GRADUATE AND POSTDOCTORAL STUDIES
McGILL UNIVERSITY

FINAL ORAL EXAMINATION
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
OF

MERCEDES GARCIA HOLGUERA

DEPARTMENT OF BIORESOURCE ENGINEERING

ECOMIMETICS: AN ECOSYSTEM-BASED BIOMIMETIC
DESIGN METHOD FOR INNOVATIVE BUILT ENVIRONMENTS

July 17th, 2018
9:15 A.M.

Raymond Building, Room R2-045
McGill University, Macdonald Campus

COMMITTEE:
Dr. K. Manaugh (Pro-Dean) (Geography Department)
Dr. S. Prasher (Chair) (Bioresource Engineering Department)
Dr. G. Clark (Supervisor) (Bioresource Engineering Department)
Dr. S. Gaskin (Co-Supervisor) (Civil Engineering Department)
Dr. D. Covo (Internal Examiner) (Peter Guo-hua Fu School of Architecture)
Dr. M. Cerrutti (External Member) (Materials Engineering Department)

Dr. Josephine Nalbantoglu, Dean of Graduate and Postdoctoral Studies
Members of the Faculty and Graduate Students
are invited to attend
ABSTRACT
The practice of biomimetic design, defined as the application of biologically inspired design for the advancement of technology, is ancient; however, the organization of the field as a scientific discipline is recent and ongoing. For example, biomimetic design was present in Leonardo DaVinci’s drawings of flying machines based on the observation of birds’ flight in the fifteenth century, and in 1955 when George de Mestral patented the Velcro after studying how burrs attached to his dog’s fur. One thing these two examples have in common, beyond the emulation of nature, is their spontaneity or lack of structured methodology that led to their use. In the past two decades, more disciplines are embracing biomimetic approaches as a successful way to stimulate innovation in their fields, one of these disciplines is architecture. Biologically inspired design in architecture has, in addition, the potential to address present anthropogenic environmental challenges, some of which are directly or indirectly caused by the built environment. In this context, nature is perceived as a vast database of design solutions from which to learn and obtain inspiration. However, systematic methods for accessing nature’s designs and successfully transferring them into architectural objects are still incipient. Reliable and reproducible methods are fundamental for the dissemination of biomimetic design in professional and academic environments and constitute the cornerstone to building the discipline of biomimetic architecture.

In order to address this gap, this thesis presents a novel ecosystem-based method for biomimetic design in architecture, the ecomimetic method. Biologically inspired design can mimic one organism and its parts or the behavior of a group of organisms, but it is also possible to mimic the multiple and complex interactions that occur in ecological systems. It appears that ecosystems and buildings share some interesting features; for example, they both are open thermodynamic systems that need a constant inflow of energy to maintain a steady state. Buildings, like ecosystems, are made of numerous different components that interact in non-linear ways, therefore producing complex dynamics. However, unlike ecosystems, most buildings still rely on non-renewable sources of energy for their design, construction, maintenance and demolition. Learning from ecosystem dynamics can help optimize resource use in buildings and generate innovative designs.

Challenges to the development of biomimetic design methods are manifold. They include, but are not limited to, the identification of a biological system in nature’s extensive catalogue, the selection of transdisciplinary language and tools to transfer knowledge from biology to architecture, the coherent abstraction of the lessons learned from nature, and the successful emulation of those lessons in architectural designs. The ecomimetic method presented follows a problem-based approach and displays distinctive characteristics in each one of its design phases. The first phase requires the definition of an architectural design goal using thermodynamic language and the second phase suggests how to select an ecosystem that fits that design goal. In the third phase, two transdisciplinary tools (the Energy System Diagrams and a system dynamics software) are introduced to abstract the qualitative and quantitative organization of the ecosystem. In this phase, non-ecologists gain a deeper
understanding of the ecosystem’s functions and processes so that, in the following phase, they become capable of establishing functional correlations between ecosystemic and architectural components. During phase five, a building system is designed that reproduces some aspects of the ecosystem’s processes and, finally, its performance is assessed during the last design phase. Three case studies were developed to evaluate the ecomimetic method. The first one studied the regulation of temperature and humidity in the ecosystem of a leaf-cutting ant, which inspired a breathable building envelope as a design solution. The second exercise focused on freshwater marshes and mimicked their water quality improvement processes to design a modular building block for wastewater treatment. The last case explored a variety of processes in maple forest ecosystems to produce three mimicked solutions. Several lessons were learned from these cases. Although the ecomimetic method is highly transdisciplinary and requires that participants receive some basic technical training in disciplines complementary to their own, this was not a major obstacle for the participants. Improvements in meeting energy and water use goals were proposed in the three case studies. The ecomimetic building models reduced considerably the estimated energy use when compared to actual and benchmark building designs, and in all cases the solutions proposed included innovative architectural components.

The ecomimetic method is here shown to be a reliable tool for building design with great potential for addressing environmental challenges. Its implementation in academic and professional environments can be further broaden through the development of workshops and university-level courses, as well as a comprehensive software tool to facilitate the design process.
CURRICULUM VITAE

UNIVERSITY EDUCATION

2018 Ph.D. in Bioresource Engineering
 McGill University, Canada
2005 Certificate in Sustainable Architecture
 Pontificia Universidad Catolica de Chile, Chile
2003 Master and Bachelor degree in Architecture
 Universidad Politecnica de Madrid, Spain

EMPLOYMENT

2014-2018 Tomlinson Graduate Teaching Fellow
 McGill University, Canada
2013-2015 Teaching Assistant
 McGill University, Canada
2013-2014 McGill Net Positive series Project Manager
 McGill University, Canada
2009-2010 Architect Associate
 TEN Arquitectos, Mexico
2008-2009 Preconstruction Assistant Manager
 Grupo GA&A, Mexico
2005-2006 Project Architect
 Self-employed, Spain
2003-2007 Architect Project Leader
 Jose Cruz Ovalle Arquitectos, Chile

AWARDS

2018 BLUE Fellowship
 McGill University, Canada
2014-2018 Tomlinson Graduate Teaching Fellowship
 McGill University, Canada
2013-2015 Teaching Assistant
 McGill University, Canada
2011, 2012, 2014 GREAT Award
 McGill University, Canada
2012 Graduate Excel Fellowship
 McGill University, Canada
2013-2015 Teaching Assistant
 McGill University, Canada
2011-2013 Caja Madrid Foundation Scholarship Spain
1999-2000 Erasmus Scholarship European Union

PUBLICATIONS

Refereed Publications

Conference Proceedings

Professional Presentations

Garcia-Holguera, M., Coelho, S., Varela, B., Yazdani, A., Chouinard-Thuly, L., Covens, F., Harpp, D.N. (July 2017). Training graduate students and postdocs in
course design: A workshop to bridge the gap between new professors’ pedagogical background and institutions’ teaching requirements. Oral presentation. The Western conference on science education. London, Ontario. Canada

