CEAB Graduate Attributes and Their Definitions

1) **Knowledgebase for engineering (KB):** Demonstrated competence in university level mathematics, natural sciences, engineering fundamentals, and specialized engineering knowledge appropriate to the program.

2) **Problem analysis (PA):** An ability to use appropriate knowledge and skills to identify, formulate, analyze, and solve complex engineering problems in order to reach substantiated conclusions.

3) **Investigation (IN):** An ability to conduct investigations of complex problems by methods that include appropriate experiments, analysis and interpretation of data and synthesis of information in order to reach valid conclusions.

4) **Design (DE):** An ability to design solutions for complex, open-ended engineering problems and to design systems, components or processes that meet specified needs with appropriate attention to health and safety risks, applicable standards, economic, environmental, cultural and societal considerations.

5) **Use of engineering tools (ET):** An ability to create, select, adapt, and extend appropriate techniques, resources, and modern engineering tools to a range of engineering activities, from simple to complex, with an understanding of the associated limitations.

6) **Individual and team work (IT):** An ability to work effectively as a member and leader in teams, preferably in a multi-disciplinary setting.

7) **Communication skills (CS):** An ability to communicate complex engineering concepts within the profession and with society at large. Such abilities include reading, writing, speaking and listening, and the ability to comprehend and write effective reports and design documentation, and to give and effectively respond to clear instructions.

8) **Professionalism (PR):** An understanding of the roles and responsibilities of the professional engineer in society, especially the primary role of protection of the public and the public interest.

9) **Impact of engineering on society and the environment (IE):** An ability to analyse social and environmental aspects of engineering activities. Such abilities include an understanding of the interactions that engineering has with the economic, social, health, safety, legal, and cultural aspects of society; the uncertainties in the prediction of such interactions; and the concepts of sustainable design and development and environmental stewardship.

10) **Ethics and equity (EE):** An ability to apply professional ethics, accountability, and equity.

11) **Economics and project management (EP):** An ability to appropriately incorporate economics and business practices including project, risk and change management into the practice of engineering, and to understand their limitations.

12) **Life-long learning (LL):** An ability to identify and to address their own educational needs in a changing world, sufficiently to maintain their competence and contribute to the advancement of knowledge.