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Comparison of Multivariate Regression and Artificial Neural
Networks for Peak Urban Water-Demand Forecasting:

Evaluation of Different ANN Learning Algorithms
Jan Adamowski1 and Christina Karapataki2

Abstract: For the past several years, Cyprus has been facing an unprecedented water crisis. Four options that have been considered to
help resolve the problem of drought in Cyprus include imposing effective water use restrictions, implementing water-demand reduction
programs, optimizing water supply systems, and developing sustainable alternative water source strategies. An important aspect of these
initiatives is the accurate forecasting of short-term water demands, and in particular, peak water demands. This study compared multiple
linear regression and three types of multilayer perceptron artificial neural networks �each of which used a different type of learning
algorithm� as methods for peak weekly water-demand forecast modeling. The analysis was performed on 6 years of peak weekly
water-demand data and meteorological variables �maximum weekly temperature and total weekly rainfall� for two different regions
�Athalassa and Public Garden� in the city of Nicosia, Cyprus. 20 multiple linear regression models, 20 Levenberg-Marquardt artificial
neural network �ANN� models, 20 resilient back-propagation ANN models, and 20 conjugate gradient Powell-Beale ANN models were
developed, and their relative performance was compared. For both the Athalassa and Public Garden regions in Nicosia, the Levenberg-
Marquardt ANN method was found to provide a more accurate prediction of peak weekly water demand than the other two types of ANNs
and multiple linear regression. It was also found that the peak weekly water demand in Nicosia is better correlated with the rainfall
occurrence rather than the amount of rainfall itself.
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Introduction

Water supply systems around the world have become stressed in
recent years due to a combination of factors including rapid popu-
lation growth, increased per capita water consumption, and the
effects of climate change. For the past several years Cyprus has
been facing an unprecedented water crisis. There has been mini-
mal rainfall since 2003, reservoirs in the country are at less than
10%, and its two newly built desalination plants have been unable
to supply sufficient quantities of water �Gabriel 2008�. In addition
to reduced supplies of water, recent trends indicate that both av-
erage and peak water demand have been increasing.

It has been estimated that there is approximately 462 m3 of
water per inhabitant in Cyprus �Artemis 2006�. To put this in
perspective, thresholds of 1,000 and 500 m3 of water per inhab-
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itant have been deemed to correspond, respectively, to “water
stress” and “water scarcity” levels �Sivakumar 2004�. Rainfall on
the island averages 460 mm, a 15% drop from 1970. Overabstrac-
tion from aquifers has been estimated to be between 29 and 40
MCM per year, and due to water scarcity and multiyear droughts,
this has led to a near exhaustion of the “cushioning” effects of the
aquifers as well as seawater intrusion �Socratous 2005�.

It is anticipated that climate change will have a number of
impacts in Cyprus: a mean summer temperature increase of 5°C
by 2070–2100, a mean summer precipitation change of –4 mm/
month by 2070–2100, and an increase in the duration and inten-
sity of droughts �Lange 2007�. Intense precipitation events could
result in excess surface runoff rather than infiltration to ground-
water, and rising seawater levels could increase flooding and sea-
water ingress, resulting in the contamination of surface and
groundwater bodies.

Water shortages have been a long-standing problem in Cyprus.
In 1991, the deficit was so acute �75 MCM� that a 20% reduction
in domestic water supply and a 30–70% reduction in irrigation
water supply were imposed. A similar scenario occurred between
1996 and 2000 �with deficits between 68 and 114 MCM�, and a
similar scenario is unfolding in 2008 �Tsiourtis 2004�.

The annual water demand in Cyprus is approximately 69% for
agriculture, 25% for domestic �20% for inhabitants and 5% for
tourism�, 1% for industry, and 5% for the environment �Savvides
et al. 2001�. The 2001 overall water demand was 265.9 MCM,

while the projected demand for 2010 is 290.5 MCM and 313.7
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MCM for 2020 �Savvides et al. 2001�. In order to address the
issue of increasingly high overall and peak water demand and
decreasing amounts of water, it will be necessary to pursue new
strategies. Among many possibilities, this could involve a combi-
nation of the following: implementing effective water-demand re-
duction programs, imposing effective water use restrictions,
optimizing water supply systems through real-time control by hy-
brid expert systems, and developing sustainable alternative water
source strategies. An important aspect of these initiatives is the
accurate forecasting of short-term water demands and, in particu-
lar, peak water demands.

Despite the relative importance of peak water demand and, in
particular, peak water-demand forecasting, limited detailed re-
search has been devoted to this topic, including factors driving
peak water demand and different forecasting methods �Day and
Howe 2003�. The motivation for this research was therefore to
study three important issues that have not, to the best knowledge
of the authors, been explored in detail in the short-term water-
demand literature: �1� the use of resilient back-propagation �RP�
and conjugate gradient Powell-Beale �CGPB� ANNs for urban
short-term water-demand forecasting, �2� the use of ANNs for
peak �as opposed to average or total� weekly water demand in an
area with very acute water scarcity, and �3� the determination of
whether rainfall occurrence or rainfall amount is a more signifi-
cant variable in modeling peak water-demand forecasts.

It has been shown that the peak water-demand process is often
stochastic and nonlinear �Gutzler and Nims 2005�. As such, the
forecasting of peak water demand is complex and thus the use of
different types of ANNs, which are capable of modeling nonlinear
systems, needs to be explored. The issue of whether rainfall oc-
currence or rainfall amount is a more significant variable in mod-
eling short-term water demand has been investigated by Jain et al.
�2001�, Bougadis et al. �2005�, and Adamowski �2008�, but they
arrived at differing conclusions. Therefore, this issue was further
investigated in this study for peak weekly water demand.

In this research, three different types of multilayer perceptron
artificial neural networks �each using a different learning algo-
rithm, namely, Levenberg-Marquardt �LM�, RP, and CGPB algo-
rithms� were developed and compared with a conventional
method �multiple linear regression �MLR�� for peak weekly
water-demand forecasting.

Previous Research

MLR Analysis and Time Series Analysis

A variety of techniques has been used in short-term water-demand
forecasting, including regression analysis and “time series” analy-
sis. Simple regression and MLR are frequently used river flow
forecasting methods. They have the advantage that they are com-
paratively simple and can easily be implemented. However, they
are somewhat limited in their ability to forecast in certain situa-
tions, especially in the presence of nonlinear relationships and
high levels of noisy data. Examples of short-term water-demand
forecast modeling using regression analysis include Howe and
Linaweaver �1967�, Oh and Yamauchi �1974�, Hughes �1980�,
Anderson et al. �1980�, and Maidment and Parzen �1984�.

Most “time series” models belong to the class of linear time
series forecasting, because they postulate a linear dependency of
the future value on the past values. A critique of univariate time
series models is that they do not consider climatic variables dur-

ing the modeling process since they only explore the relationship
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between present and past floods. However, the time series tech-
nique is nevertheless very useful where climatic data are not
available. The most popular univariate models are the autoregres-
sive moving average �ARMA� model and its derivatives, which
include the autoregressive �AR�, autoregressive integrated mov-
ing average �ARIMA�, seasonal ARIMA, periodic ARMA,
threshold AR, and fractionally integrated ARMA models. Maid-
ment et al. �1985� used short-term time series models for daily
municipal water use as a function of rainfall and air temperature.
Maidment and Miaou �1986� applied this model to the water con-
sumption from nine cities in the United States. Some other ex-
amples of short-term water-demand forecast modeling using time
series analysis include Smith �1988�, Miaou �1990�, Zhou et al.
�2000�, Jain et al. �2001�, Bougadis et al. �2005�, and Adamowski
�2008�.

Artificial Neural Network Analysis

Artificial neural networks have recently begun to be used for
short-term water-demand forecasting. A number of studies have
compared the use of artificial neural networks for short-term
urban water-demand forecasting with other forecasting methods.
Most studies used traditional gradient-descent feedforward back-
propagation ANNs.

Jain et al. �2001� developed gradient-descent ANN models and
compared them to regression and time series models. It was found
that the occurrence of rainfall was a more significant variable than
the amount of rainfall itself in the modeling of short-term water
demand, and that the ANN models outperformed both the regres-
sion and time series models. Jain and Ormsbee �2002� examined
regression, time series analysis, and gradient-descent ANN mod-
els for daily water-demand forecasting and found that the ANN
models were slightly more accurate than the time series and the
regression-disaggregation models. Pulido-Calvo et al. �2003� ex-
amined regression, time series, and gradient-descent ANN models
for total daily water demand for Fuente Palmera, Spain, and
found that the ANN model outperformed all the other models.
Bougadis et al. �2005� explored regression, time series, and
gradient-descent ANN models for weekly water demand and
found that the ANN models consistently outperformed the regres-
sion and time series models. They found, in contrast to Jain et al.
�2001�, that the weekly water demand is better correlated with the
amount of rainfall rather than the rainfall occurrence. Adamowski
�2008� compared regression, time series, and gradient-descent
ANN models for peak daily water-demand forecasting and found
that the ANN models were more accurate than the other models,
and that the peak daily water demand is better correlated with the
rainfall occurrence rather than the amount of rainfall itself.

There have also been a number of studies that compared dif-
ferent types of artificial neural networks for short-term urban
water-demand forecasting. Heller and Singh Thind �1994� found
cascade correlation ANNs to be more accurate than gradient-
descent ANNs, Chen et al. �2005� found Chebyshev ANNs to be
more accurate than gradient-descent ANNs, Pulido-Calvo et al.
�2007� found LM ANNs to be more accurate than MLR, Yue et al.
�2007� found particle swarm optimization ANNs to be more ac-
curate than gradient-descent ANNs, and Ghiassi et al. �2008�
found dynamic ANNs to be more accurate than gradient-descent
ANNs and autoregressive integrated moving average time series
analysis.

A number of studies comparing different types of ANNs have
also been completed for flood and rainfall-runoff forecasting ap-

plications. Those studies that compared LM ANNs with other
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types of ANNs �conjugate gradient, Bayesian regularization, cas-
cade correlation, gradient descent, variable learning rate, and mo-
mentum back-propagation� found that the LM ANNs
outperformed the other types of ANNs �Aqil et al. 2007; Cigizo-
glu and Kisi 2005; Kişi 2007; Liu et al. 2007�. Those studies that
compared radial basis function �RBF� ANNs with other types of
ANNs �namely, gradient-descent ANNs� arrived at a variety of
conclusions. Some studies found that the RBF ANNs slightly out-
performed the traditional gradient-descent ANNs �Piotrowski et
al. 2006; Huang et al. 2003�. Other studies found that the RBF
ANNs had approximately the same level of accuracy as the
gradient-descent ANNs �Jayawardena 1997; Fernando and
Jayawardena 1998; Jayawardena et al. 1998; Dawson et al. 2002�,
while still other studies found that the gradient-descent ANNs
outperformed the RBF ANNs �Dawson and Wilby 1999�.

From the above flood and rainfall-runoff forecasting studies, it
can be seen that the traditional gradient-descent ANNs have ap-
proximately the same performance as the RBF ANNs, the LM
ANNs have better performance than most other types of ANNs,
and that there are very few studies that have explored the use of
conjugate gradient ANNs, and no studies that have explored the
use of CGPB and RP ANNs.

In this study, it was decided to compare three types of ANNs:
LM, RP, and CGPB. RP and CGPB ANNs were tested because, to
the best knowledge of the authors, they have not been explored in
literature for use in forecasting short-term urban peak water de-
mand even though they have a number of advantages. LM ANNs
were tested because they have been shown to be highly accurate
for short-term irrigation water-demand forecasting �Pulido-Calvo
et al. 2007� and flood and rainfall-runoff forecasting �Aqil et al.
2007; Cigizoglu and Kisi 2005; Kişi 2007; Liu et al. 2007�, and as
such it was deemed that it would be useful to compare RP and
CGPB ANNs with an ANN method �LM� that has already been
shown to be very accurate in other forecasting applications. MLR
was also used in this study because it is one of the most widely
used techniques for water-demand forecasting and as such is ideal
for comparative purposes with the newer ANN methods.

Study Areas and Data

Nicosia Water Supply System

The Water Board of Nicosia buys water from the Water Develop-
ment Department and is responsible for distributing potable water
services to over 200,000 people �83,129 water meters�. The total
capacity of the reservoirs is 70,000 m3 �equivalent to 2-day sup-
ply� and the entire water supply system operates under gravity. In
2005, water production in Nicosia was estimated at 18 MCM,
water consumption at 16.96 MCM �with domestic use accounting
for 13 MCM�, and actual average daily consumption per person at
159 L �Local water supply, sanitation and sewage: Country
report—Cyprus 2005�. Unaccounted water was estimated at ap-
proximately 24.4%. The sources for domestic water supply in
Nicosia are desalination �45.5%�, groundwater �28.8%�, and sur-
face water �25.7%�. Water shortages have seriously harmed the
distribution system due to pressure being off and on, which has
lead to an increase in the number of leaks �Local water supply,
sanitation and sewage: Country report—Cyprus 2005�.

In order to address the issue of increasingly high overall and
peak water demand and decreasing amounts of water in Nicosia,
it will be necessary to pursue new strategies. Among many pos-

sibilities, this could involve a combination of the following:
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implementing effective water-demand reduction programs, im-
posing effective water use restrictions, optimizing water supply
systems through real-time control by hybrid expert systems, and
developing sustainable alternative water source strategies. An im-
portant aspect of these initiatives is the accurate forecasting of
short-term water demands and, especially, peak water demands.
In particular, the city of Nicosia has identified peak weekly water-
demand forecasts as being very important to help them address
increasingly high overall and peak water demand and decreasing
amounts of water in Nicosia.

Data

Many variables influence water demand, most of which can be
grouped into two classes: socioeconomic and climatic variables.
Studies have demonstrated that socioeconomic variables are re-
sponsible for the long-term effects on water demand, while cli-
matic variables are mainly responsible for short-term seasonal
variations in water demand �Miaou 1990�.

This study used climatic variables and past water demand.
More specifically, the data used in this study consisted of weekly
total rainfall �mm�, maximum weekly temperature �°C�, and peak
weekly water demand �ML/d�. The peak weekly water demand
for a specific week was the peak hour water demand in that week.
Two sets of water-demand data and one set of climatic data were
used. The first set of water-demand data was from Athalassa in
Nicosia, while the second set of water-demand data was from the
Public Garden in Nicosia.

Water-demand data were provided by the Water Board of
Nicosia, and meteorological data were provided by the Meteoro-
logical Service of Cyprus. The water-demand series record was
available from 2002 to 2007. For the Public Garden region, the
mean weekly rainfall over this time period was 7.16 mm �with a
standard deviation of 15.35 mm�, while the mean weekly tem-
perature over this time period was 25.85°C �with a standard de-
viation of 6.12°C�. For the Athalassa region, the mean weekly
rainfall over this time period was 7.03 mm �with a standard de-
viation of 14.48 mm�, while the mean weekly temperature over
this time period was 26.34°C �with a standard deviation of
8.25°C�. There were no special events �such as a large pipe break
or tournaments� that could have invalidated the data in either of
the regions.

For the ANN models, the water demand and meteorological
data series were divided into a training/calibration set �the first
70% of the data sets from 2002 to 2007�, a validation set �the
next 10% of the data sets from 2002 to 2007�, and a testing
set �the last 20% of the data sets from 2002 to 2007�. For the
MLR models, the water demand and meteorological data
series were divided into a training/calibration set �the first 70%
of the data sets from 2002 to 2007� and a testing set �the last
30% of the data sets from 2002 to 2007�.

Model Development

MLR Analysis

Ten MLR models for the Athalassa region �MLR-�A�� and ten
MLR models for the Public Garden region �MLR-�PG�� were
developed for weekly peak water-demand forecasts and can be
seen in Table 1.

Cross-correlation coefficients between peak weekly water de-

mand and each variable were calculated. This information was
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used to aid in selecting input variables for the MLR and ANN
models. The cross correlation between the peak weekly water
demand at time t and each of the other variables �peak water
demand, maximum temperature, total rainfall, and occurrence or
nonoccurrence of rainfall� was performed from times t �current
week� to t-5 �5 weeks ago�. Based on the cross-correlation results,
the MLR �and ANN� models were developed using a combination
of the following variables: peak water demand for the previous
week WD�t-1�, maximum temperature for the current week T�t�,
maximum temperature for the previous week T�t-1�, maximum
temperature from 2 weeks ago T�t-2�, total rainfall for the current
week R�t�, total rainfall for the previous week R�t-1�, total rainfall
from 2 weeks ago R�t-2�, occurrence or nonoccurrence of rainfall
for the current week CR�t�, and occurrence or nonoccurrence of
rainfall for the previous week CR�t-1�.

An example of one of these models is MLR-1�A�, which is a
function of the peak water demand from the previous week
WD�t-1�, the maximum temperature of the current day T�t�, the
maximum temperature of the previous week T�t-1�, the total rain-
fall of the current week R�t�, the total rainfall of the previous
week R�t-1�, the occurrence/nonoccurrence of rainfall for the cur-
rent week CR�t�, and the occurrence/nonoccurrence of rainfall for
the previous week CR�t-1�, and is shown by

WD�t� = B0 + B1WD�t-1� + B2T�t� + B3T�t-1� + B4R�t� + B5R�t-1�

+ B6CR�t� + B7CR�t-1� �1�

All of the MLR models were first trained �to determine the

Table 1. Performance Statistics for MLR Models 1–10 for Athalassa and

Model Parameters

A

MLR-1�A� WD�t-1�, T, T�t-1�, R, R�t-1�, CR, CR�t-1�
MLR-2�A� WD�t-1�, T�t�
MLR-3�A� WD�t-1�, T�t�, T�t-1�
MLR-4�A� WD�t-1�, T�t�, R�t�
MLR-5�A� WD�t-1�, T�t�, T�t-1�, R�t�
MLR-6�A� WD�t-1�, T�t�, CR�t�
MLR-7�A� WD�t-1�, T�t�, T�t-1�, CR�t�
MLR-8�A� WD�t-1�, T�t�, T�t-1�, R�t-1�
MLR-9�A� WD�t-1�, T�t�, T�t-1�, R�t-2�
MLR-10�A� WD�t-1�, T�t�, T�t-1�, T�t-2�

Publ

MLR-1�PG� WD�t-1�, T, T�t-1�, R, R�t-1�, CR, CR�t-1�
MLR-2�PG� WD�t-1�, T�t�
MLR-3�PG� WD�t-1�, T�t�, T�t-1�
MLR-4�PG� WD�t-1�, T�t�, R�t�
MLR-5�PG� WD�t-1�, T�t�, T�t-1�, R�t�
MLR-6�PG� WD�t-1�, T�t�, CR�t�
MLR-7�PG� WD�t-1�, T�t�, T�t-1�, CR�t�
MLR-8�PG� WD�t-1�, T�t�, T�t-1�, R�t-1�
MLR-9�PG� WD�t-1�, T�t�, T�t-1�, R�t-2�
MLR-10�PG� WD�t-1�, T�t�, T�t-1�, T�t-2�
Note: MLR=multiple linear regression, A=Athalassa, PG=Public Gard
=average absolute relative error, Max ARE=maximum absolute relative e
t, and CR�t�=occurrence or nonoccurrence of rainfall at time t.
regression coefficients� using the data in the training set �the first
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70% of the data� and then tested using the testing data set �the last
30% of the data�, and compared using the four statistical mea-
sures of goodness of fit.

Artificial Neural Network Analysis

Multilayered perceptrons �MLPs� are the simplest and most com-
monly used neural network architectures. MLPs can be trained
using many different learning algorithms. In this research, MLPs
were trained using LM, RP, and CGPB learning algorithms. There
are a number of advantages associated with using the LM, RP,
and CGPB learning algorithms. Furthermore, as was mentioned
earlier, two of these learning algorithms �RP and CBPB� have not
been explored for use in short-term urban water-demand forecast-
ing.

The LM algorithm �Levenberg 1944; Marquardt 1963�, like
the quasi-Newton methods, was developed to approach second-
order training speed without having to compute the Hessian ma-
trix. The LM algorithm has been found to be the fastest method
for training moderate-sized feedforward neural networks, al-
though it requires a greater amount of memory than other algo-
rithms �Karul et al. 2000�.

Multilayer networks usually use sigmoid transfer functions in
the hidden layers. The slopes of sigmoid functions have to ap-
proach zero as the input becomes large. This can be problematic
when the steepest descent is used to train a multilayer network
with sigmoid functions because the gradient can have a very
small magnitude. This in turn can result in small changes in the

c Garden, Nicosia

ning R2 testing
RMSE
�ML/d� AARE Max ARE

a

01 0.8138 0.1916 2.4594 12.2336

67 0.7749 0.2092 2.8324 14.0489

47 0.8153 0.2048 2.5634 12.9539

01 0.7910 0.2061 2.7447 13.0094

08 0.8186 0.1963 2.5257 12.1704

34 0.7597 0.2075 2.8008 13.3840

80 0.8073 0.1982 2.5388 12.5230

03 0.8180 0.2009 2.5443 12.7667

51 0.8152 0.2023 2.5581 12.8799

83 0.8196 0.1952 2.5143 11.9900

den

85 0.8133 0.1932 2.4806 12.5852

81 0.7749 0.2125 2.8135 14.2099

65 0.8133 0.2065 2.5879 14.5574

86 0.7722 0.2083 2.8244 14.1343

95 0.8091 0.1982 2.5736 14.3795

33 0.7708 0.2095 2.8024 13.3425

85 0.8124 0.2001 2.5667 14.0009

75 0.8162 0.2023 2.5836 14.3986

88 0.8134 0.2041 2.5744 14.3059

16 0.8157 0.1963 2.5347 13.9153

=coefficient of determination, RMSE=root-mean-square error, AARE
D�t�=demand at time t, T�t�=temperature at time t, R�t�=rainfall at time
Publi

R2 trai

thalass

0.85

0.79

0.83

0.81

0.84

0.80

0.83

0.84

0.83

0.83

ic Gar

0.83

0.79

0.82

0.79

0.82

0.80

0.82

0.82

0.82

0.83

en, R2

rror, W
weights and biases, even though the weights and biases are far
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from their optimal values. The purpose of the RP training algo-
rithm �Riedmuller and Braun 1993� is to eliminate the harmful
effects of the magnitudes of the partial derivatives. In the RP
training algorithm, the sign of the derivative is used to ascertain
the direction of the weight update, while the magnitude of the
derivative does not have an effect on the weight update. A sepa-
rate update value determines the size of the weight change. The
update value for each weight and bias is increased by a specific
factor when the derivative of the performance function with re-
spect to that weight has the same sign for two successive itera-
tions. The update value is decreased by a specific factor when the
derivative with respect to that weight changes sign from the pre-
vious iteration. If the weights are oscillating, the weight change
will be reduced, and if the weight continues to change in the same
direction for several iterations, then the magnitude of the weight
change will be increased ��Matlab help files 2005�. The RP train-
ing algorithm is usually much faster than the standard steepest
descent algorithm, and requires only a small increase in memory.

The back-propagation algorithm adjusts the weights in the
steepest descent direction, which is the direction in which the
performance function decreases most rapidly. Although the func-
tion decreases most rapidly along the negative of the gradient, this
does not necessarily result in the fastest convergence. In the con-
jugate gradient algorithms a search is performed along conjugate
directions, which usually results in faster convergence than steep-
est descent directions. The conjugate gradient algorithm with
Powell-Beale restarted method �Beale 1972; Powell 1977� is used
to improve the convergent rate and the performance of the neural
model. The Powell-Beale variation of the conjugate gradient has
two main features. First, the algorithm uses a test to determine
when to reset the search direction to the negative of the gradient.
Second, the search direction is computed from the negative gra-
dient, the previous search direction, and the last search direction
before the previous reset.

To develop an ANN model, the primary objective is to arrive
at the optimum architecture of the ANN that captures the relation-
ship between the input and output variables. The task of identify-
ing the number of neurons in the input and output layers is

Table 2. Performance Statistics for ANN Models 1–5 for Athalassa, Nic

Model Parameters R2 trai

LM-1�A� WD�t-1�, T, T�t-1�, R, R�t-1�, CR, CR�t-1� 0.952

RP-1�A� WD�t-1�, T, T�t-1�, R, R�t-1�, CR, CR�t-1� 0.925

CGPB-1�A� WD�t-1�, T, T�t-1�, R, R�t-1�, CR, CR�t-1� 0.947

LM-2�A� WD�t-1�, T�t� 0.937

RP-2�A� WD�t-1�, T�t� 0.919

CGPB-2�A� WD�t-1�, T�t� 0.919

LM-3�A� WD�t-1�, T�t�, T�t-1� 0.956

RP-3�A� WD�t-1�, T�t�, T�t-1� 0.926

CGPB-3�A� WD�t-1�, T�t�, T�t-1� 0.946

LM-4�A� WD�t-1�, T�t�, R�t� 0.952

RP-4�A� WD�t-1�, T�t�, R�t� 0.935

CGPB-4�A� WD�t-1�, T�t�, R�t� 0.913

LM-5�A� WD�t-1�, T�t�, T�t-1�, R�t� 0.965

RP-5�A� WD�t-1�, T�t�, T�t-1�, R�t� 0.925

CGPB-5�A� WD�t-1�, T�t�, T�t-1�, R�t� 0.912

Note: A=Athalassa, LM=Levenberg-Marquardt, RP=resilient back-prop
tion, RMSE=root-mean-square error, AARE=average absolute relative
T�t�=temperature at time t, R�t�=rainfall at time t, and CR�t�=occurrenc
normally simple as it is dictated by the input and output variables
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considered to model the physical process. The number of neurons
in the hidden layer has to be optimized using the available data
through the use of a trial-and-error procedure. In addition, optimal
values for the learning coefficients have to be determined for
certain types of ANNs.

In this study, ANN networks consisting of an input layer with
2–7 input nodes, one single hidden layer composed of 15 nodes,
and one output layer consisting of 1 node denoting the predicted
peak weekly water demand were developed. Each ANN model
was tested on a trial-and-error basis for the optimum number of
neurons in the hidden layer �found to be 15 neurons for all mod-
els�. For the RP ANNs the optimum learning coefficient was
found to be 0.01. The LM ANNs and CGPB ANNs do not have a
learning coefficient.

Ten LM ANN models, ten RP ANN models, and ten CGPB
ANN models were developed using Matlab for the Athalassa re-
gion of Nicosia and ten LM ANN models, ten RP ANN models,
and ten CGPB models were developed for the Public Garden
region of Nicosia. The neurons in the input layer of each of these
different ANN models represented different combinations of the
various physical variables considered, and were chosen based on
the correlation coefficients between each variable �at different
time steps from t to t-3� and the original peak weekly water-
demand data. These can be seen in Tables 2–5. Based on the
results of the cross-correlation analysis, the ANN models were
developed using a combination of the following variables: peak
water demand for the previous week WD�t-1�, maximum tem-
perature for the current week T�t�, maximum temperature for the
previous week T�t-1�, maximum temperature from 2 weeks ago
T�t-2�, total rainfall for the current week R�t�, total rainfall for the
previous week R�t-1�, total rainfall from 2 weeks ago R�t-2�,
occurrence or nonoccurrence of rainfall for the current week
CR�t�, and occurrence or nonoccurrence of rainfall for the previ-
ous week CR�t-1�.

For both the Athalassa region and the Public Garden region, all
of the ANN models were first trained using the data in the training
sets �using the first 70% of the data� to obtain the optimized set of

R2 validation R2 testing
RMSE
�ML/d� AARE Max ARE

0.8923 0.9462 0.1255 2.1467 11.1821

0.8939 0.9257 0.1842 2.4620 12.3675

0.8971 0.9418 0.1626 2.0949 11.9275

0.8739 0.9173 0.1735 2.3642 11.0312

0.8869 0.9426 0.1936 2.4717 15.8176

0.8796 0.9313 0.1929 2.5443 15.2643

0.8971 0.9396 0.1395 1.9821 15.7640

0.8783 0.8993 0.1843 2.4989 11.8496

0.8970 0.9423 0.1604 2.1763 14.2667

0.8869 0.9557 0.1504 2.0216 16.0445

0.8727 0.9510 0.1776 2.3827 14.9018

0.8752 0.9494 0.1859 2.5712 14.4451

0.9279 0.9091 0.1278 1.7649 12.4000

0.9034 0.9327 0.1812 2.4273 11.3539

0.8986 0.9143 0.1805 2.6825 13.2094

, CGB=conjugate gradient Powell-Beale, R2=coefficient of determina-
ax ARE=maximum absolute relative error, WD�t�=demand at time t,

noccurrence of rainfall at time t.
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data�, and then tested �using the last 20% of the data�. The models
were then compared using the four statistical measures of good-
ness of fit.

Model Performance Comparison

The performance of developed models can be evaluated using
several statistical tests that describe the errors associated with the
model. After each of the model structures is calibrated using the
calibration/testing data set, the performance can then be evaluated
in terms of these statistical measures of goodness of fit. In order
to provide an indication of goodness of fit between the observed
and forecasted values the coefficient of determination �R2�, the
root-mean-square error �RMSE�, the average absolute relative
error �AARE�, and the maximum absolute relative error �Max

Table 3. Performance Statistics for ANN Models 6–10 for Athalassa, N

Model Parameters R2 training

LM-6�A� WD�t-1�, T�t�, CR�t� 0.9485

RP-6�A� WD�t-1�, T�t�, CR�t� 0.9391

CGPB-6�A� WD�t-1�, T�t�, CR�t� 0.9339

LM-7�A� WD�t-1�, T�t�, T�t-1�, CR�t� 0.9391

RP-7�A� WD�t-1�, T�t�, T�t-1�, CR�t� 0.9220

CGPB-7�A� WD�t-1�, T�t�, T�t-1�, CR�t� 0.9299

LM-8�A� WD�t-1�, T�t�, T�t-1�, R�t-1� 0.9503

RP-8�A� WD�t-1�, T�t�, T�t-1�, R�t-1� 0.9390

CGPB-8�A� WD�t-1�, T�t�, T�t-1�, R�t-1� 0.9393

LM-9�A� WD�t-1�, T�t�, T�t-1�, R�t-2� 0.9523

RP-9�A� WD�t-1�, T�t�, T�t-1�, R�t-2� 0.8923

CGPB-9�A� WD�t-1�, T�t�, T�t-1�, R�t-2� 0.9075

LM-10�A� WD�t-1�, T�t�, T�t-1�, T�t-2� 0.9612

RP-10�A� WD�t-1�, T�t�, T�t-1�, T�t-2� 0.9401

CGPB-10�A� WD�t-1�, T�t�, T�t-1�, T�t-2� 0.9339

Note: A=Athalassa, LM=Levenberg-Marquardt, RP=resilient back-prop
tion, RMSE=root-mean-square error, AARE=average absolute relative
T�t�=temperature at time t, R�t�=rainfall at time t, and CR�t�=occurrenc

Table 4. Performance Statistics for ANN Models 1–5 for Public Garden

Model Parameters R2 tra

LM-1�PG� WD�t-1�, T, T�t-1�, R, R�t-1�, CR, CR�t-1� 0.92

RP-1�PG� WD�t-1�, T, T�t-1�, R, R�t-1�, CR, CR�t-1� 0.90

CGPB-1�PG� WD�t-1�, T, T�t-1�, R, R�t-1�, CR, CR�t-1� 0.91

LM-2�PG� WD�t-1�, T�t� 0.93

RP-2�PG� WD�t-1�, T�t� 0.90

CGPB-2�PG� WD�t-1�, T�t� 0.91

LM-3�PG� WD�t-1�, T�t�, T�t-1� 0.94

RP-3�PG� WD�t-1�, T�t�, T�t-1� 0.94

CGPB-3�PG� WD�t-1�, T�t�, T�t-1� 0.93

LM-4�PG� WD�t-1�, T�t�, R�t� 0.93

RP-4�PG� WD�t-1�, T�t�, R�t� 0.90

CGPB-4�PG� WD�t-1�, T�t�, R�t� 0.92

LM-5�PG� WD�t-1�, T�t�, T�t-1�, R�t� 0.94

RP-5�PG� WD�t-1�, T�t�, T�t-1�, R�t� 0.90

CGPB-5�PG� WD�t-1�, T�t�, T�t-1�, R�t� 0.91

Note: A=Athalassa, LM=Levenberg-Marquardt, RP=resilient back-prop
tion, RMSE=root-mean-square error, AARE=average absolute relative

T�t�=temperature at time t, R�t�=rainfall at time t, and CR�t�=occurrence or no
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ARE� can be used. In addition, the persistence index �PI� can be
used to compare the performance of a model with that of a
“naïve” model, which always gives as a forecast the previous
observation.

The coefficient of determination �R2� measures the degree of
correlation among the observed and predicted values. It is a mea-
sure of the strength of the model in developing a relationship
among input and output variables. The higher the R2 value �with
1 being the maximum value�, the better is the performance of the
model. R2 is given by

R2 =
�i=1

N �ŷi − ȳi�2

�i=1
N �yi − ȳi�2 �2�

with

alidation R2 testing
RMSE
�ML/d� AARE Max ARE

.8875 0.9536 0.1605 2.1262 13.9639

.8860 0.9502 0.1748 2.2464 13.3371

.8876 0.9577 0.1765 2.2954 13.3131

.8868 0.8683 0.1358 2.4924 11.6271

.8876 0.8844 0.1837 2.6127 12.6338

.8991 0.9128 0.1826 2.5186 12.4840

.8523 0.9337 0.1461 2.0800 21.5706

.8854 0.8778 0.1684 2.2929 12.8536

.8997 0.8886 0.1696 2.2308 13.1382

.9042 0.9218 0.1473 2.0604 10.9234

.8547 0.8859 0.2061 3.1349 13.5761

.8821 0.9034 0.1877 2.7841 12.5440

.9276 0.8873 0.1311 1.9488 12.9935

.9063 0.9007 0.1678 2.2311 12.1537

.9036 0.9326 0.1738 2.3097 11.0284

, CGB=conjugate gradient Powell-Beale, R2=coefficient of determina-
ax ARE=maximum absolute relative error, WD�t�=demand at time t,

noccurrence of rainfall at time t.

ia

R2 validation R2 testing
RMSE
�ML/d� AARE Max ARE

0.8583 0.9063 0.1430 2.5925 14.4620

0.8278 0.8873 0.2041 2.9152 13.8981

0.8812 0.8843 0.1874 2.4896 12.2139

0.8776 0.9319 0.1790 2.2967 10.8208

0.8781 0.9445 0.2184 2.7308 18.5083

0.8699 0.9306 0.1938 2.6485 17.3165

0.8660 0.9404 0.1531 2.4113 13.2683

0.8792 0.9432 0.1698 2.2686 13.1499

0.8666 0.9322 0.1809 2.4538 13.7948

0.8721 0.9496 0.1634 2.3514 14.8739

0.8260 0.8938 0.2100 3.0256 13.1829

0.8685 0.9446 0.1877 2.4713 14.5310

0.9145 0.8642 0.1550 2.248 10.8404

0.8922 0.8898 0.2057 2.8156 11.8469

0.8901 0.8884 0.1883 2.6698 12.6940

, CGB=conjugate gradient Powell-Beale, R2=coefficient of determina-
ax ARE=maximum absolute relative error, WD�t�=demand at time t,
icosia
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ȳi =
1

N�
i=1

N

yi �3�

where ȳi=mean value taken over N, N=number of data points
used, yi=observed peak weekly water demand, and ŷi

=forecasted peak weekly water demand from the model.
The RMSE evaluates the variance of errors independently of

the sample size, and is given by

RMSE =�SEE

N
�4�

where SEE=sum of squared errors and N=number of data points
used. SEE is given by

SEE = �
i=1

N

�yi − ŷi�2 �5�

with the variables having already been defined. The smaller the
RMSE, the better is the performance of the model.

The AARE is a quantitative measure of the average error in
one step ahead forecasts from a particular model and is defined by

AARE =
1

N�
i=1

N �Oi − Di

Oi
� � 100% �6�

where Oi=observed peak weekly water demand and Di

=forecasted peak weekly water demand. The smaller the value of
AARE, the better is the performance of the model.

The Max ARE is the maximum of the absolute relative error
�AARE� among all of the forecasted data points and is a measure
of the robustness of the model. The smaller the value of the Max
ARE, the better is the performance of the model.

The PI compares the performance of a model with that of a

Table 5. Performance Statistics for ANN Models 6–10 for Public Garde

Model Parameters R2 training

LM-6�PG� WD�t-1�, T�t�, CR�t� 0.9471

RP-6�PG� WD�t-1�, T�t�, CR�t� 0.9320

CGPB-6�PG� WD�t-1�, T�t�, CR�t� 0.9342

LM-7�PG� WD�t-1�, T�t�, T�t-1�, CR�t� 0.9471

RP-7�PG� WD�t-1�, T�t�, T�t-1�, CR�t� 0.9272

CGPB-7�PG� WD�t-1�, T�t�, T�t-1�, CR�t� 0.9350

LM-8�PG� WD�t-1�, T�t�, T�t-1�, R�t-1� 0.9435

RP-8�PG� WD�t-1�, T�t�, T�t-1�, R�t-1� 0.9279

CGPB-8�PG� WD�t-1�, T�t�, T�t-1�, R�t-1� 0.9322

LM-9�PG� WD�t-1�, T�t�, T�t-1�, R�t-2� 0.9473

RP-9�PG� WD�t-1�, T�t�, T�t-1�, R�t-2� 0.9072

CGPB-9�PG� WD�t-1�, T�t�, T�t-1�, R�t-2� 0.9305

LM-10�PG� WD�t-1�, T�t�, T�t-1�, T�t-2� 0.9567

RP-10�PG� WD�t-1�, T�t�, T�t-1�, T�t-2� 0.9423

CGPB-10�PG� WD�t-1�, T�t�, T�t-1�, T�t-2� 0.9305

Note: A=Athalassa, LM=Levenberg-Marquardt, RP=resilient back-prop
tion, RMSE=root-mean-square error, AARE=average absolute relative
T�t�=temperature at time t, R�t�=rainfall at time t, and CR�t�=occurrenc
naïve model and is given by
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PI = 1 −
�i=1

N �yi−yi
ˆ�2

�i=1
N �yi − yi−L�2 �7�

where yi−L=observed water demand at the time step i−L and L
=lead time �52 weeks�. A PI value of 1 reflects perfect adjustment
between forecasted and observed values. A PI value of zero is
equivalent to saying that the model is no better than a naïve
model, which always gives as a forecast the previous observation.
A negative PI value means that the model degrades the original
information, thus exhibiting a performance worse than the one
given by the naïve model �Pulido-Calvo and Portela 2007�.

Results

PIs

The performance indices were calculated for the best model of
each forecasting method over the last 52-week seasonal cycle
�i.e., a comparison was made between 2006 and 2007�. This was
done only for the Athalassa region. The PI for MLR-10�A� was
0.5742, the PI for LM-1�A� was 0.6654, the PI for RP-10�A� was
0.6873, and the PI for CGPB-1�A� was 0.6318. For each of these
models, the PI is greater than zero, indicating that all forecasts are
better than the naïve model, which gives as a forecast the previ-
ous observation at all times. As expected, there is a noticeable
improvement shown by the ANN models compared to the MLR
model. It can also be seen from Figs. 1–4 �which compare the
forecasted water demand with the observed water demand for the
last 52-week seasonal cycle for the MLR-10�A�, LM-1�A�, RP-
10�A�, and CGPB-1�A� models, respectively� that there is no sys-
tematic displacement between the observed and forecasted water-
demand time series.

MLR Analysis

Table 1 shows the performance statistics for the testing of all ten

osia

alidation R2 testing
RMSE
�ML/d� AARE Max ARE

.8936 0.9447 0.1600 2.1432 14.5859

.8835 0.9314 0.1813 2.3726 13.0461

.8850 0.9513 0.1775 2.3125 13.1695

.9139 0.9372 0.1525 2.0182 10.8899

.9080 0.9055 0.1837 2.3779 10.2757

.9074 0.9053 0.1743 2.2086 11.2556

.9161 0.9239 0.1601 2.1168 11.4054

.9051 0.9335 0.1824 2.3456 12.6191

.8990 0.9207 0.1784 2.3002 12.7193

.9042 0.8856 0.1543 2.1334 10.9598

.8712 0.9076 0.2060 2.7951 12.9751

.9021 0.9078 0.1802 2.3335 12.7975

.9327 0.9174 0.1366 1.9727 9.7623

.9052 0.9001 0.1655 2.2712 10.4138

.9005 0.9274 0.1783 2.3778 11.2030

, CGB=conjugate gradient Powell-Beale, R2=coefficient of determina-
ax ARE=maximum absolute relative error, WD�t�=demand at time t,

noccurrence of rainfall at time t.
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MLR models while Table 8 shows the performance statistics for
the best Athalassa and Public Garden MLR models. For the Ath-
alassa region, the best MLR model was MLR-10�A�, which had a
testing R2 of 0.8196, a RMSE of 0.1952, an AARE of 2.5143, and
a Max ARE of 11.9900. MLR-10�A� had the following param-
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Fig. 1. Athalassa
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Fig. 2. Athalassa LM
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eters: WD�t-1�, T�t�, T�t-1�, and T�t-2�. Fig. 5 compares the ac-
tual water demand for the Athalassa region with the water
demand forecasted using model MLR-10�A�. It can be seen that
both the peaks and troughs are relatively well forecasted.

For the Public Garden region, the best MLR model was MLR-
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1�PG�, which had a testing R2 of 0.8133, a RMSE of 0.1932, an
AARE of 2.4806, and a Max ARE of 12.5852. MLR-1�PG� had
the following parameters: WD�t-1�, T�t�, T�t-1�, R�t�, R�t-1�,
CR�t�, and CR�t-1�.
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Artificial Neural Network Analysis

Tables 2–5 show the individual model performance statistics for
the 60 ANN models developed in this study for both the Athalassa
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and Public Garden regions. Table 6 shows the performance statis-
tics for the best model for each type of method for the Athalassa
and Public Garden regions. Tables 7 and 8 show the average
performance statistics for each type of method �LM, RP, CGPB,
and MLR� for both the Athalassa and Public Garden regions.

For all of the ANN models, it was determined that 15 neurons
in the hidden layer produced the highest coefficients of determi-
nation and as such each of the 60 models used 15 neurons in the
hidden layer.

ANN Results for the Athalassa Region

For the Athalassa region, it can be seen from Table 6 that the best
ANN model overall was LM-1�A�, which had a testing R2 of
0.9462, a RMSE of 0.1255, an AARE of 2.1467, and a Max ARE
of 11.1821. LM-1�A� had the following parameters: WD�t-1�,
T�t�, T�t-1�, R�t�, R�t-1�, CR�t�, and CR�t-1�. The best RP ANN
model for the Athalassa region was RP-10�A�, which had a testing
R2 of 0.9007, a RMSE of 0.1678, an AARE of 2.2311, and a Max
ARE of 12.1537. And finally, the best CGPB ANN model for the
Athalassa region was CGPB-1�A�, which had a testing R2 of
0.9418, a RMSE of 0.1626, an AARE of 2.0949, and a Max ARE
of 11.9275. Figs. 6–8 compare the actual water demand for the
Athalassa region with the water demand forecasted using LM-
1�A�, RP-10�A�, and CGPB-1�A�, respectively. It can be seen that

Table 6. Average Performance Statistics for Each Type of Method for A

Method R2 training R2 validation

LM ANN 0.9516 0.8937

RP ANN 0.9265 0.8855

CGPB ANN 0.9284 0.8920

MLR 0.8288
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the LM-1�A� model is slightly better than the best MLR, RP, and
CGPB models at forecasting sharp increases in water demand as
well as forecasting low water demand, compared to LM-1�A�,
MLR-10�A�, RP-10�A�, and CGPB-1�A� under forecast low water
demand.

For the Athalassa region, it can be seen from Table 7 that the
LM ANN method had the highest average training R2 �0.9516�,
the second highest average testing R2 �0.9233�, the lowest average
RMSE �0.1437�, the lowest average AARE �2.0987�, but that it
also had the highest average Max Are �13.7500�.

When comparing the best ANN model for the Athalassa region
�LM-1�A�� with the best CGPB model for the Athalassa region
�CGPB-1�A��, it was found that the LM model had a testing R2

that was 0.46% more accurate, a RMSE that was 29.6% more
accurate, an AARE that was 2.4% less accurate, and a Max ARE
that was 6.7% more accurate. When comparing LM-1�A� with the
best RP model �RP-10�A�� for the Athalassa region, it was found
that the LM model had a testing R2 that was 4.8% more accurate,
a RMSE that was 33.7% more accurate, an AARE that was 3.9%
more accurate, and a Max ARE that was 8.7% more accurate.
When comparing LM-1�A� with the best MLR model �MLR-
10�A�� for the Athalassa region, it was found that the LM model
had a testing R2 that was 13.38% more accurate, a RMSE that

a, Nicosia

testing
RMSE
�ML/d� AARE Max ARE

.9233 0.1437 2.0987 13.7500

.9150 0.1822 2.4761 13.0845

.9274 0.1773 2.4208 13.1621

.8034 0.2012 2.6342 12.7960
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Table 8. Performance Statistics for the Best Model for Each Type of Method for Athalassa and Public Garden, Nicosia

Model R2 training R2 testing
RMSE
�ML/d� AARE Max ARE

Athalassa

MLR-10�A� 0.8383 0.8196 0.1892 2.5143 11.9900

LM-1�A� 0.9526 0.9462 0.1255 2.1467 11.1821

RP-10�A� 0.9401 0.9007 0.1678 2.2311 12.1537

CGPB-1�A� 0.9473 0.9418 0.1626 2.0949 11.9275

Public Garden

MLR-1�PG� 0.8385 0.8133 0.1872 2.4806 12.5852

LM-10�PG� 0.9567 0.9174 0.1366 1.9727 9.7623

RP-10�PG� 0.9423 0.9001 0.1655 2.2712 10.4138

CGPB-7�PG� 0.9350 0.9074 0.1743 2.2086 11.2556

Note: A=Athalassa, PG=Public Garden, MLR=multiple linear regression, LM=Levenberg-Marquardt, RP=resilient back-propagation, CGB
=conjugate gradient Powell-Beale, R2=coefficient of determination, RMSE=root-mean-square error, AARE=average absolute relative error, and Max
Table 7. Average Performance Statistics for Each Type of Method for Public Garden, Nicosia

Method R2 training R2 validation R2 testing
RMSE
�ML/d� AARE Max ARE

LM ANN 0.9434 0.8949 0.9201 0.1557 2.2284 12.1869

RP ANN 0.9194 0.8776 0.9137 0.1927 2.5918 12.9916

CGPB ANN 0.9266 0.8870 0.9193 0.1827 2.4266 13.1695

MLR 0.8211 0.8011 0.2031 2.6342 13.9830
ARE=maximum absolute relative error.
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was 55.5% more accurate, an AARE that was 17.12% more ac-
curate, and a Max ARE that was 68.3% more accurate.

For the Athalassa region, it can be seen that overall the best
models were the LM ANN models, followed by the CGPB ANN
models, followed by the RP ANN models, followed by the MLR
models.
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ANN Results for the Public Garden Region

For the Public Garden region, it can be seen from Table 6 that the
best ANN model overall was LM-10�PG�, which had a testing R2

of 0.9174, a RMSE of 0.1366, an AARE of 1.9727, and a Max
ARE of 9.7623. LM-10�PG� had the following parameters:
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WD�t-1�, T�t�, T�t-1�, and T�t-2�. The best RP ANN model for the
Public Garden region was RP-10�PG�, which had a testing R2 of
0.9001, a RMSE of 0.1655, an AARE of 2.2712, and a Max ARE
of 10.4138. And finally, the best CGPB ANN model for the Public
Garden region was CGPB-7�PG�, which had a testing R2 of
0.9053, a RMSE of 0.1743, an AARE of 2.2086, and a Max ARE
of 11.2556.

For the Public Garden region, it can be seen from Table 8 that
the LM ANN method had the highest average training R2

�0.9434�, the highest average testing R2 �0.9201�, the lowest av-
erage RMSE �0.1557�, the lowest average AARE �2.2284�, and
the lowest average Max Are �12.1869�.

When comparing the best ANN model for the Public Garden
region �LM-10�PG�� with the best CGPB model for the Public
Garden region �CGPB-7�PG��, it was found that the LM model
had a testing R2 that was 1.3% more accurate, a RMSE that was
27.6% more accurate, an AARE that was 11.9% more accurate,
and a Max ARE that was 15.3% more accurate. When comparing
LM-10�PG� with the best RP model �RP-10�PG�� for the Public
Garden region, it was found that the LM model had a testing R2

that was 1.9% more accurate, a RMSE that was 27.6% more
accurate, an AARE that was 15.1% more accurate, and a Max
ARE that was 6.7% more accurate. When comparing LM-10�PG�
with the best MLR model �MLR-10�PG�� for the Public Garden
region, it was found that the LM model had a testing R2 that was
11.3% more accurate, a RMSE that was 41.4% more accurate, an
AARE that was 28.5% more accurate, and a Max ARE that was
42.5% more accurate.

For the Public Garden region, as with the Athalassa region, it
can be seen that overall the best models were the LM ANN mod-
els, followed by the CGPB ANN models, followed by the RP
ANN models, followed by the MLR models.

Use of Occurrence of Rainfall versus Actual Amount
of Rainfall in Models

For both the Athalassa and Public Garden regions and for all three
different types of ANNs �LM, RP, and CGPB�, Models 4, 5, 8,
and 9 demonstrate that the weekly peak water-demand series in
both regions is better described with the use of the occurrence or
nonoccurrence of rainfall rather than the actual rainfall amount.
ANN models using the rainfall amount �LM-4/5/8/9, RP-4/5/8/9,
and CGPB-4/5/8/9 for both Athalassa and Public Garden� pro-
duced an average testing R2 of 0.9180, an average RMSE of
0.1506, an average AARE of 2.0971, and an average Max ARE of
13.6272. ANN models including the occurrence or nonoccurrence
of rainfall �LM-1/6/7, RP-1/6/7, and CGPB-1/6/7� produced an
average testing R2 of 0.9261, an average RMSE of 0.1462, an
average AARE of 2.2532, and an average Max ARE of 12.7852.
This suggests that the peak weekly water-demand process in
Nicosia is better correlated with the occurrence or nonoccurrence
of rainfall rather than the amount of rainfall.

Discussion

Overall, it was found that for both the Athalassa and Public Gar-
den regions of Nicosia, the LM ANN models were more accurate
than all the other types of models for forecasting peak weekly
water demand, followed by the CGPB ANN models, followed by
the RP ANN models, followed by the MLR models. The MLR
models most likely did not perform as well as the ANN models

because MLR equations can only capture relationships of a pre-

JOURNAL
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specified functional form, and as such they may not always be
sufficient to accurately predict the nonlinear nature of the vari-
ables involved. In this study, the best peak weekly water-demand
forecasting ANN model �which had as inputs the previous weekly
peak water demand, the maximum temperature of the current and
previous week, the maximum temperature of the previous week,
the total rainfall of the current week, the total rainfall of the
previous week, the occurrence/nonoccurrence of rainfall from the
current week, and the occurrence/nonoccurrence of rainfall from
the previous week� had a coefficient of determination of 0.95 in
testing for the Athalassa region of the city of Nicosia, Cyprus. As
mentioned earlier, this ANN model was trained with a LM train-
ing algorithm. In Bougadis et al. �2005�, the best ANN model
�which had as inputs the previous weekly peak water demand, the
temperature of the current week, and the total rainfall of the cur-
rent week� had a coefficient of determination of 0.81 in testing for
the city of Ottawa, Canada. This ANN model was trained with a
gradient-descent training algorithm. In Jain et al. �2001�, the best
ANN model �which had as inputs the previous total weekly water
demand, the temperature of the current week, and the occurrence/
nonoccurrence of rainfall of the current week� had a coefficient of
determination of 0.87 for the city of Kanpur, India. This ANN
model �which had two hidden layers� was trained with a gradient-
descent training algorithm. It can be seen that the accuracy of the
weekly water-demand ANN forecasting model developed in this
study was high when compared to similar studies.

It was found that the peak weekly water demand in Nicosia is
better described with the use of the occurrence or nonoccurrence
of rainfall rather than the actual rainfall amount. This supports the
findings of Jain et al. �2001� and Adamowski �2008�, but is op-
posite to the findings of Bougadis et al. �2005�.

The present study focused on the modeling of peak water-
demand forecasts using climatic variables in addition to past
water demands. The work could potentially be improved if other
variables, which affect water demand, were to be examined. Ex-
amples of socioeconomic variables that could be investigated in-
clude housing characteristics �number of bathrooms, number of
rooms, size of garden, household size, and the number of people
in the house�, property values, land use �residential, commercial,
or industrial�, economic status �house income�, day of the week
�including weekday, weekend, and holidays�, and water price. Of
these variables, it is most likely that the day of the week �week-
day, weekend, or holiday� and water price could potentially im-
prove the short-term water-demand forecasts. Examples of
climatic variables not used in this research that could be investi-
gated in future studies include evaporation, evapotranspiration,
wind speed, relative humidity, cloud amount, and sunshine
amount. Unfortunately, not all of the above data are readily avail-
able, and often do not exist at all. Nevertheless, if the aforemen-
tioned socioeconomic and climatic variables are available, it is
possible that different combinations of driving variables could
potentially improve the forecasting ability of the various methods
explored in this study.

In future short-term urban water-demand forecasting studies, it
would also be useful to compare the use of LM, RP, and CGPB
ANNs with RBF ANNs, Elman network ANNs, or coupled wave-
let ANNs.

Conclusions

The motivation for this study was to investigate two important

issues that have not been investigated in literature concerning
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short-term peak water-demand forecasting. Based on the results
of this study, the following can be concluded: �1� LM ANNs are
more accurate than CGPB and RP ANNs, as well as MLR, for
urban weekly peak water-demand forecasting in Nicosia; and �2�
rainfall occurrence or nonoccurrence is more significant than the
amount of rainfall in determining the peak weekly water demand
in Nicosia.
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Notation

The following symbols are used in this paper:
B � regression coefficient;

CR � occurrence or nonoccurrence of rainfall;
L � lead time for PI calculation;
N � number of data points used;
R � amount of rainfall;
T � maximum temperature;

WD � water demand;
ȳi � mean value taken over N;
yi � observed peak weekly water demand in

coefficient of determination calculation;
ŷi � forecasted peak weekly water demand in

coefficient of determination calculation;
yi−l � observed peak weekly water demand at time

step i−L in PI calculation;
Oi � observed peak weekly water demand in

AARE calculation; and
Di � forecasted peak weekly water demand in

AARE calculation.
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