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Abstract: Fluid loads on a variety of hydraulic structures and the free surface profile of the flow are important for design
purposes. This is a difficult task because the governing equations have nonlinear boundary conditions. The main objective
of this paper is to develop a procedure based on the natural element method (NEM) for computation of free surface pro-
files, velocity and pressure distributions, and flow rates for a two-dimensional gravity fluid flow under sluice gates. Natu-
ral element method is a numerical technique in the field of computational mechanics and can be considered as a meshless
method. In this analysis, the fluid was assumed to be inviscid and incompressible. The results obtained in the paper were
confirmed via a hydraulic model test. Calculation results indicate a good agreement with previous flow solutions for the
water surface profiles and pressure distributions throughout the flow domain and on the gate.

Key words: free surface flow, meshless methods, meshfree methods, natural element method, sluice gate, hydraulic struc-
tures.

Résumé : Les charges de fluides sur les structures hydrauliques et le profil de la surface libre de l’écoulement sont impor-
tants aux fins de conception. Cette conception est une tâche difficile puisque les équations principales présentent des
conditions limites non linéaires. Cet article a comme objectif principal de développer une procédure basée sur la méthode
des éléments naturels (NEM) pour calculer les profils de la surface libre, les distributions de vitesse et de pression ainsi
que les débits pour un écoulement gravitaire bidimensionnel sous les panneaux de vannes. La NEM est une technique nu-
mérique dans le domaine de la mécanique computationnelle et peut être considérée comme étant une méthode sans mail-
lage. Dans la présente analyse, le fluide était présumé être exempt de viscosité et incompressible. Les résultats obtenus ont
été vérifiés par un essai du modèle hydraulique. Les résultats des calculs montrent une bonne corrélation entre les solu-
tions d’écoulement antérieures pour les profils de surface de l’eau et les distributions de pression dans tout l’écoulement et
sur la vanne.

Mots-clés : écoulement de surface libre, méthodes sans maillage, méthode par éléments naturels, panneaux de vanne, struc-
tures hydrauliques.

[Traduit par la Rédaction]

Introduction
The analysis of two-dimensional gravity affected flows in-

volving a free surface is an important area of research in hy-
draulic engineering. Examples include flows over hydraulic
structures such as spillways, weirs and various types of
gates. Flow characteristics of interest may include the veloc-
ity and pressure distributions and the free surface profile. In
all these problems, when steady state prevails, the flow is
governed by an elliptic partial differential equation. On the

known part of the boundary, one boundary condition is
specified while on the free surface of the flow two boundary
conditions should be satisfied. The determination of the free
surface location as a part of the solution involves the solu-
tion of an intrinsically nonlinear problem.

One of the major achievements in classical hydrodynam-
ics was the use of complex analysis and conformal transfor-
mations in solving free surface flows as presented by Larock
(1970). Such analytical solutions are limited in number be-
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cause of the difficulty in satisfying the nonlinear condition
of constant pressure along the free surface.

Among the numerical methods, the finite element method
(FEM) has gained more popularity in solving the free sur-
face problem. A lot of research in this area appears in the
literature, including the work of Chan et al. (1973), Isaacs
(1977), and Sankaranarayanan and Rao (1996). An impor-
tant contribution to the finite element analysis of potential
flows having free surfaces was provided by Daneshmand et
al. (1999, 2000) and Daneshmand and Kazemzadeh Parsi
(2004), all of whom conducted research to find the free sur-
face shapes of the flow under radial gates. A combination of
a variable domain and a fixed domain finite element method
was used by these authors and it was shown that the itera-
tion procedure converges rapidly.

Although the finite element method is robust and has been
thoroughly developed, it necessitates regeneration of the
meshes in solving free surface problems. This is frequently
done by the modeler, and is considered to be one of the
most time-consuming tasks in finite element analysis.

To overcome the difficulty associated with remeshing, the
past decade has seen a tremendous surge in the development
of a family of Galerkin and collocation-based numerical
methods known as meshless methods. For example, some of
the most widely used methods include the element-free Ga-
lerkin method (Belytschko et al. 1994), the reproducing ker-
nel particle method (Liu et al. 1995), and the natural
neighbor Galerkin methods, or natural element methods
(NEM) (Sukumar and Moran 1999). The essential character-
istic of the meshless methods is that there is no need for a
highly structured mesh as required in the finite element
methods.

The natural element method (NEM) is a Galerkin-based
method that is built upon the principle of natural neighbor
interpolation. This interpolation scheme has several very
useful properties, such as its strictly interpolating character,
ability to exactly interpolate piece-wise linear boundary con-
ditions, and a well-defined and robust approximation with
no user-defined parameter on non-uniform grids. The aim
of this paper is to present a numerical procedure based on
natural element discretization that treats the fluid flow
through a sluice gate with a free surface. Despite some prog-
ress in solving gravity driven free surface flows through the
use of the various numerical methods, solving the problem
by using NEM has not been investigated to date. In the
present study, the free surface profile, velocity and pressure
distributions and the flow rate per unit width Q are calcu-
lated for a known Bernoulli constant, B, using the natural el-
ement method. Results for pressure distribution are
compared with measured values obtained by conducting a
hydraulic model test.

Statement of the problem and formulation
Figure 1 shows a typical two-dimensional steady flow

under a sluice gate. The flow is assumed to be steady, two-
dimensional, incompressible, and irrotational. The geometry
of the gate, including the gate opening, b, the elevation
above datum of the channel bed at every point, y, and the
Bernoulli constant, B, are known. It should be noted that B
and y are both measured from the same datum. Far upstream

and far downstream, where the depths are d1 and d2, respec-
tively, the flow is assumed to be uniform and it is taken nor-
mal to the boundaries. In natural element analysis, these
assumptions are used as boundary conditions in sections AF
and DE. In the solved problems, satisfactory results were
obtained with these sections located at x = ±2B from the
gate. The free surface profiles AS and CD must be found as
part of the solution. Since the flow is assumed to be irrota-
tional, it is governed by the Laplace equation:

½1� @2j

@x2
þ @

2j

@y2
¼ 0

where j is the stream function. Both the fixed boundaries
and the free surface are streamlines; therefore j is taken to
be a constant, i.e.

½2� j ¼ 0 on the lower boundary

j ¼ Q on the free surface and on the sluice gate

where Q is the flow rate per unit width. On the free surface
the dynamic boundary condition requires

½3�
v2

2g
þ y ¼ B; p ¼ 0

where v is the velocity; g is the acceleration due to gravity; y
is the free surface elevation measured from an arbitrary da-
tum; B is the Bernoulli constant; and p is the pressure. Since

½4� v ¼ @j
@n

where n is the unit normal from the free surface; eq. [3] be-
comes

½5� 1

2g

@j

@n

� �2

þ y ¼ B on a free surface

Either the flow rate, Q, or the Bernoulli constant, B, are
known; the other is required as part of the solution.

For the purposes of the numerical solution the inflow and
outflow streams are cut at right angles to the primary veloc-
ity. On the cut portions the boundary condition

½6� @j

@n
¼ 0

is applied, which means that there is no velocity normal to
the main flow.

For problems with a known flow rate Q, the free surface
profile is assumed and the problem is solved from eqs. [1],
[2], and [6]. The constant, B, of eq. [3] is then calculated for
the free surface nodes. If B is the same for all free surface
points, the problem is solved. Otherwise, the assumed free
surface is adjusted, iteratively, in order that B becomes con-
stant at all points.

A similar procedure can be developed for problems with a
given Bernoulli constant B. The problem is solved first by
assuming the location of the free surface and applying the
free surface conditions, eq. [5]. The flow rate, Q or j, of
eq. [2] is part of the solution. If Q is a constant for all free
surface points, the problem is solved; otherwise, an iteration
scheme must be used to adjust the free surface elevation.
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Since B = constant is considered in this paper, only the
method for replacing the kinematics free surface condition
is presented here (Cheng et al. 1981).

The natural element method
Natural element method is based on an interpolation plan

called natural neighbor interpolation, which is frequently
used for unstructured interpolation in geophysics (Watson

1981). This interpolation scheme is, in turn, based on the
concepts of a Voronoi diagram and Delaunay triangulations
(Sukumar et al. 1998).

A Delaunay triangulation is the unique triangulation for a
given set of points that satisfies the empty circumcircle crite-
rion. This means that the circumcircle of each triangle con-
tains no other point than the three points that form the
triangle. A first-order Voronoi diagram for a set of nodes N ¼
fn1; n2; :::; nmg 2 R2 is a subdivision of the space in regions
T1 such that any point in T1 is closer to the node nI, to which
this region is associated, than to any other in N. Formally

½7� TI ¼ x 2 R2 : dðx; nIÞ < dðx; nJÞ 8 J 6¼ I
n o

where d(.,.) represents Euclidean distance. Two nodes whose
associated Voronoi cells share an edge are called natural
neighbors.

The natural neighbor interpolation scheme is based on the
definition of the second order Voronoi tessellation. A cell
TIJ in the second-order tessellation is the locus of points
that have node I as the closest node and the node J as the
second closest node

½8� TIJ ¼ x 2 R2 : dðx; nIÞ < dðx; nJÞ < dðx; nKÞ 8 K 6¼ I; J
n o

If a new point x is introduced in the initial set N and the
new tessellation is built, the natural neighbor coordinates of
the point x with respect to one of its neighbors I is defined
as the ratio of the area of TI that has been transferred to Tx

to the total area of TxI that is shown in Fig. 2 (Watson
1994). Using k(x) and kI(x) as Lebesgue measures (length
in R2) (Sukumar et al. 1998) of Tx and TxI, the natural
neighbor coordinate of x with respect to the node I can be
written as:

½9� 4IðxÞ ¼
kIðxÞ
kðxÞ

and with respect to Fig. 2 as:

½10� 41 ¼
Aaef

Aabcde

The other interpolation functions are presented in Table 1
and are compared with the interpolation functions obtained
from FEM (Fig. 3).

Fig. 1. Definition sketch of a vertical sluice gate.

Fig. 2. Definition of the natural neighbor coordinates for the deter-
mination of interpolation functions of point x based on NEM.
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From this definition, the unknown parameter field
uðxÞ : U � R2 ! R2 is approximated in the form

½11� uhðxÞ ¼
Xn

I¼1

4IðxÞ uI

where uI is the vector of nodal parameters of the n natural
neighbors of the point x. The NEM formulated in this way
has some remarkable properties in the context of meshless
methods (Sukumar et al. 1998).

Using eqs. [9] and [10], it is clear that

½12� 4iðxjÞ ¼ dij

and, consequently, the nodal parameters uI are the nodal dis-
placement. This allows us to impose nodal prescribed values
by directly substituting them in the Galerkin procedure.

The linear consistency of the interpolant is derived after
the local coordinate property

½13� x ¼
Xn

I¼1

4IðxÞxJ

in conjunction with the partition of unity property. This
means that the natural neighbor interpolant can exactly re-
produce a linear or constant displacement field. In the two-
dimensional case, the approximation properties of the NEM
interpolant depend on the relative node distribution. If a
point x has only three natural neighbors, the interpolation
obtained is equivalent to barycentric coordinates, or constant
strain finite element interpolation functions. Bilinear interpo-
lation is obtained over the rectangle if the point has four
natural neighbors in a regular grid.

Discretization of the natural element method
The natural element solution of the ideal fluid flow (in-

viscid and incompressible flow) problem is considered in
this section. The two-dimensional potential flow (irrota-
tional flow) can be formulated in terms of a stream func-
tion (j). In terms of stream function, the governing
equation is the Laplace equation where the flow velocities
vx and vy are

½14� vx ¼ j;y vy ¼ �j;x

The Dirichlet and Neumann boundary conditions are
shown in Fig. 1 by C1 and C2, respectively.

To use the natural element method using the Galerkin ap-
proach, the problem domain S is first divided into elements,
and a suitable interpolation model is then assumed for j(e)

as

½15� jðeÞðx; yÞ ¼
Xm

i¼1

4iðx; yÞjðeÞi

where 4i(x, y) is the natural element interpolation function
and m is the number of neighborhoods of point (x, y). In
the Galerkin method, the test functions and the trial func-
tions are taken from the same set of functions. Choosing 4i
according to the Galerkin approach, the discretized form of
eq. [1] becomes

½16�

ZZ
SðeÞ

4i

@2jðeÞ

@x2
þ @

2jðeÞ

@y2

� �
dS ¼ 0; i ¼ 1; 2; :::;m

Using the integration by-parts, this equation can be re-
written as

½17�
ZZ
SðeÞ

4i

@4i

@x

@jðeÞ

@x
þ @4i

@y

@jðeÞ

@y

� �
dS

�
Z
CðeÞ

4i
@jðeÞ

@x
nx þ

@jðeÞ

@y
ny

� �
dC ¼ 0

Applying the Dirichlet and Neumann boundary conditions
given on CðeÞ1 and CðeÞ2

½18�
Z
CðeÞ

4i

@jðeÞ

@x
nx þ

@jðeÞ

@y
ny

� �
dC ¼

Z
CðeÞ

2

V04idC2

By using eqs. [15] and [18], eq. [17] can be expressed in
matrix form as:

½19� KðeÞjðeÞ ¼ PðeÞ

where

½20� KðeÞ ¼
ZZ
SðeÞ

BTBdS

½21� PðeÞ ¼ �
Z
CðeÞ

2

V0N
TdC2

½22� B ¼

@41

@x

@42

@x
� � � @4m

@x

@41

@y

@42

@y
� � � @4m

@y

2
66664

3
77775

½23� NT ¼ ½ 41 42 � � � 4m �

Using the above element matrices and the assembling pro-
cedure, the following system of equations can be obtained

½24� Kj ¼ P

where K is the total system matrix for the problem, j is the
vector including the unknown nodal values of the stream
function, and P is the total load vector.

The system matrix calculation for two different methods,
FEM and NEM, is described in Appendix A.

Free surface correction

The geometry of a vertical sluice gate is shown in Fig. 1.
If the Bernoulli constant is known, the iterative scheme for
adjusting the free surface locations can be described as fol-
lows. Introducing �v as the average velocity at a vertical
cross section, the flow rate can be expressed as
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½25� Q ¼ vy

where y is the free surface elevation measured from an arbi-
trary datum. For free surface adjustment, it is assumed that �v
is the free surface velocity, v. The problem is solved by re-
placing the kinematic free surface condition eq. [2] with the
dynamic free surface condition eq. [5]. After solving the
governing equation using the boundary conditions and
NEM, the solution yields different values of the stream
function at each of the free surface nodes. A temporarily
‘‘correct’’ flow rate, Qk+1, is needed for performing the free
surface adjustment. The calculated value of the stream func-
tion jk

c (at point C) can be considered a good estimation for
Qk+1

½26� Qkþ1 ¼ jk
c

By taking Dyi ¼ ykþ1
i � yki ; DQi ¼ Qkþ1 � jk

i and substi-
tuting eq. [25] into eq. [5], the following equation is ob-
tained

½27�
jk

i þDQi

� �2

2g yk
i þDyi

� �2
þ yk

i þDyi ¼ B

After linearizing and solving for Dyi

½28� Dyi ¼ �
jk

i

g yk
i

� �2
DQi

�
1� ðj

k
i Þ2

gðyk
i Þ3

� �� �

For large gate openings, however, the Froude number
(Q2/gy3) for portions of the downstream profile is not
much larger than unity. In those cases Dyi of eq. [18]
tends to be too large. A more conservative, yet stable,
scheme is used whenever the foregoing is observed

½29� Dyi ¼
DQi

jk
i

yk
i

Thus, eq. [28] or eq. [29] lead to a new location of the
free surface.

Table 1. Interpolation functions in FEM and NEM.

Interpolation
function 41 42 43 44 45

FEM 0 Ax45 /A245 0 Ax25 /A245 Ax24 /A245

NEM Aaef /Aabcde Aabhgf /Aabcde Abch /Aabcde Acdgh /Aabcde Adefg /Aabcde

Fig. 3. Determination interpolation functions of point x based on
FEM.

Fig. 4. Mesh generated using a-shape theory.

Fig. 5. Algorithm for finding the free surface.

Fig. 6. Comparison between BIEM (Cheng et al. 1981) and NEM
(Example 1).
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Computational scheme
In this paper, the amount of discharge, the free surface

profile, and the pressure distribution in the channel along
the fluid boundaries and on the gate, should be computed
for a given total head. The computer implementation of this
numerical procedure includes the following steps:

(1) A cloud of nodes in the initial problem domain is assumed.
(2) The initial trial free surface, a quarter of an ellipse, is

assumed and the nodes under and on the assumed free

surface profile are selected as the active nodes in the
problem domain.

(3) Delaunay triangulation is used to create elements from
the cloud of nodes.

Table 2. Results from NEM for 3 = 0.001 (Example 1).

b/B

0.1 0.2 0.3 0.4
Numer of nodes (in first iteration) 109 155 108 158
Number of elements (in first iteration) 121 217 147 233
Number of iterations 3 2 3 4
Calculated j on free surface (m3 s–1 m–1) 0.481 0.891 1.258 1.591

Fig. 7. Free surface profiles for b/B = 0.3 and 3 = 0.001
(Example 1).

Fig. 8. Free surface profiles for b/B = 0.3 and 3 = 0.0001 (Ex-
ample 1).

Fig. 9. Specification of Shahryar Dam (Example 2).

Table 3. Shahryar Dam specifications (Example 2).

Parameter Value (description)
Type Double-arch concrete dam
Height (from the river bed) 135
Crest elevation 1045
Bottom outlet sill elevation 1004
Total storage (at normal water level) 700 �106 m3

Normal water level (NWL) 1035
Maximum water level 1041

Note: All units are expressed in metres unless otherwise noted.

Table 4. Technical specifications (Example 2).

Parameter Value Parameter Value
a 1 h1 0.061
b 0.288 h2 0.178
b1 0.233 H1 0.306
c 0.1 H2 0.041
d 0.71 R 0.02
e 0.55 R1 1
f 1.5 R2 1.33
g 2.4 a 458
h 3 Q 108

Note: All units are expressed in metres unless
otherwise noted.

Fig. 10. Position of manometers on sluice gate (Example 2).
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(4) The a-shape theory (Alfaro et al. 2006) is used to delete
some elements generated outside the boundaries of the
problem domain (Fig. 4). In this method, given a finite
point set, a family of shapes can be derived from the De-
launay triangulation of the point set and a real parameter
a controls the desired level of detail.

(5) The problem is solved using NEM by applying Dirichlet
and Neumann boundary conditions as explained in the
previous sections. The value of discharge (j) and velo-
city components (vx, vy) for all nodes are calculated as a
function of the assumed free surface profile.

(6) The flow rate Qk+1 can then be calculated using the
results obtained from step 5 and applying eq. [26].
The iteration process is continued until the maximum
value of the convergence criterion defined as
Qkþ1 � jk

i

		 		=Qkþ1is less than a prescribed accuracy 3.
If the above convergence criterion from step 6 is satisfied,

the last assumed free surface profile is chosen as the final
free surface profile; otherwise, the displacement for each
node on the free surface is calculated using eq. [28] or eq.
[29]. The new free surface profile is defined by the new lo-
cation of nodes and step 3 is repeated until desired accuracy
is achieved. The nodes on the new free surface profile are
selected as the active nodes for subsequent steps. The above
algorithm is shown in Fig. 5.

When the accuracy calculated for each node on the free
surface is less than the desired accuracy, the velocity and
pressure distribution can be calculated for each node.

Application and discussion of results
To examine the applicability of the numerical scheme de-

scribed in the previous sections, two different examples
were considered. The example problems were selected such
that the present results could be compared with published re-
sults obtained by numerical or physical modeling.

Example 1
Example 1 has been chosen to compare the results ob-

tained by using the natural element method (NEM) pre-
sented in this paper with the results obtained by using the
boundary integral element method (BIEM) (Cheng et al.
1981). Results presented by Montes (1997) for free surface
profile calculations were very close to the results obtained
by Cheng et al. (1981). The sluice gate geometry is shown
in Fig. 1 with B = 1 (arbitrary length unit) and b = 0.3
(gate opening). The initial trial upstream and downstream
free surface profile is fitted by a quarter of an ellipse with
an arbitrary downstream depth of y = 0.5b. The computa-
tional prescribed accuracy is defined by 3.

In the first step, the model is considered for different val-
ues of b/B = 0.1, 0.2, 0.3 and 0.4 and 3 = 0.001 for finding
the free surface profile using NEM. The free surface adjust-
ment scheme eq. [28] or eq. [29] is used to find the new free
surface location. The results are shown in Fig. 6 and Table 2.
It can be seen that the results obtained through the use of
the procedure using NEM are in good agreement with those
obtained from BIEM.

In the second step, the flow under the sluice gate is mod-
eled for b/B = 0.3 and different values of 3 = 0.001 and 3 =
0.0001. The transition of the downstream profile is plotted
in Figs. 7 and 8 via the use of NEM. It is observed that the
free surface profile in NEM converged faster than in BIEM.
This result was obtained by comparing the number of itera-
tions of the two methods for specified accuracy. The conver-
gence was obtained after six iterations on the free surface
profile with 3 = 0.001 using BIEM, whereas only three iter-
ations were needed to achieve the same accuracy using
NEM. It may also be noted that four iterations is sufficient
to find the free surface profile with 3 = 0.0001 using the nat-
ural element method.

Example 2
The two-dimensional flow through a conduit and under a

sluice gate was considered in this second example. Figure 9
shows the definition sketch of the bottom-outlet sluice gate
of Shahryar Dam. The Shahryar Dam is located on the Ghe-
zel-Oezan River in Iran, near Miyaneh city. The dam speci-
fications and geometric details of the problem are given in
Tables 3 and 4, respectively. The value of head loss for this
example was calculated in accordance with the traditional
procedure given in Roberson and Clayton (1997) for the en-
trance loss (loss coefficient = 0.03) and Brno Technical Uni-
versity (1994) for the outlet loss due to sudden contraction,
respectively. To ensure the validity of the results obtained in
this example, a hydraulic model test (scale 1:15) based on
Froude’s law of similarity was also constructed (Shiraz Uni-
versity 2007). The hydraulic model test includes the entire
water passage both upstream and downstream of the gate.
The hydraulic model is constructed using plexiglass material
to secure good flow visualization. For better visualization of
the free surface profile, the downstream wall of the model is
meshed by squares 5 cm � 5 cm. The test stand includes
three centrifugal pumps, as well as main water storage and
relevant channels to complete the closed loop circuit. For
measuring pressure, some manometers are installed at differ-
ent points in the channel and skin plate on the gate. The
manometer locations are shown in Figs. 10 and 11. The unit
of measured pressure is mH2O. Water discharge was meas-
ured by using a rectangular weir placed downstream of the
model, whereas the measured values are also checked and
confirmed by using the area–velocity flow meter (Greyline
AVFM-II). Its ultrasonic sensor was installed at the bottom
of the downstream channel. Based on the speed of sound in
water, the level is measured with an accuracy of ±0.25%.
Flow velocity was also measured with an ultrasonic Doppler
signal. The instrument measures velocity with an accuracy
of ±0.2%.

The natural element method was used to solve the prob-
lem. The discretization was made finer in the vicinity of the
gate to take care of the higher velocity gradients that exist in

Fig. 11. Position of manometers on channel wall (Example 2).
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that region. The domain bounded by the surfaces 1–2–3–4–
7–8–9–10 in Fig. 9 is fixed and the matrix corresponding to
the elements in this region may be calculated only once.
However, the flow region bounded by 4–5–6–7 is a variable
domain, and the system matrix related to the elements in this
region should be calculated in successive iterations while an
adjustment of the free surface is made. The sluice gate is
considered in a 30% opening position. To solve the problem,
438 nodes and 662 elements are used in the first iteration.

In this example, the convergence was obtained on the free
surface profile with a prescribed accuracy of 3 = 0.001. The
computed discharge Q is 0.299 m3 s–1 m–1. The pressure val-
ues are given in Table 5 and compared with the pressure
values measured in the hydraulic model test. The shape of
the free surface obtained from the present study is also com-
pared with the free surface profile from the hydraulic model
test in Fig. 12. As can be seen from this figure, the free sur-
face profile obtained from NEM is in good agreement with
that obtained from the model test. It should also be noted
from Table 5 that the maximum error in pressure values is
5.15%. The velocity distribution contour for gate opening
30% is also shown in Fig. 13.

Conclusions

In this paper, the application of the natural element
method (NEM) to the solution of gravity-affected flow
under a sluice gate was studied. In NEM, the whole interpo-
lation is constructed with respect to the natural neighbor no-
des and Voronoi tessellation of the given point. The use of
the natural neighbor Galerkin method was shown to be very
useful in simulating physical phenomena. It is an appropri-

ate new approach to predict the behavior of gravity-affected
flow under a sluice gate with excellent accuracy. A rapid
rate of convergence is always observed even with an initial
guess that differs greatly from the true solution. Numerical
results show good agreement of the proposed method by
comparing it to experimental results and the results of the
boundary integral element method. The present scheme can
be used with confidence in calculating the hydraulic param-
eters needed in the design of such structures. In spite of the
nonlinear nature of the problem, the presented scheme does
not need an excessive number of iterations. The iteration
procedure converges quite rapidly. Although only flow
under sluice gates was considered in this research, the range
of future applications of the model can be extended to other
similar flows (e.g., flow through a slit, flows over hinged
gates, spillway crests, and weirs).
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Table 5. Comparison between numerical and experimental results (Example 2).

Manometer #
p(mH2O)
(Model test)

p(mH2O)
NEM Error (%)

j (m3 s–1 m–1)
NEM

v (m/s)
NEM

1 2.133 2.245 4.98 0.283 2.678
2 2.175 2.235 2.67 0.299 0.787
3 2.203 2.187 0.70 0.137 0.530
4 2.204 2.214 0.49 0.133 0.755
5 2.080 2.088 0.41 0.230 0.754
6 2.363 2.393 1.25 0.001 0.853
7 2.191 2.220 1.30 0.148 0.846
8 2.187 2.248 2.70 0.154 0.936
9 2.037 2.148 5.15 0.058 2.488

10 2.165 2.204 1.77 0.291 0.307

Note: p is pressure; NEM is natural element method; j is the stream function; v is velocity.

Fig. 12. Free surface profile for gate opening 30% (Example 2). Fig. 13. Velocity distribution contour for gate opening 30% per m/s
(Example 2).
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List of symbols
A(e) element area

b opening value (m)

B bernoulli constant
B derivation of interpolation matrix

C1 dirichlet boundary condition
C2 neumann boundary condition

C(e) element boundary
d1,d2 conduit height at inbound and outbound section (m)

g acceleration due to gravity (g = 9.806 m/s2)
K(e) element system matrix

K total system matrix
m number of neighborhoods of any point
n unit normal from the free surface
N interpolation functions vector
p Pressure (mH2O)
P total load vector

P(e) element load vector
Q the flow rate or discharge per unit width (m3 s–1 m–1)
S problem domain

S(e) element domain
v,vx,vy velocity (m/s)

�v free surface velocity (m/s)
V0 import velocity (m/s)
V outlet velocity (m/s)
y the free surface elevation measured from an arbitrary

datum (m)
Dy correction in y-direction (m)
3 prescribed accuracy
4 interpolation function
j the stream function (m3 s–1 m–1)
j unknown nodal value vector

Appendix A. System matrix calculation
The number of neighborhoods for any point of a triangu-

lar element FEM is three whereas the number of neighbor-
hoods in NEM can be more than three. If a(x1,y1), b(x2,y2),
and c(x3,y3) can be nodal coordinates of a triangular ele-
ment, using eq. [22], matrix B can be evaluated as

½A1� B ¼ 1

2AðeÞ

y2 � y3 y3 � y1 y1 � y2

x3 � x2 x1 � x3 x2 � x1

2
4

3
5

where A(e) is the element area. In the natural element
method, it is necessary to use a suitable algorithm to find the
shape functions and their derivatives to determine matrix B.

In FEM, the matrix B is constant over the triangular ele-
ment, therefore with respect to Fig. A1, by using the nodal
coordinates (x1,y1) = (0,0), (x2,y2) = (2,0.2), (x3,y3) = (0.2,2),
(x4,y4) = (2.2,2.2) and using eq. [22] and eq. [A1], the sys-
tem matrix for elements 1 and 2 can be obtained as

½A2� K1 ¼
0:8182 �0:4091 �0:4091

0:5101 �0:1010

sym 0:5101

2
664

3
775

½A3� K2 ¼
0:5101 �0:1010 �0:4091

0:5101 �0:4091

sym 0:8182

2
664

3
775

The assembled system matrix is
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½A4� K ¼

0:8182 �0:4091 �0:4091 0

1:0202 �0:2020 �0:4091

1:0202 �0:409

sym 0:8182

2
66664

3
77775

In NEM, matrix B is not constant over the triangular ele-
ment; therefore the system matrix can be obtained by using
the Gauss integration method. The four-point Gauss integra-
tion method is used for K1 and K2 calculations. Therefore
with respect to Fig. A1, by using eq. [22] and data presented
in Table A1, the system matrix for the elements and the as-
sembled system matrix are calculated as

½A5� K1 ¼

0:533 �0:215 �0:215 �0:103

0:407 �0:204 0:012

0:407 0:012

sym 0:097

2
66664

3
77775

½A6� K2 ¼

0:079 0:012 0:012 �0:103

0:407 �0:204 �0:215

0:407 �0:214

sym 0:533

2
66664

3
77775

½A7� K ¼

0:619 �0:203 �0:203 �0:206

0:814 �0:408 �0:203

0:814 �0:203

sym 0:612

2
66664

3
77775

Fig. A1. Delaunay triangulation of nodes and their Gauss points.

Table A1. Interpolation functions and their derivatives for different Gauss points.

A1 B1 C1 D1 A2 B2 C2 D2

x 0.733 0.440 1.240 0.520 1.467 1.680 0.960 1.760
y 0.733 0.440 0.520 1.240 1.467 0.960 1.680 1.760
41 0.375 0.601 0.258 0.258 0.042 0.058 0.058 0.001
@41=@x –0.340 –0.430 –0.373 –0.242 –0.114 –0.212 –0.081 –0.023
@41=@y –0.340 –0.430 –0.242 –0.373 –0.114 –0.081 –0.212 –0.023
42 0.291 0.198 0.541 0.142 0.291 0.541 0.141 0.198
@42=@x 0.391 0.481 0.423 0.292 0.164 0.262 0.131 0.074
@42=@y –0.164 –0.074 –0.262 –0.132 –0.390 –0.423 –0.292 –0.481
43 0.291 0.198 0.141 0.542 0.291 0.141 0.541 0.198
@43=@x –0.164 –0.074 –0.132 –0.263 –0.390 –0.292 –0.423 –0.481
@43=@y 0.391 0.481 0.297 0.423 0.164 0.131 0.262 0.074
44 0.042 0.001 0.058 0.058 0.375 0.258 0.258 0.601
@44=@x 0.114 0.023 0.081 0.212 0.340 0.242 0.373 0.431
@44=@y 0.114 0.023 0.212 0.081 0.340 0.373 0.242 0.431
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