes considerations of the poten-
tially important mechanisms of ion fixation or binding, or excitation of rotational
and/or vibrational modes in membrane-bound macromolecules. This omission is
not one based on desire, but necessity. The analysis techniques employed in this
paper are inappropriate for the treatment of such highly inelastic collision processes.
To quantitatively deal with transport in the face of violently inealstic collisions, a
quantum mechanical formulation must be employed.

(d) Negligible role of water. This assumption must be made to avoid the complex
difficulties of liquid transport theory. Several arguments help justify this assumption.
Models of ion penetration regions (channels) may be constructed where water would
seem to play a negligible role; e.g., the wall of a channel having a diameter on the
order of a hydrated ion might bind water. However, single water molecules would
be moving through the channel, so that collisions between hydrated ions and single
water molecules in the channel would result in little energy loss by the ion because
of its much greater mass. Thus, in this situation, water would have little effect on
ionic current. Alternately the effects of water, if present, could be considered to be
lumped with the scattering molecules. A final justification is that the kinetic equa-
tions derived here are qualitatively identical with those derived by Rice and Gray
(1965; equations 5.3.69-5.3.71) for ion transport in liquids.
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(e) External forces. All external forces acting on the ion are independent of ionic
velocity (e.g., are not due to magnetic fields) and are much smaller than the ion-
membrane molecule forces acting during a collision.

(f) The ionic number density in the membrane is small-so small in fact that
XD >> 5 (where XD is the Debye length in the membrane, and 6 is the thickness of the
membrane). Therefore, the electric field strength, E, is a constant throughout the
membrane.

Relation between Ionic Current Density and Electric Field Strength

To avoid the excessive use of formulae in the text, I have confined the details of the
model analysis to an Appendix. Readers interested in the details of the analysis
should refer to that section.

In the Appendix it is demonstrated that, with the above assumptions for the model,
the steady-state dimensionless ionic current density (I) established in response to a
dimensionless applied electric field (a) is given by

(3; ) a [fduu2 exp (-W)] fduu2'P exp (-W). (1)

If the force between ion- and membrane-scattering molecule (separation r) during
a collision goes as (l/ra), thenp = (a - 5)/(a - 1). Wis given by equation A 6.
The physical significance of equation 1 is the following. Consider an ion (charge

q, mass m) moving under the influence of an electric field (E) with velocity between
v and v + dv. As it moves, it collides with scattering centers at a frequency v (col-
lisions per second). Let the number of ions with velocities between v and v + dv be
f(v). In a steady-state situation the forces due to the field [qEf(v) dv/m] and due to
collisions (v dv) will exactly balance. Thus we have (qE/m)f(v) dv = v dv. The

average velocity of ions will be given by v = (qE/m) f(v) dv/v (v); and the cur-

rent, I, carried by them will be I = nqv where n is the ionic number density. In the

Appendix it is shown that v(v) --. vP and [f(v)_v2 exp (- W)] [ft v2 exp (- W) dv].

Substitution of these in the above expression for the average velocity, and using the
dimensionless variables of the Appendix, yields equation 1.

If a dimensionless chord conductance, analogous to the conductances -N. (V)
and gR (V) determined by a voltage clamp procedure (Hodgkin and Huxley, 1952),
is defined by I = dGc, from equation 1

Gc= (3 P)[fdUU2 exp (-W)] fduu2P exp (-W). (2)

Thus it is seen that Gc is dependent on the dimensionless acceleration (electric field
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strength). Gc has some interesting general properties. From equation A 6 for W, Gc
is an even function of a. Further, forp = 0, corresponding to a velocity-independent
collision frequency GC = 1 for all a; for p > 0 ( <0), G, is a decreasing (increasing)
function of a.
These characteristics of the G6 variation with a are not unreasonable. The model

contains no inherent asymmetry, and therefore no asymmetry in G, with respect to
the direction of a is expected. On a simple basis G, should be inversely proportional
to the collision frequency v-the more collisions an ion makes in going through a
region the higher the resistance of that region (the lower its conductance). The ef-
fect of an external electric field is to increase the velocity of an ion. For p > 0 (v an
increasing function of v) an increase in the field increases the collision frequency
and thus decreases the conductance. Conversely, for p < 0 (v a decreasing function
of v) an increase in the field decreases the collision frequency. For a velocity-inde-
pendent collision frequency (p = 0) the electric field strength has no effect on v, and
thus none on the conductance.

RESULTS AND DISCUSSION

The complexity of the equations for I (a) and G, (a) precludes a complete analytical
study of the characteristics of ion movement despite the simplicity of the model; a
numerical study was therefore necessary. All computations were done on Raytheon
PB-440 digital computer (Raytheon Computer Operation, Santa Ana, Calif.) using
a system (Digital Analog Simulator) which effectively transforms the computer into
an analog computer with a large number of components. All integrations were car-
ried out with step increments (Au) of IOV and the integration was terminated when
the quantity being computed at a given electric field strength did not change more
than one part in 105 between two successive increments. The computed results and
their discussion are presented in two sections, the first for p < 0 and the second for
p > 0. The p = 0 case, with ohmic conductance characteristics, provides a natural
dividing line. The dimensionless quantities I = I/V< and E = a/ \/t are used so
I = EG,, (E). Since it is helpful to have some definite numbers (current densities,
etc.) to relate to the dimensionless quantities, the first part of the Results section is
devoted to obtaining estimates of these values for "reasonable" assumptions about
the membrane.

Estimation of Some Membrane Related Quantities

The following hypothetical membrane is postulated to permit comparison of the calculated
I vs. E and GO, vs. E relationships with experimental ones.
The model membrane is a planar sheet of nonconducting lipid and protein 100 A in thick-

ness, with ion-permeable sites whose molecular characteristics are one of those employed
herein for calculation, e.g. fixed charges, or polarizable particles. Assume that the scatterers
in these conducting regions are components of the surrounding lipid-protein matrix, that these
regions may be approximated by cylinders 5 A in diameter extending through the membrane,
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and that there are 10 of these regions per square micron of membrane surface. The estimate of
100 A for the membrane thickness is consistent with many measured thicknesses, and the
density of pores is based on work with tetrodotoxin (Moore, Narashi, and Shaw, 1967).

Another quantity that must be estimated is the number density of ions within the mem-
brane. If the hypothetical membrane has a maximum current density of 1 ma/cm2 carried by
monovalent cations, then this corresponds to 6.25 X 106 ions/sec through each pore. For a
membrane bathed in 0.1 M electrolyte, elementary kinetic theory indicates that the cross-
sectional area of one pore would suffer 6.4 x 109 collisions/sec. Thus only about one ion in
103 goes through the pore, and it will therefore be assumed that the number density of ions
interacting with the scatterers is 10-' that of the external solution.

Another necessary quantity is the number density of scattering centers. This is taken as
6 x 1020/cm', or about one per pore. Molecular weights of 44 and 1000 were taken as esti-
mates ofthe effective mass of the scattering center. The value of 44 is the molecular weight of a
carboxyl group. Using the parameters of the sodium ion the energy loss factor, tNa, has the
value of about 0.5 for this effective scattering mass which is large for the approximations made
earlier. Thus a second effective molecular weight of 1000 (making tNa = 0.044) was also used.
This effective mass is not unreasonable if the molecule to which the scattering center belongs
is quite rigid.
The various interactions require estimates of the charge of the scattering center, its polariza-

bility, etc. For ion-fixed charge collisions, it was assumed that the scatterer carries a net charge
of -1, while for ion-fixed permanent dipole interactions, a dipole moment of 5 D was as-
sumed. The assumed properties for ion-induced dipole interactions, London dispersion force
interactions, and ion-neutral scatterer interactions between the sodium ion and scatterer
(carboxyl oxygen) are given in Table I.

In Table II are presented, for various interactions, the membrane potential, 'pi , (assuming
a constant electric field) corresponding to ENa = 1; the current density per square centimeter
of membrane, In, corresponding to INa = 1, and the conductance per square centimeter of
membrane, Gm . The first entry in each bin of the table was calculated for an effective scatterer
molecular weight of 44, the second for a molecular weight of 1000. The values given may be
changed significantly by different assumptions about the several factors. An increase in the
scatterer number density will increase the Sp° values by a similar amount. An increase in the
ionic number density from its value of 10-4 M increases both the current and conductance

TABLE I

MOLECULAR PROPERTIES ASSUMED FOR VARIOUS
COMPUTATIONS

Particle Molecular Polarizabil- Second CrystalParticle weight ity X 1024 ionization radiuspotential

cm3 ev A

Na+ 22.997 0.21* 47.07$ 0.98§
Scatterer (car- 0.84§ 2.1211 1.45§
boxyl oxygen)

* Moelwyn-Hughes, 1949.
t Handbook of Chemistry and Physics, 1957.
§ Ketelaar, 1953.
11 Latimer, 1952.
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TABLE II

MODEL SPECIFIC CONDUCTANCES, CURRENTS, AND MEMBRANE PO-
TENTIALS FOR DIFFERENT INTERMOLECULAR INTERACTIONS AND

SPARSELY DISTRIBUTED PORES
For each interaction the membrane potential (sOm) current density per square centi-

meter of membrane (I,,), and conductance per square centimeter of membrane (Gm)
corresponding to unit values of the dimensionless variables E, I, and Gc are given.
For example, with ion-neutral particle scattering and a scatterer mol. wt. of 1000,
an E = 1 corresponds to a om = 11 mv, and I = 1 corresponds to a Im = 2.2 ma/cm2,
and a Gc = 1 corresponds to a Gm = 0.2 mmho/cm2.

Interaction type p qpm(ENa = 1) Im(INa = 1) Gm(Gc = 1)

mv ma/cm2 mmho/cm2
Ion-fixed charge -3 1.5 X 107 8.6 5.7 X 10-7

(mol. wt. = 44)
1.7 X 106 2.2 1.3 X 10-6

(mol. wt. = 1000)

Ion-permanent -1 6.8 X 104 As above 1.3 X l174
dipole 1.2 X 104 As above 1.8 X 10-4

Ion-induced dipole 0 5.5 X 102 As above 1.6 X 10-2
1.2 X 102 As above 1.8 X 10-2

London dispersion 1/3 99 As above 8.7 X 10-2
force 23 As above 9.6 X 10-2

Hard sphere-hard 1 44 As above 0.196
sphere 11 As above 0.20

values by like amounts. An increase in collision frequency increases 'pm and decreases the con-
ductances. For example, with ion-fixed charge interactions an increase in the fixed charge
valence from -1 to -2 increases the collision frequency and 'pm by a factor of 4 and de-
creases the conductances by a like amount.
From Table II it is clear that there are enormous differences in the results for various molecu-

lar interactions, e.g., in Gm. As a means of comparison, Table III presents the values of G,
for various interactions with E = 0. Also shown are the corresponding chord conductances
for a square centimeter of membrane, and a mean collision frequency, v'= /3pVTN. , for each
type of interaction. This reveals the sources of variation in the membrane-related values. For
those molecular interactions where the collision frequency decreases with increasing velocity
(e.g., coulombic and ion-fixed permanent dipole interactions) the mean collision frequency is
several orders of magnitude larger than the collision frequencies for the other interactions
where p> 0. This is due to the long-range nature of coulombic and dipole forces.
Of course, these estimates depend dramatically on the area of the membrane assumed avail-

able for ion penetration. For example, taking the cases of fixed charge and fixed permanent
dipole scatterers, assume that there are 10 scatterers per square micron, and that 0.1 of the
membrane surface area is available for ion penetration. This leads to a scatterer number
density of 10'6/cm3, and the values for the membrane potential in Table II would be cor-
respondingly multiplied by 1.67 X 10-5. Also taking into account the altered current densities,
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TABLE III

THE CONNECTION BETWEEN THE VARIATION IN SPECIFIC MEMBRANE
CONDUCTANCES ATm ,=O AND VARIATIONS IN MEAN IONIC COL-

LISION FREQUENCY FOR DIFFERENT INTERACTIONS

Interaction type p Gc(E = 0) Gm(E = 0) VP

mmho/cm2 (numbers/sec)

Ion-fixed charge -3 2.44 1.4 X 10-6 9.94 X 101s
(mol. wt. = 44) (mol. wt. = 44 and 1000)

3.2 X 10-6
(mol. wt. = 1000)

Ion-permanent -1 1.23 1.6 X 10-4 1013
dipole 2.2 X 104 6.83 X 101s

Ion-induced dipole 0 1.0 1.6 X 10-2 8.1 X 1010
1.8 X 10-2 6.67 X 1010

London dispersion 1/3 0.96 8.4 X 102 6.74 X 1010
force 9.2 X 102 5.66 X 1010

Hard sphere-hard 1 0.92 1.81 X 10-1 6.52 X 109
sphere 1.85 X 107 6.52 X 109

TABLE IV

MODEL SPECIFIC MEMBRANE POTENTIALS, CURRENTS,
AND CONDUCTANCES FOR A MEMBRANE WITH MANY

PORES AND p < 0

Interaction type p #op(ENa = 1) Im(INa = 1) Gm(Gc = 1)

mv ma/cm2 mmoi/cm2
Ion-fixed charge -3 250 0.044 0.176

(mol. wt. = 44)
28.4 0.0111 0.391

(mol. wt. = 1000)

Ion-permanent -1 1.13 0.044 38.9
dipole (mol. wt. = 44)

0.2 0.0111 55.5
(mol. wt. = 1000)

6.25 x 1015 ions would go through this 0.1 cm2 every second. For an external ionic concentra-
tion of 0.1 M a bombardment rate of 3.25 X 1023 collisions/sec on this area of membrane is
expected and the number density of ions interacting with scatterers is approximately 108
that of the external solution. In Table IV recomputed values of 'Pm , I.m and Gm based on the
preceding are presented. It is obvious that for these two types of interactions much more
"biological" values of membrane potentials and conductances result.
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Result and Discussion for Interactions such that p < 0

Computations of the conductance and current-electric field curves were carried out
for a range of p values between -0.5 and -3.0. The computed G, vs. E curves are
shown in Fig. 1 and the 7 vs. E curves in Fig. 2. Two values correspond to actual ion
scattering interactions, p = -3 and p = -1. In terms of ideal interactions these
would correspond to ion-fixed charge (a = 2) and ion-permanent dipole (a = 3)
interactions respectively.
As expected from the general considerations of the previous section, and as il-

lustrated in Fig. 1, G, is an increasing function of E for these ion-scattering interac-
tions in which the collision frequency decreases with increasing ionic velocity. The
nonlinear field dependent behavior of Gc for these types of interactions becomes much
less pronounced at high field strengths, the conductance varies slowly with E, and the
I vs. E curves become nearly linear. For p = -3 the increase in conductance with an
increase in field strength is rapid, leveling off at high fields at a value (125 ) about one
and one-half orders of magnitude greater than its value at zero field strength (2.44).

0.5 1.0 1.5 E 0 0.5 10
FIGURE I FIGURE 2

FIGURE 1 Dimensionless conductance (G0) as a function of dimensionless field strength
(E) for a number of ion-scatterer interactions characterized by p < 0. The curves p = -1
and p = -3 correspond to ion-fixed dipole and ion-fixed charge interactions, respectively.
Note that G0 is an increasing function of E in all cases.
FIGURE 2 Dimensionless current (1) as a function of dimensionless field strength (E)
for six ion-scatterer interactions with p < 0. The computed curves are presented semiloga-
rithmically for clarity.
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There are similarities in the observed electrical properties of alamethicin-treated
lipid bilayer membranes (Mueller and Rudin, 1968) and the theoretical properties
displayed for the membrane model with p < 0. The antibiotic alamethicin, a cyclic
polypeptide (Meyer and Reusser, 1967), is capable of causing large increases in the
conductance of laboratory-produced membranes composed of a variety of sub-
stances. The antibiotic, which contains an ionizable carboxyl group at physiological
pH, is effective when present in the aqueous solution surrounding the membrane,
or in the membrane-forming solution. When placed between identical electrolyte
solutions, these antibiotic-modified membranes exhibit a conductance vs. potential
curve that is low at 0 mv and rises some four orders of magnitude above this value at
50 mv. The curves are symmetric about zero membrane potential. Thus, in a situation
where ion-fixed charge scattering could be quite important there are qualitative
similarities between experimentally determined conductances and those predicted for
p < 0. However, there are also differences. The experimentally observed increase in
the chord conductance with increasing membrane potential is at least four orders of
magnitude. Theoretically for the fixed charge model (p = -3) a rapid continuous
increase of slightly less than two orders of magnitude in the conductance is expected.
The figures quoted by Mueller and Rudin could be obtained from a model for some
p > -3, which would require very long-range scattering forces varying more slowly
than l/r2. No mention is made by the authors about the existence, if any, of a leveling
off of the conductance-membrane potential curve at sufficiently high potentials. If
the observed electrical properties are actually due to long-range ion-scatterer inter-
actions such as those being considered here, such behavior should occur.

Results and Discussion for Interactions such that p > 0.

As discussed above when p = 0 (corresponding, ideally, to ion-induced dipole inter-
actions), G, = 1, and the dimensionless I vs. E curve is a straight line. This is in-
tuitively reasonable. When the collision frequency is independent of ionic velocity,
and thus also of electric field strength, the conductance is constant.
Two cases were examined numerically for p > 0, p = Y, and p = 1. A p ofY

corresponds ideally to a London dispersion force (a = 7) interaction. A p = 1 re-
sults if a classical hard sphere-hard sphere collision process is assumed, e.g. col-
lision of an ion with a nonpolarizable, noncharged scatterer.

In Fig. 3 the dimensionless conductance G, for p = }i and p = 1 is plotted vs. E.
In both cases, G. is a decreasing function of E. Forp = 1 the conductance is a much
more rapidly decreasing function ofE than it is for p = 3. The consequence of this
difference for the dimensionless current vs. electric field curves is most interesting,
and illustrated in Fig. 4. For p = Y3 the decrease in G, as E increases produces a
slight concave downward shape in the I vs. E curve. However, for p = 1, G, de-
creases so rapidly that the corresponding current vs. electric field relation displays a
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) l1/3

2.

p 1

FiGuRE 3 FiouRE 4
FIGuRE 3 Dimensionless conductance (Ge) as a function of dimensionless electric field
strength (E) for classical ion-induced dipole and ion-neutral scattering interactions, char-
acterized by p = Y and p = 1, respectively.
FiGuRE 4 Dimensionless current (I) vs. dimensionless field strength (E) for p = H and
p = 1. Note that for ion-neutral interactions G¢ decreases faster than E-1, yielding a nega-
tive slope conductance region in the 1 vs. E curve for all E > 9.

negative slope conductance region. In fact, the current decreases continuously and
approaches zero as E -a oo.

Moore (1959) discovered that if the squid giant axon is placed in isosmotic potas-
sium chloride, the steady-state current voltage relationship for the membrane exhibits
a negative slope conductance region when the membrane is hyperpolarized. Under
such experimental conditions, the sodium system is largely inactivated, and the ob-
served steady-state behavior is attributed to the potassium channel. Similar phe-
nomenon have been noted in the frog node (Frankenhaeuser, 1962) and lobster axon
(Julian, Moore, and Goldman, 1962). The Hodgkin-Huxley equations duplicate
the results fairly well as found by Moore and also by Tasaki (1959) (see George and
Johnson, 1961 ). Ehrenstein and Gilbert (1966) have also found a steady-state nega-
tive slope conductance region in the depolarizing direction under these same condi-
tions.

Lecar, Ehrenstein, Binstock, and Taylor (1967) also working with squid axons in
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high potassium solutions were able to separate their current voltage curves into a
linear component and a nonlinear time-varying component. The linear component,
identified as the leakage current, is increased by the removal of the external divalent
cations. The nonlinear conductance component, which gives rise to the negative
slope conductance regions in the steady state, has the kinetics of the potassium pro-
cess and is decreased by the removal of divalent cations.

These experiments led to the conclusion that the steady-state negative slope con-
ductance regions seen in high potassium are characteristic of the potassium system.
Further, if the separation of leakage and potassium currents is correct, the steady-
state potassium current vs. membrane potential curve has the remarkable property
of being approximately "N" shaped; i.e., sufficient elevation of the membrane poten-
tial in either a depolarizing or hyperpolarizing direction will cause the current to
approach zero.
The nonlinear electrical component of the squid axon membrane in high potas-

sium is grossly similar to the current-field curve of Fig. 4 forp = 1. One of the major
differences between the theoretically predicted current field curves for p = 1 and
similarly observed potassium current behavior in squid that is the theoretical rate of
decline of the current in the negative slope conductance region is appreciably smaller
than experimentally observed. This is a reflection of the decrease in dG"/dE as E in-
creases, illustrated in Fig. 3. Thus, based on comparisons with theoretical predic-
tions of current-field behavior when ions interact primarily with neutral scattering
centers it appears that this, or a similar interaction yielding a p sufficinetly greater
than zero, might be a primary interaction for ions traversing the potassium channel
in the squid membrane.

APPENDIX

If x and v (a boldface quantity denotes a vector), respectively, denote vector position and
velocity of a particle of the ith ionic species, then the Distribution Function f(x, v, t) for this
species is defined as the number of ions of the ith species which, at a time t, are in a spatial
volume element (d'x, cmo) about x(cm) and a velocity volume element (d'v, cm'/sec') about
v(cm/sec). In this section the relation of macroscopic observables (e.g. ionic current) to f is
discussed. An integrodifferential equation in fis presented, without derivation, but the terms
of the equation are related to underlying physical processes. Finally, solution of this equation
by an expansion off is considered. This expansion procedure results in two coupled partial
differential equations that must be solved.

The distribution function is useful because of its direct relation to measurable macroscopic
variables. For example, the number density [n(x, t), number/cm'] of particles at a particular
(x, t) may be obtained by summing (integrating) the number of particles in each velocity
range:

n(x, t) = fd'vf(x, , t).

In a similar manner, the number flux [N(x, t), number/cm2-secl of particles crossing a unit
surface area is

N(x, t) = d'vvf(x, v, t).
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If the particles have a charge q = zie, then the current density, I(amp/cm2), carried by this
flux is I = qN(x, t). In general the distriubtion function is a function of various external driv-
ing forces, e.g. gradients of concentration, temperature, or electrical potential.

The distribution function must be expressed as an explicit function of velocity so the above
integrations may be carried out. With all of the assumptions listed in the main body of the
text, except for assumptions c and f, the following equation of change for f, commonly known
as the Boltzmann transport equation, results (Green, 1952):

(af/at) + v * Vxf + (F/m) * Vvf = ffd3v8 dQ(f ff8)gsJ8I. (A 1)

In equation A 1 m is the mass (g/particle) of a particle of the ith ionic species, F is the ex-
ternal force (dynes/particle) acting on the ith species, f5 is the distribution function for the
scatterer molecules, and gi8 = Vi-V8 is the speed (cm/sec) of an ion relative to a scatter-
ing particle. Ii. is a differential scattering cross-section (cm2), dQ = 27r sinX dX is a solid
angle (steradians), and x is the angle (radians) through which the ion is deflected during a
collision. (See Goldstein, 1950, for a discussion of the mechanics of binary collisions.) Primed
distribution functions refer to a postcollisional state while unprimed ones are precollisional.

Equation A 1 is a conservation equation for f(x, v, t) and some insight into the origin of
the various terms is desirable. Typical conservation equations relate the time rate of change
of a quantity to the divergence of its flux. The present case requires a relation between the
time rate of change of f(x, v, t) and the divergence of its flux in x space, V.c [f(dxx/dt)], the
divergence of its flux in v space, Vv- [f(dv/dt)], and the rate of change of f(x, v, t) due to col-
lisions. The integral expression on the right-hand side of equation 1 gives the rate of change
of f(x, v, t) due to collisions, v- VJis due to flow in position space, and a Vvfarises because
of flow in velocity space in the presence of a velocity-independent acceleration a = F/m.

Solutions to equation A 1 are usually based on an expansion off(x, v, t) in terms of some
suitably small parameter. The form of the expansion used here is suggested by expressing
the ion velocity v in spherical coordinates (v, 0, 4), where 0 and 0 are now the variables during
a collision, and expressing the distribution function asf(x, v, t) = f(x; v, 0, 4; t). This may be
expanded in spherical harmonics. Such an expansion is equivalent (Johnston, 1960, 1966)
to a tensor expansion

f = fo(x, V, t) + (v/v) f1 + (vv/v2)f2 + *--. (A 2)

Morrone (1968) has shown that termsfj in the expansion of equation A 2 are proportional to
(t)j/2, where t is the ion fractional energy loss during an ion-scatterer coHision. Thus with as-
sumption c that t << 1, terms fj for j > 1 may be neglected in equation A 2. Therefore, the
expansion is written asf = fo(x, v, t) + (v/v) * fi(x, v, t).

In terms of fi and f', integral expressions for the number density and current density be-
come

n(x, t) = 47r fdvv2fo (A3)

and
0

I(x,t) = (47rq/3) f dvv3fi (A 4)

This communication is limited to an examination of the steady-state electrical properties of
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a membrane bounded by symmetrical electrolyte solutions. Thus from the continuity equa-
tion and the expressions for n(x, t) and I(x, t) we conclude that (lf0/l&t) = 0, VS.f1 = 0, and
f = f(v).

With the above remarks in mind, and assuming the acceleration a of the ions due to ex-
ternal forces is in the z direction (perpendicular to the membrane surface), substitution of the
expansion f(v) = fo(v) + (v/v) f, into the transport equation yields the equations (Gins-
burg and Gurevich, 1960)

(a/3v2) d(v2fi)/dv = (2v2) d{vv3[fo + (kT/mv) fdo/dv]}/dv (A 5)

and

a (dfo/dv) = -vfi. (A 6)

The fractional energy loss t = 2m/(m + m8), where m, is the scatterer mass, k and T are,
respectively, Boltzmann's constant (erg/°K) and the absolute temperature (°K) of the system.
The frequency of collisions of an ion of the ith species with the membrane scatterers, v(v)
(collisions/sec), is given by

vv = n.vf dQ2(l - cos X)Iis,
where n8 is the number density of scatterers. v is, in general, a function of the ionic velocity v.

In order to obtain a solution to equations A 5 and A 6 for fo and fi, and thus enable a
calculation of current flow through the membrane model as a function of external driving
forces, v must be expressed as an explicit function of v. The form of this velocity dependence is
determined by the nature of the intermolecular forces between ion and membrane molecule.
For central conservative forces there is a simple power law relation between v and v.

If, as assumption b requires, the force Fi8 between ion and membrane scatterer is given by
Fis = -Ki. /ria8 where ri. is the separation between ion and scatterer, and a is a constant, then
(Chapman and Cowling, 1958) the collision frequency is given by

v(V) =,3iv', (A7)

where p = (a-5) /(a - 1) and

1i = 27rn8A (a) [2Ki8/m8,]21(al) (A 8)

is a constant involving ionic and scatterer parameters. A(a) is a pure number depending only
on a.

Equations A 5-A 7 are the complete set needed for a calculation of fo and fi.
It is convenient to rewrite the equations forfo andfi in dimensionless form. Define a dimen-

sionless variable u by u = V/VT where VT = (3 kT/m)112 is the thermal velocity. Further, define a
dimensionless acceleration a by a = a/l3v'+l, where ,B is defined from v = P3Vp = 3VTPUp.

With these new variables, equations A 5 and A 6 become

(&/3u2) d(u2f1)/du = (Q/2u2) di u+3[fo + (dfo/du)/3u]}/du (A 9 )

and
a (dfo/du) = -uPfl, (A 10 )
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which are easily combined to given an equation for fo alone:

[1 + (2a2/tu2p)](dfo/du) = -3ufo. (A 11)

Equation A 11 has the solution

fo =Aexp (-W), (A 12)

where

,u

W = 3 f dss2P+l/[s P + (2Q2/t)]. (A 13)

It should be noted that fo will be maxwellian (have the form exp [-mv2/2k7T) if d '-' 0, or
p = 0, corresponding to an ideal ion-scatterer force law with a = 5.

Thus from equation A 6

fi = (aA/u))(aW/au) exp (-W). (A 14)

In equation A 14, A is determined from equation A 3 so

A = n [4rvT fT duu2 exp (-W)] . (A 15)

With the expressions for fo and f' given above, and using integration by parts, the current
for p < 3 is

I = ( 3yP)dqvTn[ duu2 exp(wW)7 duuz-p exp (W). (A 16)

Defining a dimensionless current, l, by

I=I/qvTn, (A17)

equation A 16 may be written as

(3 ; )[f duu2 exp(- W)] duu-p exp(- W). (A 18)
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