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In this study, a method based on coupling discrete wavelet transforms (WA) and artificial neural net-
works (ANN) for flow forecasting applications in non-perennial rivers in semi-arid watersheds is pro-
posed. The discrete a trous wavelet transform is used to decompose flow time series data into wavelet
coefficients. The wavelet coefficients are then used as inputs into Levenberg Marquardt artificial neural
network models to forecast flow. The relative performance of the coupled wavelet-neural network mod-
els (WA-ANN) was compared to regular artificial neural network (ANN) models for flow forecasting at
lead times of 1 and 3 days for two different rivers in Cyprus (Kargotis at Evrychou and Xeros at Lazarides).
In both cases, the coupled wavelet-neural network models were found to provide more accurate flow
forecasts than the artificial neural network models. The results indicate that coupled wavelet-neural net-
work models are a promising new method of short-term flow forecasting in non-perennial rivers in semi-
arid watersheds such as those found in Cyprus.
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1. Introduction

Short-term and long-term forecasts of river flows are an impor-
tant component of water resources management for a variety of
reasons such as helping optimize water resources systems as well
as planning for future expansion or reduction in a sustainable man-
ner. Highly accurate and reliable flow forecasts are particularly
important in semi-arid watersheds due to the intermittent nature
of river flows and frequent scarcity of water. Based on highly accu-
rate and reliable flow forecasts, water managers in semi-arid
watersheds can optimally allocate water to different sectors such
as agriculture, municipalities, hydropower generation, while
ensuring that environmental flows are maintained.

Intermittent river flows in semi-arid watersheds can be defined
as river flow series that have zero values for some intervals, and
non-zero values for the remaining intervals. All the rivers in Cyprus
have periods of no flow (i.e. they are intermittent or non-peren-
nial). Despite this, such rivers are an important component in
meeting increasing water demands in semi-arid and arid water-
sheds such as those found in Cyprus. However, very few studies
have explored the forecasting of intermittent flows in semi-arid
or arid watersheds.
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In river flow forecasting applications, data-based hydrological
methods are becoming increasingly popular due to their rapid
development times and minimum information requirements.
Although they may lack the ability to provide physical interpreta-
tion and insight into catchment processes, they are nevertheless
able to provide relatively accurate flow forecasts. In data-based
flow forecasting, statistical models have traditionally been used.
Multiple linear regression (MLR) and autoregressive moving aver-
age (ARMA) models are probably the most common methods for
forecasting flows. More recently, artificial neural networks (ANN)
have been introduced for flow forecasting applications.

In one of the first applications of ANNs to river flow forecasting,
Kang et al. (1993) used ANNs and ARMA models to predict daily
and hourly river flows. They found that ANNs could be used for
forecasting river flows. Since then, a number of studies have con-
firmed the usefulness of ANN models in river flow forecasting, with
the most popular type of ANN being the multi-layer perceptron
(MLP) model optimized with a backpropagation (BP) algorithm.
Hsu et al. (1995) showed that a non-linear ANN model provided
a better representation of the rainfall-runoff relationship of a med-
ium sized basin, just less than 2000 km?, than the linear ARMAX
(with the X referring to an exogenous input) time series approach
or the Sacramento model. Markus (1997) made monthly stream-
flow forecasts with MLP ANN models for several rivers, and
compared the performance of ANN models with other models.
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Nomenclature

CWT continuous wavelet transform

N number of data points used

S scale parameter

x(t) signal

Vi mean value taken over N

Vi observed peak weekly water demand

Vi forecasted peak weekly water demand
T translation parameter

* complex conjugate

P(t) mother wavelet

See and Openshaw (1999) combined ANNs with other soft comput-
ing methods, such as fuzzy logic and genetic algorithms, to forecast
river levels. Jain et al., 1999 used MLP ANN models for monthly
flow forecasting. Abrahart and See (1998) compared the use of
ANN and ARMA models, and found that the ANN models outper-
formed the ARMA models. Zealand et al. (1999) used MLP ANN
models for 1-4 week ahead streamflow forecasting. Sajikumar
and Thandaveswara (1999) demonstrated the use of a special type
of MLP ANN model, a temporal back propagation neural network,
for monthly rainfall-runoff modeling. Birikundavyi et al. (2002)
investigated the performance of ANN models for 7-day-ahead daily
streamflow forecasting and showed that the ANNs outperformed a
conceptual rainfall-runoff model for up to 5-day-ahead forecasts.
Tawfik (2003) applied ANN models to predict the Nile River inflows
into the Aswan reservoir for the months of July, August, and
September. Kisi (2004) used MLP ANN models for monthly flow
forecasts. Chen et al. (2005) and Corani and Guariso (2005) inde-
pendently developed flood forecasting models based on neuro-
fuzzy networks.

Other types of ANNs have also been applied to streamflow fore-
casting problems, but less frequently. Radial basis function (RBF)
ANN models have been investigated for river flow forecasting
(Fernando and Jayawardena, 1998; Dibike and Solomatine, 2001;
Dawson et al., 2002; Piotrowski et al., 2006). Moradkhani et al.
(2004) investigated the use of a Self Organizing Radial Basis (SORB)
function to one-step ahead forecasting of daily river flow. Modular
neural networks (MNN), hybrid neural networks, Elman networks,
and threshold neural networks have also been investigated (Elman,
1988; Zhang and Govindaraju, 2000; Hu et al., 2001).

There are several studies in the literature that explored the use
of ANNs to forecast river flows where the flow was intermittent.
Cigizoglu (2005) explored the use of MLP ANNs and generalized
regression neural networks (GRNN) for intermittent flow forecast-
ing, and Kisi and Cigizoglu (2007) explored the use of MLP ANNs,
radial basis ANNs, and GRNNs for forecasting intermittent flow
series.

However, a problem with artificial neural network and other
linear and non-linear methods is that they have limitations with
non-stationary data. Many methods such as neural networks may
not be able to handle non-stationary data if pre-processing of the
input data is not done. The methods for dealing with non-station-
ary data are not as advanced as those for stationary data. In the last
decade, wavelet analysis has been investigated in a number of dis-
ciplines outside of water resources engineering and hydrology, and
it has been found to be very effective with non-stationary data.
Wavelet transforms provide useful decompositions of original time
series, and the wavelet-transformed data improves the ability of a
forecasting model by capturing useful information on various res-
olution levels.

Wavelet transforms have become a tool for analyzing local var-
iation in time series (Torrence and Compo, 1998), and hybrid mod-
els have been proposed for forecasting a time-series based on a
wavelet transform pre-processing (Aussem and Murtagh, 1997;
Aussem et al., 1998; Zheng et al., 2000; Zhang and Dong, 2001).

Wavelet transforms provide useful decompositions of original time
series, so that wavelet-transformed data improve the ability of a
forecasting model by capturing useful information on various res-
olution levels. In the field of water resources, wavelet analysis has
been very recently applied to examine the rainfall-runoff relation-
ship in a Karstic watershed (Labat et al., 1999), to characterize daily
streamflow (Smith et al, 1998; Saco and Kumar, 2000) and
monthly reservoir inflow (Coulibaly et al., 2000), to evaluate rain-
fall-runoff models (Lane, 2007), to analyze streamflow trends
(Adamowski et al., 2009), and to forecast river flow (Adamowski,
2007, 2008a,b).

Over the last couple of years, several studies have been pub-
lished that developed hybrid wavelet transform and ANN (WA-
ANN) models for river flow forecasting. Anctil and Tape (2004)
developed WA-ANN models for 1 day ahead flow forecasting in
the US and France. Cannas et al. (2006) developed a hybrid model
for monthly rainfall-runoff forecasting in Italy, Kisi (2008) devel-
oped a hybrid model for monthly flow forecasting in Turkey, Partal
(2009) developed WA-ANN models for monthly flow forecasting in
Turkey, Kisi (2009) explored the use of WA-ANN models for daily
flow forecasting of intermittent rivers, and Wu et al. (2009) devel-
oped WA-ANN models for 1-3 days ahead forecasting. Apart from
the Wu et al. (2009) study, all the studies found that the WA-ANN
models outperformed the ANN models for flow forecasting. Of
these, however, only one study has explored the use of WA-ANN
models for flow forecasting in semi-arid watersheds with intermit-
tent flow (Kisi, 2009).

Based on a review of the literature, it appears that a number of
important issues need to be explored in greater detail: (1) lead
times greater than 1 day but less than 1 month need to be explored
in greater detail since the only study (Wu et al.,, 2009) that ex-
plored lead times greater than 1 day but less than 1 month found
that the WA-ANN models did not perform as well as other models;
(2) the use of all wavelet decomposed sub-series as inputs to the
ANN models needs to be explored since averaging or optimizing
the selection of only certain sub-series (as has been done in most
of the studies to date in the literature) can be viewed as a poten-
tially diminutive approach since all sub-series coefficients are
equally important and contain information about the original time
series; (3) the use of WA-ANN models in semi-arid watersheds
with intermittent flows needs to be explored further since only
one published study to date has explored this issue.

This study explored each of these issues. In this research,
coupled discrete wavelet transform and artificial neural network
models (WA-ANN) were developed and compared with regular
artificial neural network (ANN) models for 1 and 3 days ahead fore-
casting of flow for two non-perennial rivers in Cyprus.

2. Methods
2.1. Wavelet analysis

Wavelets are mathematical functions that give a time-scale rep-
resentation of the time series and their relationships to analyze
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time series that contain non-stationarities. Wavelet analysis allows
the use of long time intervals for low frequency information and
shorter intervals for high frequency information and is capable of
revealing aspects of data like trends, breakdown points, and dis-
continuities that other signal analysis techniques might miss.
Another advantage of wavelet analysis is the flexible choice of
the mother wavelet according to the characteristics of the investi-
gated time series.

The continuous wavelet transform (CWT) of a signal x(t) is de-
fined as follows:

CWT! (1,5) = \/LH /;X x(H)¥P* (ti")dt (1)

N

where s is the scale parameter, 7 is the translation parameter and ‘«’
denotes the complex conjugate (Cannas et al., 2006). The mother
wavelet P(t) is the transforming function. The CWT calculation
necessitates a large amount of computation time and resources.
The discrete wavelet transform (DWT) requires less computation
time and is simpler to implement than the CWT. DWT scales and
positions are usually based on powers of two (dyadic scales and
positions). This is achieved by modifying the wavelet representation
to:

J
Wy(6) = LT(”@) )
where j and k are integers and s > 1 is a fixed dilation step (Cannas
et al., 2006). The effect of discretizing the wavelet is that the time-
space scale is now sampled at discrete levels. The DWT operates
two sets of functions: high-pass and low-pass filters. The original
time series is passed through high-pass and low-pass filters, and de-
tailed coefficients and approximation series are obtained. In this
study, the a trous DWT was used.

2.2. Artificial neural networks

An artificial neural network (ANN) is a data-driven method with
a flexible mathematical structure that is capable of identifying
complex non-linear relationships between input and output data
sets without the necessity of understanding the nature of the phe-
nomena. ANNs have become popular for hydrological forecasting
in the last decade.

ANNSs belong to a class of data-driven approaches, like transfer
function models, as opposed to process-driven approaches, such as
conceptual and physically-based models. A neural network can be
used to predict future values of possibly noisy multivariate time-
series based on past histories. An ANN is a computational model,
whose architecture basis, as reported by many authors (Hsu
et al., 1995; See and Openshaw, 1999; Imrie and Durucan, 1999;
amongst others), was inspired by the current understanding of
the functioning of the human brain. This comparison however,
can be inaccurate. A more accurate representation is when a neural
network is described as a network of simple processing nodes or
neurons, interconnected to each other in a specific order, perform-
ing simple numerical manipulations (See and Openshaw, 1999).

The most widely used neural network is the MLP. In the MLP,
the neurons are organized in layers, and each neuron is connected
only with neurons in contiguous layers. Each neuron j receives a
weighted input, that is the output from every neuron i in the pre-
vious layer. The effective incoming signal then propagates forward
through a non-linear activation function, towards the neurons in
the next layer. In other words, the task of each individual neuron
consists of two parts. Initially, integration of the information from
an external source or from other neurons takes place. The integra-
tion is often through a linear function. Next, it produces an output

in accordance with a predetermined activation function (also
called a transfer function or threshold function) such as the
sigmoid, the linear, or the cubic polynomial (See and Openshaw,
1999). This transformation of the inputs to output within a single
neuron is relatively simple; the complexity and the power of ANNs
is ultimately achieved by the interaction of several neurons
(Shamseldin, 1997).

2.3. Model performance comparison

The performance of developed models can be evaluated using
several statistical tests that describe the errors associated with
the model. After each of the model structures is calibrated using
the calibration/testing data set, the performance can then be eval-
uated in terms of statistical measures of goodness of fit. In order to
provide an indication of goodness of fit between the observed and
forecasted values the coefficient of determination (R?) and the root
mean squared error (RMSE) can be used.

The coefficient of determination (R?) measures the degree of
correlation among the observed and predicted values. It is a mea-
sure of the strength of the model in developing a relationship
among input and output variables. The higher the R? value (with
1 being the maximum value), the better is the performance of
the model. R? is given by:
' Zqu Vi —¥i)?

R 3)

DY
with
1
Yi= N Z}G‘ (4)
i—1

where y; is the mean value taken over N, N is the number of data
points used, y; is the observed peak weekly water demand, and y;
is the forecasted peak weekly water demand from the model.

The root mean square error (RMSE) evaluates the variance of
errors independently of the sample size, and is given by:

SEE
RMSE = \/° (5)

where SEE is the sum of squared errors, and N is the number of data
points used. SEE is given by:

N
SEE = Z(J’i - (6)
P

with the variables having already been defined. The smaller the
RMSE, the better is the performance of the model.

3. Study areas and data
3.1. Study rivers

For the last several years Cyprus has been facing an unprece-
dented water crisis. There has been minimal rainfall since 2003,
reservoirs in the country are at less than 10% of their capacity,
and its two newly built desalination plants have been unable to
supply sufficient quantities of water (Gabriel, 2008). Rainfall on
the island averages 460 mm, a 15% drop from 1970. Over-abstrac-
tion from aquifers has been estimated to be between 29 and 40
MCM (Million Cubic Meters) per year, and due to water scarcity
and multiyear droughts, this has led to a near exhaustion of the
‘cushioning’ effects of the aquifers as well as sea water intrusion
(Socratous, 2005). The overall average aridity index of Cyprus is
0.295, which makes the entire island a semi-arid island.
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It is anticipated that climate change will have a number of
impacts in Cyprus: a mean summer temperature increase of 5 °C
by 2070-2100, a mean summer precipitation change of —4
mm/month by 2070-2100, and an increase in the duration and
intensity of droughts (Lange, 2007). Intense precipitation events
could result in excess surface run-off rather than infiltration to
groundwater, and rising seawater levels could increase flooding
and seawater ingress, resulting in the contamination of surface
and groundwater bodies.

One of the major sources of water in Cyprus is rivers, none of
which are perennial in nature. All the rivers of Cyprus are fed by
the melting snow of the Troodos mountain range. Two rivers in
Cyprus with different characteristics were selected for this study:

(1) The Xeros River at Lazarides. This is a river in the western part
of the island. It has a drainage area of 67 km?. The Lazarides
station is located in the Paphos Forest and the site is consid-
ered pristine. Between 1965 and 2007, the mean flow was
0.3522 m?/s, the max flow was 29.0 m?[s, and the minimum
flow was 0.02 m°/s.

(2) The Kargotis River at Evryvhou. This is a river located in the
northern part of the island. It has a drainage are of 63 km?.
The Kargotis station is located in an urbanized valley.
Between 1965 and 2007, the mean flow was 0.3626 m>/s,
the max flow was 17.0 m?/s, and the minimum flow was
0m3/s.

Additional detail on the mean flows, maximum flows, minimum
flows, and standard deviations for each of the two stations can be
found in Table 1.

3.2. Data

This study used river flow (mean daily streamflow in m?/s) from
the two different rivers mentioned above. River flow data from
1965 to 2007 was available for each of the two rivers. Flow data
for the two rivers was provided by the Water Development Depart-
ment of Cyprus.

For both the WA-ANN and the ANN models, the data series
were divided into a training/calibration set (80% of the data) and
a testing set (the remaining 20% of the data).

4. Model development
4.1. Artificial neural network models

Multi-layer perceptrons (MLPs) are the simplest and most com-
monly used neural network architectures. MLPs can be trained
using many different learning algorithms. In this research, MLPs
were trained using the Levenberg-Marquardt (LM) algorithm.

Table 1
Mean, maximum, minimum and standard deviation of flows.

Station Xmean Xmax Xmin Sx

Kargotis at Evrychou

Training data 4005 17.00 0 6184
Testing data 2740 10.50 0 4698
Whole data 3626 17.00 0 .5808
Xeros at Lazarides

Training data 3614 19.70 .0200 .8629
Testing data 3308 29.00 .0200 1.069
Whole data 3522 29.00 .0200 9295

Note: Xmean = mean daily mean flow; Xmax = maximum daily mean flow; Xmin =
minimum daily mean flow; s, = standard deviation.

The Levenberg-Marquardt algorithm, like the quasi-Newton meth-
ods, was developed to approach second-order training speed with-
out having to compute the Hessian matrix. The LM algorithm has
been found to be the fastest method for training moderate-sized
feed-forward neural networks, although it requires a greater
amount of memory than other algorithms (Karul et al., 2000).

When developing an ANN model, the primary objective is to ar-
rive at the optimum architecture of the ANN that captures the rela-
tionship between the input and output variables. The task of
identifying the number of neurons in the input and output layers
is normally simple as it is dictated by the input and output vari-
ables considered to model the physical process. The number of
neurons in the hidden layer has to be optimized using the available
data through the use of a trial and error procedure. In addition,
optimal values for the learning coefficients have to be determined
for certain types of ANNs.

For the regular ANNs used in this study (i.e. those not using
wavelet decomposed input flow data) ANN models consisting of
an input layer with 1-21 input neurons, one single hidden layer
composed of 22 neurons, and one output layer consisting of one
neuron denoting the predicted mean daily flow, were developed.
Each ANN model was tested on a trial and error basis for the opti-
mum number of neurons in the hidden layer (found to be between
22). This is shown in Table 2.

For the regular ANNs used in this study, 400 ANN models were
developed for each of the two different rivers. The ANN models
were developed using a combination of the following variables:
mean flow from 1 day before up to and including mean flow from
15 days before.

For both rivers, all of the regular ANN models were first trained
using the data in the training sets (using 80% of the data) to obtain
the optimized set of connection strengths, and then tested (using
the remaining 20% of the data). The models were then compared
using two statistical measures of goodness of fit (coefficient of
determination and root mean square error).

4.2. Coupled wavelet and artificial neural network models

The coupled wavelet and neural network models are ANN mod-
els which use, as inputs, sub-series components (DWs) which are
derived from the use of the DWT on the original flow time series
data. The coupled wavelet and neural network models are referred
to as WA-ANN models in this research (with WA referring to
wavelet analysis and ANN referring to artificial neural networks).
Each sub-series component plays a different role in the original
time series and the behavior of each sub-series is distinct. The
ANN models are built such that the DWs of the original flow time
series are the inputs to the ANN and the original un-decomposed
flow time series are the outputs of the ANN.

In this study, the flow data for each of the two rivers was
decomposed into sub-series of decomposition and details (DWs).
The process consists of a number of successive filtering steps.
The original flow time series is first decomposed into an approxi-

Table 2
ANN model information for both ¢t — 1 and ¢t — 3 forecasting.

Station # Neurons Window length
Kargotis at Evrychou

t—1 22 5

t-3 22 17

Xeros at Lazarides

t—1 22 21

t-3 22

Note: # neurons refers to the optimum number of neurons in the hidden layer.
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mation and accompanying detail signal. The decomposition pro-
cess is then iterated, with successive approximation signals being
decomposed in turn, so that the original flow time series is broken
down into many lower resolution components.

Eight wavelet decomposition levels (2-4-8-16-32-64-128-
256) were selected for this study. All sub-series were used as
inputs to the ANN models because an averaging or optimizing
selection of only certain sub-series would have been a diminutive
approach - all sub-series coefficients are equally important and
contain information about the original time series. In addition,
using each sub-series coefficient for each data point resulted in
eight times the normal number of data points, therefore rendering
it possible to use less number of days to forecast accurately.

For both rivers, different sub-series input combinations into the
ANN models were tested (which were chosen based on the corre-
lation coefficients between each sub-series and the original flow
data). As well, different combinations of the number of neurons
in the hidden layer as well as different window lengths (1-15 days)
were tested.

For the WA-ANN models, ANN networks consisting of an input
layer with 1-160 input neurons, one single hidden layer composed
of 22 neurons, and one output layer consisting of one neuron
denoting the predicted mean daily flow, were developed. Each
ANN model was tested on a trial and error basis for the optimum
number of neurons in the hidden layer (found to be 22).

For the coupled WA-ANN models, 400 ANN models were devel-
oped for each of the two different rivers. The ANN models were
developed using a combination of the following variables: mean
flow from 1 day before up to and including mean flow from 15 days
before.

For both rivers, all of the ANN models were first trained using
the data in the training sets (using 80% of the data) to obtain the
optimized set of connection strengths, and then tested (using the
remaining 20% of the data). The models were then compared using
two statistical measures of goodness of fit (coefficient of determi-
nation and root mean square error).

5. Results

5.1. ANN and coupled wavelet-neural network models for 1 day lead
time forecasting

Tables 2 and 3 show the number of neurons and window
lengths for the best ANN and WA-ANN models for 1 and 3 days
ahead flow forecasting, respectively. Tables 4 and 5 show the
ANN and WA-ANN model performance statistics (R> and RMSE)
for the best ANN and WA-ANN models for both rivers for both 1
and 3 days ahead flow forecasting.

For the Kargotis River, it can be seen that the best model overall
for 1day lead time forecasting was the best WA-ANN model,
which had a testing R? of 0.9706, and a testing RMSE of 0.1315. This
WA-ANN model had 22 neurons in the hidden layer and a window
length of 5 days. The best ANN model had a testing R? of 0.9357,

Table 3
WA-ANN model information for both t — 1 and t — 3 forecasting.

Station # Neurons Window length
Kargotis at Evrychou

t—1 22

t-3 22 11

Xeros at Lazarides

t—1 22 5

t-3 22 12

Note: # neurons refers to the optimum number of neurons in the hidden layer.

Table 4
R? and RMSE values for ANN models for both rivers for both training and testing
periods (use of original time shifted F-series).

Station R*(t—1) R?*(t—3) RMSE(t—1) RMSE(t-3)

Kargotis at Evrychou

Training period 9215 7228 9413 1.597

Testing period 9357 7919 .1448 .1945

Xeros at Lazarides

Training period .8025 4159 .9402 2.220

Testing period .6233 4045 4992 .6519
Table 5

R? and RMSE values for WA-ANN models for both rivers for both training and testing
periods (use of wavelet time shifted F-series).

Station R*(t—1) R?*(t—3) RMSE(t—1) RMSE(t—3)
Kargotis at Evrychou

Training period 9512 9109 .8660 2.939
Testing period .9706 .8597 1315 .1258
Xeros at Lazarides

Training period .9026 4578 4.848 1.652
Testing period 7823 4197 2718 .3980

and a testing RMSE of 0.1448. This ANN model had 22 neurons in
the hidden layer and a window length of 5 days. Fig. 1 compares
the observed flow for the Kargotis River at Evrychou station with
the flow forecasted using the best WA-ANN model for 1 day lead
time forecasting (for the test period). Fig. 2 is a close up of test
years 1 and 2 of the test period (i.e. a close up of part of Fig. 1).
From the figures, it can be seen that the WA-ANN model slightly
under-forecasts low flows and peak flows. Despite this, it can be
seen that the WA-ANN model provides highly accurate forecasts.

For the Xeros River, it can be seen that the best model overall for
1 day lead time forecasting was the best WA-ANN model, which
had a testing R?> of 0.7823, and a testing RMSE of 0.2718. This
WA-ANN model had 22 neurons in the hidden layer and a window
length of 5 days. The best ANN model had a testing R? of 0.6233,
and a testing RMSE of 0.4992. This ANN model had 22 neurons in
the hidden layer and a window length of 21 days. It can be seen
that in the case of the Xeros River, neither the WA-ANN nor the
ANN models provided very accurate forecasts, although the WA-
ANN model did provide more accurate forecasts than the ANN
model.

Overall, it can be seen that for 1 day ahead forecasting the cou-
pled wavelet-neural network models provided more accurate fore-
casting results than the regular artificial neural network models.

5.2. ANN and coupled wavelet-neural network models for 3 days lead
time forecasting

Tables 2 and 3 show the number of neurons and window
lengths for the best ANN and WA-ANN models for 3 days ahead
flow forecasting, respectively. Tables 4 and 5 show the ANN and
WA-ANN model performance statistics for the best ANN and
WA-ANN models for both rivers for 3 days ahead flow forecasting.

For the Kargotis River, it can be seen that the best model overall
for 3 days lead time forecasting was the best WA-ANN model,
which had a testing R? of 0.8597, and a testing RMSE of 0.1258. This
WA-ANN model had 22 neurons in the hidden layer and a window
length of 11 days. The best ANN model had a testing R? of 0.7919,
and a testing RMSE of 0.1945. This ANN model had 22 neurons in
the hidden layer and a window length of 17 days.

For the Xeros River, it can be seen that the best model overall for
3 days lead time forecasting was the best WA-ANN model, which
had a testing R®> of 0.4197, and a testing RMSE of 0.3980.
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Kargotis Station WA-ANN Model: Companison of Forecasted vs. Observed
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Fig. 1. Comparison of forecasted versus observed flow using the best WA-ANN model for 1 day ahead forecasting for the Kargotis River at Evrychou station (test period).
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Fig. 2. Close up of comparison of forecasted versus observed flow using the best WA-ANN model for 1 day ahead forecasting for the Kargotis River at Evrychou station.

This WA-ANN model had 22 neurons in the hidden layer and a
window length of 12 days. The best ANN model had a testing R?
of 0.4045, and a testing RMSE of 0.6519. This ANN model had 22
neurons in the hidden layer and a window length of 9 days.
Overall, it can be seen that for 3 days ahead forecasting the cou-
pled wavelet-neural network models provided more accurate fore-
casting results than the regular artificial neural network models.

6. Conclusions

The potential of coupled wavelet-neural network models (WA-
ANN) for 1 and 3 days ahead flow forecasting was investigated in
this study for non-perennial rivers in semi-arid watersheds. The
coupled wavelet-neural network models were developed by com-
bining two methods, namely the discrete wavelet transform and
artificial neural networks. The coupled wavelet-neural network
models were compared to regular artificial neural network models
for 1 and 3 days ahead flow forecasting using data from two non-
perennial rivers in Cyprus. It was determined that for both 1 and
3 days lead time forecasting, the WA-ANN models provided more
accurate results than the regular ANN models. It is thought that
the WA-ANN models are more accurate since wavelet transforms
provide useful decompositions of the original time series, and the
wavelet-transformed data improves the ability of the ANN fore-
casting model by capturing useful information on various resolu-
tion levels.

In reference to the original aims of this study, it was deter-
mined that: (1) the WA-ANN method can be used with high
accuracy for 1day ahead flow forecasting, and with some accu-
racy for 3 days ahead flow forecasting, in semi-arid watersheds
with intermittent flows; and (2) the use of all wavelet decom-
posed sub-series as inputs to the ANN models helps provide very
accurate forecasts of flow. The results indicate that coupled
wavelet-neural network models are a promising new method of
short-term flow forecasting in non-perennial rivers in semi-arid
watersheds such as in Cyprus.

The present study focused on the forecasting of daily mean
flow using only flow data. It is hypothesized that the forecasts
could be improved if other variables which affect flow were to
be included. Examples of climatic variables not used in this re-
search that could be investigated in future studies include:
maximum and minimum temperature as well as total rainfall.
It is likely that different combinations of flow and climatic vari-
ables would improve the forecasting ability of the models ex-
plored in this study. Other recommendations for future
studies include: exploring the application of coupled wavelet-
neural network models for forecasting flows in different semi-
arid and arid areas; exploring lead times of 1week and
2 weeks; comparing the use of the continuous wavelet trans-
form with the use of the discrete wavelet transform for data
pre-processing; and comparing the use of different types of arti-
ficial neural networks in the coupled wavelet-neural network
models.
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