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Peak Daily Water Demand Forecast Modeling
Using Artificial Neural Networks

Jan Franklin Adamowski'

Abstract: Peak daily water demand forecasts are required for the cost-effective and sustainable management and expansion of urban
water supply infrastructure. This paper compares multiple linear regression, time series analysis, and artificial neural networks (ANNs) as
techniques for peak daily summer water demand forecast modeling. Analysis was performed on 10 years of peak daily water demand data
and meteorological variables (maximum daily temperature and daily rainfall) for the summer months of May to August of each year for
an area of high outdoor water usage in the city of Ottawa, Canada. Thirty-nine multiple linear regression models, nine time series models,
and 39 ANN models were developed and their relative performance was compared. The artificial neural network approach is shown to
provide a better prediction of peak daily summer water demand than multiple linear regression and time series analysis. The best results
were obtained when peak water demand from the previous day, maximum temperature from the current and previous day, and the
occurrence/nonoccurrence of rainfall from five days before, were used as input data. It was also found that the peak daily summer water
demand is better correlated with the rainfall occurrence rather than the amount of rainfall itself, and that assigning a weighting system to

the antecedent days of no rainfall does not result in more accurate models.
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Introduction

Water supply systems around the world have become stressed in
recent years due to rapid population growth and increased per
capita water consumption. In Ottawa, Canada, it has been pre-
dicted that both the residential and employment population in the
West Center region of the city will increase substantially in the
next 25 years due to the rapid development of this suburban area.
In addition, recent trends in the West Center region pressure zone
indicate that both average and peak water demand have been
increasing for the summer period between May and August. Stud-
ies have shown that a major fraction of the water consumption in
the summer in the Ottawa West Center (OWC) pressure zone in
Ottawa can be attributed to outdoor water use, which essentially
consists of the watering of lawns and gardens. The water demand
process in such situations is usually mainly driven by the maxi-
mum air temperature with the rainfall occurrences interrupting the
process to cause transient drops in the water use. The water con-
sumption can be expected to be high on consecutive dry days with
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high temperatures and low on rainy days. However, the water
demand may not depend on the amount of rainfall since it may
actually be a function of the occurrence of rainfall instead. This
can be attributed to the fact that people may not want to water
their lawns or gardens on a rainy day regardless of the amount of
rainfall.

Fig. 1 shows the diurnal water demand pattern for the day of
the highest peak demand (MXDY) for the entire OWC zone
record period for the summers between 1993 and 2002. It can be
seen that the demand rises significantly after 4 p.m., reaches a
peak just before 9 p.m., and then gradually decreases. For com-
parative purposes, the diurnal pattern of a typical rainy summer
day is also shown in Fig. 1. It can be seen that on such a day,
when there is likely little or no outdoor water use, there is no
significant rise in demand between the hours of 4 and 11 p.m.
This illustrates the significance of outdoor water use on peak
water demand in the summer. The high rates of outdoor water
demand in the summer can be attributed to the fact that the OWC
zone consists largely of neighborhoods with many homes with
large landscaped areas that need to be irrigated.

In 2002, a typical winter day (September to April) water de-
mand in the OWC zone was 21.3 ML/day, a typical low summer
day (rainy day) water demand was 24.8 ML/day, and an average
summer (May to August) day water demand was 32.4 ML/day
(ROMC 2003). The maximum peak daily summer water demand
has increased from 67.8 ML/day in 1993 to 109.3 ML/day in
2002. This illustrates the great variability in water demand in the
OWC zone.

As a result of the projected population and employment
growth in the OWC zone, coupled with increasingly high peak
water use in the summer due to outdoor water demand, it has been
determined that the existing water supply infrastructure will most
likely not be able to meet future water demands (Bougadis et al.
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Fig. 1. Typical diurnal summer water usage in Ottawa West Center
average MXDY =average peak demand for entire record)
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2005). In order to address this issue, it will be necessary to pursue
a course of action that might involve a combination of the fol-
lowing: optimizing the water supply system through real-time
control by a hybrid expert system, imposing effective water use
restrictions, and developing a sustainable and least-cost infra-
structure expansion strategy. A critical aspect of each of these
initiatives is the accurate forecasting of short-term water de-
mands, and in particular, peak daily water demands.

Despite the relative importance of peak daily water demand,
limited detailed research has been devoted to this topic, including
factors driving peak daily water demand and forecasting methods
(Day and Howe 2003). The motivation for this research was,
therefore, to study three important issues that have not been ex-
plored in the short-term water demand literature: (1) to investigate
the use of artificial neural networks for forecasting peak (as op-
posed to average or total) daily water demand in the summer
months in an area of high outdoor water usage; (2) to determine
whether rainfall occurrence or rainfall amount is a more signifi-
cant variable in modeling peak summer water demand forecasts;
and (3) to test the hypothesis of whether assigning a weight sys-
tem to the antecedent days of no rainfall would result in more
accurate models.

It has been shown that the peak summer water demand process
is stochastic and nonlinear because outdoor water use, the major
component of peak summer water demand, depends on the dura-
tion and intensity of rainfall and the characteristics of temperature
(Gutzler and Nims 2005). As such, the forecasting of peak sum-
mer water demand is complex, and thus the use of artificial neural
networks (ANNSs), which are capable of modeling nonlinear sys-
tems, needs to be explored. The issue of whether rainfall occur-
rence or rainfall amount is a more significant variable in modeling
short-term water demand has been investigated by Jain et al.
(2001) and Bougadis et al. (2005) but they arrived at opposite
conclusions. Therefore, this issue was further investigated in this
study for peak daily water demand.

In this research, three methods for peak daily water demand
were developed and compared. Multiple linear regression was
used in this study because it is one of the most widely used
techniques for water demand forecasting and as such is ideal for
comparative purposes with the newer ANN technique. Multiple
linear regression was also used because time series analysis, the
other most widely used technique for water demand forecasting,
involves only present and past water demand, whereas with
multiple linear regression one can include additional parameters
such as climatic ones. Time series analysis was also explored as a
potential technique because regression models do not illuminate

the inherent autocorrelation structure of a water use pattern over
time. A time series analysis is capable of revealing the autocorre-
lation structure of a short-term water demand pattern over time.
ANN analysis was explored as a potential technique because, as
mentioned earlier, the use of ANNs to forecast peak daily water
demand has not been explored in great detail in the literature and
because of the high potential of the ANN approach due to its
ability to handle nonlinear relationships.

Previous Research

A variety of techniques have been used in short-term water
demand forecasting. Examples of short-term water demand
forecast modeling using regression analysis include: Howe and
Linaweaver (1967), Oh and Yamauchi (1974), Hughes (1980),
Anderson et al. (1980), and Maidment and Parzen (1984). Maid-
ment et al. (1985) used short-term time series models for daily
municipal water use as a function of rainfall and air temperature.
Maidment and Miaou (1986) applied this model to the water con-
sumption from nine cities in the United States. Some other ex-
amples of short-term water demand forecast modeling using time
series analysis include Smith (1988), Miaou (1990), and Zhou
et al. (2000).

Artificial neural networks have recently begun to be used for
short-term water demand forecasting. Jain et al. (2001) developed
ANN models by using weekly maximum air temperature, weekly
rainfall amount, weekly past water demand, and the occurrence or
nonoccurrence of rainfall as parameters for their models and com-
pared them to regression and time series models. It was found that
the occurrence of rainfall was a more significant variable than the
amount of rainfall itself in the modeling of short-term water de-
mand, and that the ANN models outperformed both the regression
and time series models. One of their main recommendations for
future study was to conduct a similar study, but using a longer and
more continuous set of data since their data was scattered with a
lot of missing records. This study uses a long record of continu-
ous data with no missing records.

Jain and Ormsbee (2002) examined regression, time series
analysis, and ANN models for daily water demand forecasting.
Only one simple ANN model was investigated in this study,
which was a function of the daily water demand from the previ-
ous day and the daily maximum air temperature of the current
day. It was found that this ANN model was slightly better than the
time series and the regression—disaggregation models.
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Pulido-Calvo et al. (2003) examined regression, time series,
and ANN models for total daily water demand for Fuente Palm-
era, Spain. It was determined that the best model (an ANN model)
was a function of the water demand and maximum temperature
from the two previous days.

Bougadis et al. (2005) explored regression, time series, and
ANN models for weekly water demand. They determined that the
ANN models consistently outperformed the regression and time
series models, and that the best results were obtained when em-
ploying previous weekly demand along with the current week’s
rainfall and temperature. They found, in contrast to Jain et al.
(2001), that the weekly water demand is better correlated with the
amount of rainfall rather than the rainfall occurrence. As such,
this issue is explored again in this study.

Ottawa West Center Zone Water Supply System

The City of Ottawa is responsible for providing potable water
services to 750,000 customers. It operates two purification plants,
20 pumping stations, 14 reservoirs, and four communal well sys-
tems. There are seven water supply zones in the city. The OWC
pressure zone investigated in this study is the third largest water
supply zone in Ottawa and serves a residential population of ap-
proximately 63,000 and an employment population of approxi-
mately 17,500. The land use of the OWC zone is 53% residential,
5% commercial/institutional, 21% park/recreational, and 21% va-
cant (ROMC 2003). The OWC zone receives all of its water from
the Ottawa River via a purification plant. No groundwater is used.

Data

Many variables influence water demand, most of which can be
grouped into two classes: socioeconomic and climatic variables.
Studies have demonstrated that socioeconomic variables are re-
sponsible for the long-term effects on water demand, while cli-
matic variables are mainly responsible for short-term seasonal
variations in water demand (Miaou 1990).

This study used climatic variables, past water demand and
population. More specifically, the data used in this study consisted
of daily total rainfall (mm), maximum daily temperature (°C),
peak daily water demand (ML/day), and population. The peak
daily water demand for a specific day was the peak hour water
demand for that specific day.

The peak daily water demand data was obtained from the City
of Ottawa for the OWC pressure zone in Ottawa, Canada. Daily
maximum temperature (°C) and daily total rainfall (mm) were
obtained from Environment Canada for the Ottawa region. The
water demand series record was available from 1994 to 2002.
Only the summer months (May to August) were used in the analy-
sis since peak demand usage occurs then for a given year. There
were no special events (such as a huge pipe break or tournaments)
that could have invalidated the data.

All the data series were divided into a training/calibration set
and a testing set (split sample study). The training set began in
1994 and ended in 2001. The performance of all statistical models
was analyzed by comparing the known peak water demand values
in 2002 with the forecasted peak water demand values for 2002
obtained from the different models.

Model Performance Tests

The performance of developed models can be evaluated using
several statistical tests that describe the errors associated with the
model. After each of the model structures is calibrated using the
calibration/testing data set, the performance can then be evaluated
in terms of these statistical measures of goodness of fit. In order
to provide an indication of goodness of fit between the observed
and forecasted values, the average absolute relative error
(AARE), the maximum absolute relative error (Max ARE), and
the coefficient of determination (R?) can be used.

The AARE is a quantitative measure of the average error in
one step ahead forecasts from a particular model and is defined by
(Jain et al. 2001)

N
1
AARE = X/E

i=1 i

X 100% (1)

where O;=observed peak water demand; and D;=forecasted peak
water demand found from regression, time series, and ANN mod-
els, respectively. The smaller the value of AARE, the better is the
performance of the model.

The Max ARE is the maximum of the absolute relative error
among all of the forecasted data points and is a measure of the
robustness of the model. The smaller the value of the Max ARE,
the better is the performance of the model. The coefficient of
determination (R?) is a measure of the strength of the model in
developing a relationship among input and output variables. It
measures the degree of correlation among the observed and fore-
casted values.

Model Development

Multiple Linear Regression Analysis

Thirty-nine multiple linear regression (MLR) models were devel-
oped for daily peak water demand forecasts and can be seen in
Table 1. Models MLR-1-MLR-20 were designed to assess the
significance of various input variables on peak daily water de-
mand and to corroborate the cross correlation and simple linear
regression analyses. Models MLR-20-MLR-39 were developed
to test whether the occurrence or nonoccurrence of rainfall (using
both binary and weighted systems) was a more significant vari-
able than the amount of rainfall.

The first group of models was MLR-1-MLR-6, which was
developed to explore the importance of temperature from the pre-
vious day (7,_,) on peak daily water demand. An example of one
of these models is MLR-3, which is a function of daily peak
demand from the previous day, the maximum temperature of the
current day, and the total rainfall of the current day, and is shown
by

D,=By+ B D, + B;T,+ BsR, (2)

The second group of models was MLR-7-MLR-10, which was
developed to explore the importance of peak daily water demand
from two days ago (D,_,) on peak daily water demand. The third
group of models was MLR-11-MLR-20, which was developed to
test the effect of population on models MLR-1-MLR-10. The
fourth group of models was MLR-21-MLR-26, which was devel-
oped to test the effect of rainfall amount from the current day to
five days before.
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Table 1. Performance Statistics for All MLR Models

Max R? R?
Model Parameters AARE ARE (training) (testing)
MLR-1 D, T, 16 81 0.56 0.51
MLR-2 D,,, T, T, 16 80 0.58 0.54
MLR-3 D,,, T, R, 16 76 0.58 0.53
MLR-4 D, .\, T, T, i, R, 15 81 0.59 0.55
MLR-5 D,.,, T, CR, 15 70 0.58 0.54
MLR-6 D... T, T., CR, 14 64 0.59 0.57
MLR-7 D,\,D,, T, 15 80 0.57 0.52
MLR-8 D, D, T, T, 14 70 0.59 0.55
MLR-9 D,_,D,_ T, T, R, 15 67 0.60 0.56
MLR-10 D,y D, T, T,_,, CR, 1 60 0.61 0.58
MLR-11 MLR-1+population 15 86 0.57 0.51
MLR-12 MLR-2+population 16 81 0.59 0.55
MLR-13 MLR-3+population 15 82 0.58 0.53
MLR-14 MLR-4+population 16 77 0.60 0.55
MLR-15 MLR-5+population 15 74 0.60 0.55
MLR-16 MLR-6+population 16 71 0.61 0.57
MLR-17 MLR-7+population 16 38 0.57 0.52
MLR-18 MLR-8+population 14 70 0.60 0.55
MLR-19 MLR-9+population 14 67 0.61 0.56
MLR-20 MLR-10+population 14 60 0.62 0.58
MLR-21 Doy T Ty, R, 14 71 0.59 0.56
MLR-22 D, _,T, T.1, R» 15 72 0.58 0.54
MLR-23 DT, TR 15 72 0.58 0.54
MLR-24 D,_, T, T, R4 15 72 0.58 0.54
MLR-25 Dy T, T, . R_s 15 72 0.58 0.54
MLR-26 MLR-21+population 15 79 0.59 0.56
MLR-27 D.,. T, T._,.CR,_, 15 62 0.61 0.59
MLR-28 D,,, T, T,_,, CR._, 15 61 0.61 0.58
MLR-29 D,y T, T.,, CR,_; 14 59 0.61 0.59
MLR-30 D,,, T, Ty, CR._4 14 61 0.60 0.58
MLR-31 D, T, T, CR, s 14 56 0.61 0.59
MLR-32 MLR-31+population 14 61 0.62 0.59
MLR-33 DT, T,_,, DR, 14 60 0.61 0.59
MLR-34 D,,, T, T,_;, DR, 15 74 0.59 0.54
MLR-35 D, , T, T,,, DR,_, 15 73 0.58 0.54
MLR-36 D, ,, T, T,_;, DR, 15 73 0.58 0.54
MLR-37 D, T, T, DR, 15 73 0.58 0.55
MLR-38 D, ,, T, T, ;, DR,; 15 73 0.58 0.54
MLR-39 MLR-33+population 17 67 0.61 0.59
Average 15 71 0.59 0.56

Note: MLR =multiple linear regression; AARE=average absolute relative error; R>=correlation coefficient; D,=demand at time #; 7,=temperature at time
t; R,=rainfall at time #; CR,=occurrence or nonoccurrence of rainfall; and DR,=weighted occurrence or nonoccurrence of rainfall.

The fifth group of models was MLR-27-MLR-32, which was
developed to test whether the occurrence of rainfall is a more
significant variable than the rainfall amount itself in modeling the
peak daily water demand forecasts. In these models, the actual
rainfall amount was replaced by the occurrence or nonoccurrence
of rainfall, which is denoted by the CR coefficient in the multiple
linear regression equations. If the sum of rainfall is greater than
2.5 mm for the given time period, then the CR coefficient is equal
to 1; if the sum of rainfall is less than 2.5 mm for the given time
period, then the CR coefficient is equal to zero, respectively. An
example of this type of model is MLR-27, which is a function of
the peak daily demand from the previous day, the maximum tem-

perature of the current day, the maximum temperature of the pre-
vious day, and the occurrence/nonoccurrence of rainfall value of
the previous day. It is shown by

Dt=BO+BlDt—1 +B3TZ+B4Tt—1 +312CR[_1 (3)

The sixth group of models was MLR-33-MLR-39, which was
developed in order to test whether assigning a weight system to
the antecedent days of no rainfall (i.e., no rainfall above 2.5 mm)
would result in better models. For example, if the sum of the
rainfall in the preceding 10 days was less than 2.5 mm, then a
value of 10 would be assigned to the DR coefficient shown in the

122 / JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT © ASCE / MARCH/APRIL 2008

J. Water Resour. Plann. Manage. 2008.134:119-128.



Downloaded from ascelibrary.org by MCGILL UNIVERSITY on 10/05/13. Copyright ASCE. For personal use only; al rights reserved.

Table 2. Performance Statistics for All Time Series Models

Max R? R?

Model AIC AARE ARE (training) (testing)
ARIMA (1,1,1) 8459 15 94 0.53 0.44
ARIMA (2,1,1) 8446 15 89 0.54 0.45
ARIMA (2,1,2,) 8443 15 94 0.54 0.45
ARIMA (1,1,0) 8567 15 106 0.53 0.45
ARIMA (2,1,0) 8537 15 62 0.53 0.46
ARIMA (3,1,0) 8515 15 119 0.53 0.45
ARIMA (0,1,1) 8542 19 127 0.46 0.36
ARIMA (0,1,2) 8501 20 129 0.47 0.36
ARIMA (0,1,3) 8483 19 123 0.47 0.37
Average 17 105 0.55 0.40

Note: ARIMA =autoregressive integrated moving average; AIC=Akaike
criterion; AARE=average absolute relative error; and R%=correlation
coefficient.

Eq. (4). However, if there was a day with rainfall greater than
2.5 mm, then a value of 0 would be assigned to the DR coefficient
and the process would restart. An example of this type of model is
MLR-33, which is a function of the peak demand from the pre-
vious day, the temperature of the current day, the temperature of
the previous day, and the weighted occurrence or nonoccurrence
of rainfall of the current day. It is shown by

Dt=BO+BlDt71 +B3Tt+B4Tt71 +BI7DRt (4)

All of the MLR models were first trained (to determine the
regression coefficients) using the data in the training set (1994—
2001) and then tested using the testing data set (2002), and com-
pared using the three statistical measures of goodness of fit.

Time Series Analysis

The S-plus statistical software program was used for time series
analysis in this study. The first stage in developing the time series
models was to determine if the data are stationary. For this, the
autocorrelation coefficient function (ACF) was used. It was found
that there is a time dependence in the series for lags up to 15 at a
95% confidence level, which implies that the data series is not
stationary. The data were, therefore, differenced to convert it into
a stationary process. An ACF plot was then performed on the
differenced series, and it was determined that the new ACF plot
contained one significant lag while the remaining lags were not
significant. Stationary conditions were, therefore, satisfied.

Since the data were transformed into a stationary model
through differencing, autoregressive integrated moving average
(ARIMA) models of order p, d, and g were used. Using the dif-
ferenced data, the ACF and partial ACF (PACF) plots were then
used to identify the order of the ARIMA models. In the models
that were developed, the number of autoregressive parameters (p)
varied from O to 3 and the number of moving average parameters
varied from O to 3. One difference of the data set (d=1) was
required to transform the series into a stationary process.

A total of nine ARIMA models were identified to fit the peak
water demand series and the Akaike information criterion (AIC)
was used to verify each of the models. The parameters of these
nine models are shown in Table 2. All of the time series models
were first trained using the data in the training set (1994-2001)
and then tested using the testing data set (2002) and compared
using the three statistical measures of goodness of fit.

ANN Analysis

Using the Tiberius software package, back-propagation ANNs
with the “generalized delta rule” as the training algorithm were
used to develop all the ANN models. The Tiberius 2.0.0 neural
network modeling software package for Excel is a feed-forward
multilayer perceptron trained with the back propagation algorithm
and is completely written in visual basic for applications (VBA),
the macrolanguage of Microsoft Excel. To develop an ANN
model, the primary objective is to arrive at the optimum architec-
ture of the ANN that captures the relationship between the input
and output variables. The task of identifying the number of neu-
rons in the input and output layers is normally simple as it is
dictated by the input and output variables considered to model the
physical process. The number of neurons in the hidden layer has
to be optimized using the available data through the use of a trial
and error procedure. In addition, optimal values for the learning
coefficients and the momentum correction factor have to be
determined.

In this study, ANN networks consisting of an input layer with
2-6 input nodes, one single hidden layer composed of between
three and five nodes, and one output layer consisting of one node
denoting the predicted peak water demand were developed. Each
ANN model was tested on a trial and error basis for the optimum
number of neurons in the hidden layer (three, four, and five neu-
rons in the hidden layer were tested for each model), and for the
optimum learning coefficient, which was assumed to lie within
the range of 0-0.2 (Jain et al. 2001).

Thirty-nine separate ANN models were identified in this study.
The neurons in the input layer of each of these 39 different ANN
models represented different combinations of the various physical
variables considered and can be seen in Table 3. Each of the 39
ANN models used the exact same input variables as each of the
MLR models that were developed. As for the corresponding MLR
models, Models ANN-1-ANN-20 were designed to assess the sig-
nificance of the various input variables on peak daily water de-
mand and to corroborate the graphical, cross-correlation, and
simple linear regression analyses performed in this study. Models
ANN-20-ANN-39 were developed to test whether the occurrence
or nonoccurrence of rainfall (using both binary and weighted sys-
tems) was a more significant variable than the amount of rainfall.

All of the ANN models were first trained using the data in the
training set (1994-2001) to obtain the optimized set of connection
strengths and then tested using the testing data set (2002) and
compared using the three statistical measures of goodness of fit.

Results

Cross-Correlation Analysis

To investigate the dependency between variables that influence
water demand, cross-correlation coefficients between peak daily
demand and each variable were calculated and are shown in
Table 4. This information was used to aid in selecting input vari-
ables for multiple linear regression and ANN models. It can be
seen from Table 4 that the peak daily water demand series at
time ¢ is strongly correlated with the peak demand from the pre-
vious day (with a correlation value of 0.73); the temperature of
the current day (with a correlation value of 0.45); and the tem-
perature of the previous day (with a correlation value of 0.34).
It can also be observed that the daily peak water demand is more
strongly correlated with the occurrence or nonoccurrence of rain-
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Table 3. Performance Statistics for All ANN Models

Learning Max R? R?
Model Parameters Coefficient AARE ARE (training) (testing)
ANN-1 D, T, 0.06 15 82 0.57 0.54
ANN-2 D, ., T, T, 0.07 14 73 0.59 0.57
ANN-3 D, T,R, 0.07 14 67 0.61 0.61
ANN-4 D, T, T, i, R, 0.08 14 60 0.63 0.63
ANN-5 D, , T, CR, 0.08 14 58 0.63 0.62
ANN-6 D, ,, T, T, CR, 0.06 13 55 0.65 0.66
ANN-7 D, , D, , T, 0.08 14 79 0.58 0.56
ANN-8 D,,D,» T, T, 0.09 14 72 0.60 0.58
ANN-9 D _,D._,T,T_, R, 0.08 13 64 0.65 0.66

Dt—lv Dt—2v Ttht—lv

ANN-10 CR, 0.08 14 63 0.66 0.63
ANN-11 MLR-1+population 0.08 15 88 0.59 0.54
ANN-12 MLR-2+population 0.08 15 79 0.60 0.57
ANN-13 MLR-3+population 0.07 15 83 0.62 0.58
ANN-14 MLR-4+population 0.08 14 72 0.63 0.62
ANN-15 MLR-5+population 0.08 13 64 0.64 0.63
ANN-16 MLR-6+population 0.08 14 61 0.65 0.64
ANN-17 MLR-7+population 0.08 15 87 0.59 0.54
ANN-18 MLR-8+population 0.07 14 78 0.61 0.57
ANN-19 MLR-9+population 0.06 14 70 0.64 0.61
ANN-20 MLR-10+population 0.08 13 72 0.65 0.63
ANN-21 D, T, T, .R,_, 0.08 14 71 0.60 0.60
ANN-22 D,_,T,T, ,R,, 0.08 14 73 0.59 0.57
ANN-23 D, , T, T, 1, R3 0.08 14 71 0.60 0.58
ANN-24 D,_,T,T, ,R_4 0.07 14 73 0.59 0.58
ANN-25 D, .y, T, T, i, R._s 0.08 14 75 0.60 0.58
ANN-26 MLR-21+population 0.08 14 81 0.62 0.59
ANN-27 D, T,T, ., CR_, 0.06 12 40 0.66 0.69
ANN-28 D, ., T,T,;, CR,, 0.06 12 41 0.65 0.67
ANN-29 D, ,T,T,,, CR,; 0.06 13 42 0.65 0.67
ANN-30 D, ,T,T,;, CR,4 0.08 12 43 0.63 0.67
ANN-31 D, ,T,T,,, CR, 5 0.05 12 41 0.66 0.69
ANN-32 MLR-31+population 0.05 12 55 0.65 0.68
ANN-33 D,,, T, T, DR, 0.07 13 49 0.63 0.66
ANN-34 D, ,, T, T, i, DR, 0.08 13 75 0.61 0.60
ANN-35 D, ,T,T,_,,DR, , 0.08 14 74 0.60 0.58
ANN-36 D, ,, T, T,_;, DR, 0.08 14 74 0.60 0.58
ANN-37 D, ,, T, T, .DR, 4 0.08 13 76 0.60 0.58
ANN-38 D, ,, T, T, i, DR 5 0.08 14 73 0.60 0.56
ANN-39 MLR-33+population 0.1 14 64 0.66 0.65
Average 14 67 0.62 0.61

Note: ANN=artificial neural network; AARE=average absolute relative error; R%=correlation coefficient; D,=demand at time #; T,=temperature at time
t; R,=rainfall at time #; CR,=occurrence or nonoccurrence of rainfall; and DR,=weighted occurrence or nonoccurrence of rainfall.

fall (up to and including five days before) in comparison with
the actual rainfall amount. The cross-correlation coefficients be-
tween the peak demand and rainfall amount ranged from —0.12
to —0.23, whereas the cross-correlation coefficients between the
peak demand and occurrence or nonoccurrence of rainfall ranged
from —0.22 to —0.46. The direction of correlation is negative
with rainfall, which means that a high occurrence or amount of
rainfall is responsible for decreasing amounts of peak daily water
demand.

Seasonal or Periodic Component Analysis

To determine whether any seasonal patterns exist in the water
demand series, Fourier analysis was used. The results of the
Fourier analysis indicate that there is no predominant single peri-
odicity component in the peak daily water demand series. The
strongest periodic components were recorded for the 55 and 123
day periods (which correspond to 2 and 4 month periods, respec-
tively), although they account for only 9% of the total variance.
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Table 4. Cross-Correlation between Demand and Variables

Peak
demand

Variable (1)
Temperature () 0.45
Temperature (1—1) 0.34
Peak demand (7) 1
Peak demand (z—1) 0.73
Rainfall (r) -0.17
Rainfall (1—1) ~0.23
Rainfall (r-2) -0.18
Rainfall (-3) ~0.16
Rainfall (1—4) -0.13
Rainfall (1—5) ~0.12
Occurrence of rain (1) -0.22
Occurrence of rain (¢—1) -0.35
Occurrence of rain (1—2) -0.42
Occurrence of rain (¢—3) —-0.46
Occurrence of rain (1—4) -0.45
Occurrence of rain (¢—35) -0.46

This indicates that, for predictive purposes, Fourier analysis can-
not be used since it does not account for much of the variance. As
a result, ARIMA models were developed.

Simple Linear Regression Analysis

In order to help select input variables for multiple linear regres-
sion and ANN models, simple linear regression was performed.
The results from simple linear regression analysis are shown in
Table 5. Strong dependence was found in peak demand (7) versus
peak demand (¢—1) with an R? value of 0.5268. Adequate depen-
dence was found in peak demand (7) versus temperature () and
(t—1), with R? values of 0.1960 and 0.1119, respectively. Weak
dependence was found in peak demand (¢) versus rainfall (7) and
rainfall (¢—1) with R? values of 0.0307 and 0.0507, respectively.

Multiple Linear Regression Analysis

Table 1 shows goodness of fit statistics for the testing of all MLR
models. The first group of models, MLR-1-MLR-6, demonstrate
that including 7,_, with 7, improved the coefficient of determina-
tion by between 3 and 5% and resulted in generally lower AARE

Table 5. Simple Linear Regression Results

and Max ARE values. This corroborates the cross-correlation
analysis findings. As a result, it was decided to use 7,_; in addi-
tion to 7, in models MLR-21-MLR-39.

The second group of models, MLR-7-MLR-10, demonstrate
that including D,_, with D,_; improved the coefficient of determi-
nation by only 1.I-1.6%, but resulted in generally lower AARE
and Max ARE values. However, it was decided to not include
D, , in Models MLR-21-MLR-39 since the improvement was
negligible.

The third group of models, MLR-11-MLR-20 and MLR-26,
MLR-32, and MLR-39, demonstrate that including population as
an input variable improved the coefficient of determination by
only a negligible amount (less than 1% for each of the 13 models)
and, in almost all cases, resulted in higher AARE and Max ARE
values. As a result, models that included population as a variable
were not considered in the determination of the best overall
model. This corroborates the conclusions of several other studies
that found that including socioeconomic variables such as popu-
lation has a negligible impact on short-term water demand fore-
casting. This is understandable since it is highly unlikely that
overall zone population would have an affect on daily fluctuations
in water demand.

From the cross-correlation and simple linear regression analy-
ses in addition to the results of Models MLR-I-MLR-20, it can be
seen that D,_;, T,, and T,_; are significant variables in terms of
forecasting peak daily water demand in the OWC zone. It can
also be seen that D,_, and population are not significant. As such,
it was decided to use D,_;, T,, and T,_; as the basis for Models
MLR-21-MLR-309.

Models MLR-21-MLR-39 show that the daily peak water de-
mand series in the OWC zone is, in fact, better described with the
use of occurrence or nonoccurrence of rainfall rather than actual
rainfall amount. Models including the occurrence or nonoccur-
rence of rainfall (MLR-27-MLR-32) produced testing R? coeffi-
cients ranging from 0.58 to 0.60, AARE values ranging from 14
to 15, and Max ARE values ranging from 59 to 62. Models using
the rainfall amount (MLR-21-MLR-26) produced R? coefficients
ranging from 0.54 to 0.56, AARE values ranging from 14 to 15,
and Max ARE values ranging from 71 to 79. As well, the best
MLR model (discussed below) included the occurrence or nonoc-
currence of rainfall as opposed to the amount of rainfall. All of
this suggests that the water demand process in the OWC zone is
better correlated with the occurrence of rainfall rather than the
amount of rainfall.

Models using the weighted system of occurrence or nonoccur-

Parameter Versus parameter Slope R?

Rainfall (¢) Time (z) —-0.0006 0.0007
Rainfall () Rainfall (1—1) 0.0561 0.0031
Temperature (7) Rainfall (r) —-0.0442 0.0034
Temperature (7) Time (1) 0.0019 0.0143
Temperature (7) Temperature (t—1) 0.7311 0.5403
Peak demand (1) Time (1) 0.0161 0.1008
Peak demand (7) Temperature (7) 1.4344 0.196

Peak demand (7) Temperature (£—1) 1.0778 0.1119
Peak demand (7) Peak demand (r—1) 0.7229 0.5268
Peak demand (7) Rainfall (¢) -0.4316 0.0307
Peak demand (7) Rainfall (r—1) —-0.5546 0.0507

Note: R*=correlation coefficient.
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rence of rainfall did not perform as well as the models using the
binary system of occurrence or nonoccurrence of rainfall. Models
using the weighted occurrence or nonoccurrence of rainfall
(MLR-33-MLR-39) produced R? coefficients ranging from 0.54
to 0.60, AARE values ranging from 14 to 17, and Max ARE
values ranging from 60 to 74. Although these models did not
perform as well as the models with a binary system of occurrence
of rainfall, they nevertheless did perform better than the models
using the rainfall amount.

In terms of the coefficient of determination, the MLR model
that performed the best out of all models in training (R* of 0.61)
was MLR-33. However, the model performing the best in the
testing data set was MLR-31 (R? of 0.60), which was a function
of the peak daily water demand of the previous day, the maximum
temperature of the current and previous day, and the occurrence
or nonoccurrence of the rainfall five days before. In terms of
AARE and Max ARE, the MLR-31 model also performed the best
among all the MLR models with values of 14 and 56, respec-
tively. As such, overall, the MLR-31 model performed the best
among all MLR models (excluding the models with population
for reasons explained above). This model is given by

D,=11.2224+0.6132D,_, + 1.035T, — 0.63597,_, — 6.9573CR,_s
(5)

Time Series Analysis

Table 2 shows the performance statistics for the testing of all time
series models. A total of nine ARIMA (p, d, ¢q) models were
postulated to model daily water demand series. In terms of the
AIC, the ARIMA (2,1,2) model had the best fit with the observed
data as indicated by the lowest AIC value (8,443).

In terms of the coefficient of determination, all models had
relatively low R? values in training. These values ranged from
0.46 to 0.54, with the ARIMA (2,1,2) model having the highest
coefficient of determination value in the training data set. How-
ever, during the testing, it was found that the ARIMA (2,1,0)
model performed the best in terms of the three statistical mea-
sures of goodness of fit. This model had two autoregressive com-
ponents (p=2) and no moving average component (¢=0). Like
all the other ARIMA models, the data set used for this model was
differenced only once (d=0) in order to transform the series into
a stationary process.

The ARIMA (2,1,0) model had the highest R? value (0.46) for
the testing data set. In terms of AARE and Max ARE, the ARIMA
(2,1,0) model also performed the best among all ARIMA models
with an AARE of 15 and a Max ARE of 62. This model is shown
by

Dt = O.2787(DI7] - thz) - 0 1498(Dt72 - Dt*3) (6)

ANN Analysis

Table 3 shows the performance statistics for the 39 ANN models
developed in this study and includes the learning coefficients for
all the models that were found to produce the lowest root-mean-
square error between the observed and forecasted water demand
in the training session for each model. The optimized learning
coefficients ranged from 0.05 to 0.10 for the 39 ANN models.
For each of the 39 models, three, four, and five neurons in
the hidden layer were tested. It was determined that four neurons

in the hidden layer produced the highest coefficients of determi-
nation. Each of the 39 models used four neurons in the hidden
layer.

Models ANN-1-ANN-6 indicate that including 7,_; in addition
to T, improved the coefficient of determination by between 4 and
6% and resulted in lower AARE and Max ARE values. This
confirms the significance of 7,_; an input variable. This also cor-
roborates the graphical and cross-correlation analysis results in
addition to the MLR results. As a result, it was decided to include
both T, and T,_; in Models ANN-21-ANN-39.

Models ANN-7-ANN-10 indicate that including D, , with
D,_; can result in marginally better coefficients of determination
(+3%), but it can also result in lower coefficients of determina-
tion (=5%). It was also found that including D, , with D,_,
generally resulted in higher AARE and Max ARE values. As
such, it was decided to not include D, , in Models ANN-21—
ANN-39.

Models ANN-11-ANN-20 indicate that in some cases, includ-
ing population as an input variable can result in marginally better
coefficients of determination. However, these models also indi-
cate that including population as an input variable can also result
in significantly lower coefficients of determination. Models ANN-
26, ANN-32, and ANN-39 indicate that the addition of population
as an input variable in the best ANN models actually results in
lower coefficients of determination in all three cases. The lack of
significance of population as an input variable corroborates the
MLR analysis performed in this study.

It can be seen from Models MLR-21-MLR-39 that the peak
daily water demand series in the OWC zone is better described
with the use of the occurrence or nonoccurrence of rainfall rather
than the actual rainfall amount. Models including the binary sys-
tem of occurrence or nonoccurrence of rainfall (ANN-27—-ANN-
32) produced testing R” coefficients ranging from 0.67 to 0.69,
AARE values ranging from 12 to 13, and Max ARE values rang-
ing from 40 to 55. Models using the rainfall amount (ANN-21-
ANN-26) produced R? coefficients ranging from 0.57 to 0.60,
AARE values ranging from 13.5 to 14, and Max ARE values
ranging from 71 to 81. As well, the best ANN model (discussed
below) included the occurrence or nonoccurrence of rainfall as
opposed to the amount of rainfall. Like the MLR results, this
suggests that the water demand process in the OWC zone is better
correlated with the occurrence of rainfall rather than the amount
of rainfall.

Models using the weighted system of occurrence or nonoccur-
rence of rainfall did not perform as well as the models using the
binary system of occurrence or nonoccurrence of rainfall. These
models (ANN-33-ANN-39) produced R? coefficients ranging
from 0.56 to 0.66, AARE values ranging from 13 to 14, and Max
ARE values from 49 to 76.

In terms of the coefficient of determination, the best ANN
model overall for both training and testing was ANN-31 with R?
values of 0.66 and 0.69, respectively. ANN-31 is a function of the
peak daily demand from the previous day, the temperature from
the current day and the previous day, and the occurrence or non-
occurrence of rainfall from five days before (D,_;, T}, T,_;, and
CR;s). In terms of AARE the best model was also ANN-31 with
an AARE of 12. However, the model with the best Max ARE
(with a value of 40) was the ANN-27 model. The ANN-31 model
had the second best Max ARE (with a value of 41). It should be
pointed out that some of the other ANN models (especially ANN-
27) had performance statistics that were almost as good as the
ANN-31 model.
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Table 6. Comparison Analysis of the Three Forecasting Techniques

Mode R? R?

type AARE Max ARE (training) (testing)
(a) Average values for each forecasting technique

MLR 15 71 0.59 0.56

ARIMA 16 105 0.55 0.39

ANN 14 67 0.62 0.61

(b) Best model for each type of technique

MLR-31 14 56 0.61 0.60

ARIMA 15 62 0.53 0.46

(2,1,0)

ANN-31 12 41 0.66 0.69

Note: MLR=multiple linear regression; ARIMA=autoregressive inte-
grated moving average; ANN=artificial neural network; AARE=average
absolute relative error; and RZ=correlation coefficient.

Comparative Analysis

A comparative analysis was performed to evaluate the relative
performance of each modeling technique investigated in this
study. Average values of the statistical measures of goodness of fit
were calculated from all the models employing a particular tech-
nique and the results for all three techniques investigated in this
study are presented in Table 6.

It is quite clear that based on the average statistical measures
of goodness of fit, the ANN models outperformed the regression
and time series models, recording the lowest AARE and Max
ARE statistics, while recording the highest R? values in training
and testing. It is also clear that the regression models outper-
formed the time series models.

The time series models had relatively high coefficients of de-
termination during training, however, they were not able to per-
form well during testing, with very low testing R? values, high
AARE values, and very high Max ARE values. A possible reason
as to why the time series models did not perform well could be
due to the fact that this technique did not consider climatic vari-
ables during the modeling process. In ANN and multiple linear
regression, the relationship between present and past water de-
mand data and climatic data was examined, while the time series
models calculated the relationship between present and past water
demand data only. This suggests the importance of climate on
peak daily water demand and that the daily water demand process
in the OWC zone is mainly governed by the maximum air tem-
perature and interrupted by occurrences of rainfall.

Based on the statistical measures of goodness of fit calculated
in this study, it can be observed that Model ANN-31 performed
the best out of all models. Table 6 shows that it had the highest R?
value in training (0.66), the highest R? value in testing (0.69), the
lowest AARE (12), and the second lowest Max ARE (41) out of
all MLR, ANN, and time series models. In terms of the value of
R? in testing, the ANN-31 model was found to be 14% more
accurate than the best MLR model (MLR-31), and 34% more
accurate than the best time series model [ARIMA (2,1,0)].

Discussion

The best predictive variables for peak daily water demand found
in this study were D,_, T,, T,_;, and CR,_s. These variables were
used for both the best MLR model and the best ANN model. For
these variables, it was determined that there is a time dependency
(autocorrelation) between D, and D,_;, to a lesser extent a time

dependency between 7T, and T,_;, as well as a time dependency in
the occurrence of rainfall between CR, and CR,_s. The reason that
the occurrence or nonoccurrence of rainfall from five days before
was significant can perhaps be explained in terms of a “lag of
effect” phenomenon. It was also found that for both the MLR and
ANN models, the peak daily water demand series in the OWC
zone was better described with the use of the occurrence or non-
occurrence of rainfall rather than the actual rainfall amount. This
supports the findings of Jain et al. (2001) but is opposite to the
findings of Bougadis et al. (2005). Another finding was that mod-
els using the weighted system of occurrence or nonoccurrence of
rainfall did not perform as well as the models using the binary
system of occurrence or nonoccurrence of rainfall. As well, the
lower R? and higher AARE values obtained in this study for peak
water demand compared to some of the studies that investigated
average or total daily and weekly water demand (Jain et al. 2001;
Jain and Ormsbee 2002), indicate that the forecasting of peak
summer water demand is less accurate perhaps due to the very
high variations in peak demands found in areas of high outdoor
water usage.

In this study it was shown that the ANN technique is margin-
ally better than the multiple linear regression and time series
analysis techniques in forecasting peak daily summer water de-
mand in an area of high outdoor water demand. There are several
reasons that might explain why the ANN technique was some-
what better capable of handling the data that were used in this
study in order to forecast peak daily water demand. The time
series models might not have performed well compared to the
ANN (and multiple linear regression) models because this tech-
nique did not consider climatic variables during the modeling
process. In ANN (and multiple linear regression) analysis, the
relationship between present and past water demand data and
climatic data is examined, while in the time series analysis per-
formed in this study, only the relationship between present and
past water demand data was calculated. However, the time series
technique is, nevertheless, very useful for water supply systems
where climatic data are not available.

The multiple linear regression models might have performed
worse than the ANN models because MLR equations can only
capture relationships of a prespecified functional form, and as
such they may not always be sufficient to accurately predict the
nonlinear nature of the variables involved. On the other hand,
ANNs make no assumptions about the nature of the relationships
between input and output variables.

An overall conclusion of this study is that none of the methods
performed very well in predicting peak water demand. This seems
to indicate that there were problems with the data used or the
wrong driving variables were used. The present study focused on
the modeling of peak water demand forecasts using climatic vari-
ables in addition to past water demands. The work could poten-
tially be improved if other variables that affect water demand
were to be examined. Examples of socioeconomic variables that
could be investigated include housing characteristics (number of
bathrooms, number of rooms, size of garden, household size, and
the number of people in the house); property values; land use
(residential, commercial or industrial); economic status (house
income); day of the week (including weekday, weekend and holi-
days); and water price. Of these variables, it is most likely that
the day of the week (weekday, weekend, or holiday) and water
price could potentially improve the short-term water demand
forecasts. Examples of climatic variables not used in this research
that could be investigated in future studies include: evaporation;
evapotranspiration; wind speed; relative humidity; cloud amount;
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and sunshine amount. Unfortunately, not all of the above data are
readily available, and often do not exist at all. Nevertheless, if
the above-mentioned socioeconomic and climatic variables are
available, it is possible that different combinations of driving
variables could potentially improve the forecasting ability of the
various techniques explored in this study. Another possible im-
provement would be to explore the use of different ANN training
algorithms such as radial basis functions, genetic algorithms, or
self-organizing networks.

Conclusions

The motivation for this study was to investigate three important
issues that have not been investigated in the literature concerning
short-term peak water demand. From the results of this study, the
following can be concluded: (1) the use of artificial neural
networks for use in forecasting peak daily water demand in the
summer months in an area of high outdoor water demand is mar-
ginally better than multiple linear regression and time series
analysis; (2) peak daily water demand is better correlated with the
rainfall occurrence rather than the rainfall amount itself; and (3)
assigning a weighting system to the antecedent days of no rainfall
does not result in more accurate models.

Acknowledgments

This study formed part of a thesis submitted for the degree of
Master of Philosophy in Engineering for Sustainable Develop-
ment at the Cambridge-MIT Institute at the University of Cam-
bridge. Funding for part of these studies was provided by the
Cambridge Commonwealth Trust of the University of Cambridge
and this is gratefully acknowledged. The writers also wish to
thank Dr. Richard Fenner of the Center for Sustainable Develop-
ment at the University of Cambridge for his enthusiastic support
and valuable advice throughout the course of this research. Dr.
Fenner was also responsible for the idea of testing the usefulness
of a weighted system of antecedent days of rainfall. Data were
provided by Mr. John Bougadis of Delcan Corporation in Ottawa,
Canada.

Notation

The following symbols are used in this paper:
B = regression coefficient;
CR = occurrence or nonoccurrence of rainfall;
= demand;
weighted occurrence or nonoccurrence of rainfall;
= number of observations;
= amount of rainfall,;
= temperature;

qwzgw
[

d; = desired demand at node j;
w;; = weight from hidden node i or from an input to node j
at time 1;

y; = actual output at node j;

a = momentum correction factor;

9 = error term; and

mn = learning coefficient.
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