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ABSTRACT

Accelerated soil erosion, high sediment yields, floods and debris flow are serious problems in many areas
of Iran, and in particular in the Golestan dam watershed, which is the area that was investigated in this
study. Accurate land use and land cover (LULC) maps can be effective tools to help soil erosion control
efforts. The principal objective of this research was to propose a new protocol for LULC classification
for large areas based on readily available ancillary information and analysis of three single date Landsat
ETM+ images, and to demonstrate that successful mapping depends on more than just analysis of reflec-
tance values. In this research, it was found that incorporating climatic and topographic conditions helped
delineate what was otherwise overlapping information. This study determined that a late summer Land-
sat ETM+ image yields the best results with an overall accuracy of 95%, while a spring image yields the
poorest accuracy (82%). A summer image yields an intermediate accuracy of 92%. In future studies where
funding is limited to obtaining one image, late summer images would be most suitable for LULC mapping.
The analysis as presented in this paper could also be done with satellite images taken at different times of
the season. It may be, particularly for other climatic zones, that there is a better time of season for image
acquisition that would present more information.

© 2011 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Since land use and land cover (LULC) attributes in a watershed
directly influence water driven erosion, knowledge of these param-
eters plays an important role in ranking erosion potential and in
prioritizing and developing sustainable watershed and agricultural
management practices (Renard et al., 1997). In many areas of Iran
and in particular in the Golestan dam watershed, which is the area
that was studied in this research, significant overgrazing and inap-
propriate land uses (LU) such as farming on steep hillsides and up-
down tillage are the main contributors to soil erosion, land degra-
dation and flooding (Japan International Cooperation Agency,
2005; Lar Consulting Engineering, 2007). These problems have sig-
nificant economic ramifications through their negative impacts on
available land resources, land productivity, infrastructure and
water quality (Sharifi et al., 2002). Accurate LULC maps can be
effective tools in aiding soil erosion control efforts. Such maps
can play an important role in watershed management as a whole
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and help in deciding what sort of lands are capable of sustaining
agriculture and which are not (Cihlar, 2000; Renschler and Harbor,
2002). Large amounts of data are required for developing such
LULC maps and remote sensing can be a source of accurate, de-
tailed information over large areas. Remotely sensed data and
the potential to distinguish between different characteristics of
land features from this data provides great potential for rapidly
creating accurate LULC maps (Homer et al., 2004).

LULC classification is one of the most widely used applications
in remote sensing. There are many approaches that have been used
to correlate image data with vegetation characteristics. Over the
last few decades, numerous studies have shown the efficacy of sa-
tellite imagery in characterizing vegetation types (Joshi et al.,
2006; de Asis and Omasa, 2007; Focardi et al., 2008), forests (Lab-
recque et al., 2006; Sivanpillai et al., 2007), and crops (Cohen and
Shoshany, 2002; Wardlow et al., 2007). Chust et al. (2004) evalu-
ated the ability of morphological indices and landscape analysis
to test the improvement of land cover (LC) classification reliability
in a mountainous area. They were able to define 12 LC categories
using an image segmentation method (based on edge detection
originated by abrupt changes in the intensity of neighboring
pixels) and a supervised classification (maximum likelihood classi-
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fication) of a Landsat Thematic Mapper (TM) satellite image. In
addition, Hagner and Reese (2007) calibrated the maximum likeli-
hood method for classification of nine primary forest types in the
CORINE land cover mapping project.

Several vegetation indices that combine reflectance of two or
more wavelengths in different ways have been developed and used
in characterizing vegetation growth and development (Jackson and
Huete, 1991; Zheng et al., 2004). Some widely used indices are the
Normalized Difference Vegetation Index (NDVI), Difference Vege-
tation Index (DVI), Ratio Vegetation Index (RVI), Greenness Index
(GI), Soil Adjusted Vegetation Index (SAVI), Transformed SAVI
(TSAVI), Modified SAVI (MSAVI), and Perpendicular Vegetation In-
dex (PVI). The basis of most vegetation indices is the estimation of
photosynthetically active radiation (Joel et al., 1997).

There are several distinct growth periods during a growing sea-
son and classification of vegetation characteristics depends on the
presence or absence of vegetative cover and the condition of that
vegetation at the time of the acquired image. Many researchers
have mentioned that a significant correlation exists between spec-
tral data and different vegetation growth parameters (Tucker,
1979; Thenkabail et al.,, 2004; Tian et al., 2007; Houborg and
Boegh, 2008). Guerschman et al. (2003) recommended that, when
possible, three images (spring, early-summer, late-summer) be
used in the identification of summer crops, winter crops and range-
lands. Using five Landsat TM image dates from a single year, Oetter
et al. (2000) were able to create a map of 20 LULC classes. Lucas
et al. (2007), comparing single and multi-date Landsat Enhanced
Thematic Mapper (ETM+) images for vegetation classification,
found that multi-date imagery allowed for a more accurate classi-
fication of different vegetation types. In another study, Maxwell
et al. (2004) were able to identify four major LU types (bare soil/
sparse vegetation, rangeland, urban, and riparian) and three crop
types (corn, sorghum, and soybeans) using only bands 2 and 4 of
a single late summer Landsat Multi-spectral Scanner (MSS) image.

The Iranian Forest, Range and Watershed Management Organi-
zation has been involved in mapping the LULC for the last 45 years
using aerial photographs and topographic maps. Recently, satellite
images have been used for such LULC classification, in a manner
different from that proposed in this paper. The problems surround-
ing existing LULC maps are as follows: (i) Agricultural lands (irri-
gated farming and dry farming) have been mapped with visual
interpretation techniques on optical image composites and field
investigations. These polygon boundaries have been found to not
be accurate and have overlapped with other classes. (ii) Further,
on the same maps, an initial field investigation showed that low
density forest and different rangeland classes have significantly
overlapped. (iii) About 15% of the land area was classed as ‘mixed’;
separation into individual classes was not possible.

Because of the frequent difficulty in obtaining multi-date
images for a single year for all the study areas of interest, the goal
of the present study was to develop a new protocol for LULC clas-
sification using a large study area (4511.8 km?) based on readily
available ancillary information plus analysis of three single date
Landsat ETM+ images. The study area chosen was the Golestan
dam watershed in Iran.

2. Materials and methods
2.1. Study area

With an area of 4511.8 km?, Iran’s Golestan dam watershed is
located between 55°21’ and 56°28'E longitude, and 36 44’ and
37°49'N latitude, in the northeast portion of Golestan Province
(Fig. 1a). This sub-watershed of the Gorgan River watershed is
composed of a complex combination of mountains, hills, plains
and rivers. The highest elevation is 2492 m above mean sea level

and the lowest elevation is 47 m. Because of its geographic situa-
tion and topography, a wide range of climates prevail across the
different portions of the Golestan dam watershed: from semi-arid
in the north-west and south to humid in the central portion
(Fig. 1b). Mean annual precipitation ranges from 195 to 700 mm
and mean annual air temperature from 8.5 to 17 °C. March is the
month of greatest rainfall, and June to October are the dry months
(Japan International Cooperation Agency, 2005; Lar Consulting
Engineering, 2007).

Existing landform maps show roughly half (49.3%) of the Gole-
stan dam watershed to be mountainous, with the remaining land-
forms being: 30,743.6 ha (6.8% of total area) river alluvial plains;
8,038.7 ha (1.8%) piedmont plains; 8654 ha (1.9%) gravelly fans;
33,664.2 ha (7.5%) upper terraces; 8230 ha (1.8%) river terraces;
and 139,630 ha (30.9%) hills (Saadat et al., 2008). Different sedi-
mentary rocks such as limestone, sandstone, shale, dolomite, marl
along with conglomerate, loess sediments and alluvium underlay
the area (Banaei, 1993). Located in this area, the 920 km? Golestan
Forest National Park has been recognized by UNESCO as part of the
international network of Biosphere Reserves (Japan International
Cooperation Agency, 2005). Agriculture is also an important sector
in the Golestan dam watershed. The main crops are wheat (Triti-
cum astivum L.), barley (Hordeum vulgare L.), sunflower (Helianthus
annuus L.), watermelon (Citrullus lanatus (Thunb.)), rice (Oryza sati-
va L.) and cotton (Gossypium hirsutum L.) (Banaei, 1993). Acceler-
ated soil erosion, high sediment yields, floods and debris flow are
serious problems in the Golestan dam watershed (Sharifi et al.,
2002; Japan International Cooperation Agency, 2005).

2.2. Materials
The following image and map materials were used in this study:

(i) Growing season Landsat ETM+ images: spring (10 May,
2003), summer (20 July, 2000), and late-summer (09 Sep-
tember, 2001). It should be noted that the images are from
different years, but lack of availability necessitated this lim-
itation. As such, for this study it was assumed that the
images are representative of their respective seasons.

(ii) 1:25,000 scale digital topographic maps with 10 m contour
lines prepared by the National Cartographic Center of Iran
and the Forest, Range and Watershed Management Organi-
zation (based on 1993 aerial photos). These were mainly
used for geo-referencing satellite images and for some
ground-truthing,.

(iii) Two digital ancillary layers were also collected to assist in
the interpretation and classification of the remotely sensed
data. These were a 1:25,000 scale landform map prepared
by Saadat et al. (2008), and a 1:50,000 scale climatic zone
map based upon de Martonne’s dryness index, prepared by
Lar Consulting Engineering (2007).

(iv) Ground-truthing was collected for the purpose of supervised
and NDVI classification and classification accuracy assess-
ment. These data were collected in the same month as each
image was acquired (May, July and September), but 4-
6 years after the images were taken (details below).

(v) ERDAS Imagine (version 8.7) and ArcInfo (version 9) soft-
ware were used for image classification and data analyses.

2.3. LULC classification and mapping

2.3.1. General description

LULC classification is one of the most widely used applications
in remote sensing. The most commonly used approaches include
unsupervised classification, supervised classification, image
segmentation and NDVI. Each of these methods has their own
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Fig. 1. The study area (a) location, (b) climatic zones.

restrictions and advantages. However, none of them individually
can create an acceptable level of accuracy in producing LULC maps.
Using the technique of object-based image segmentation, detailed
information in the study area can be gathered effectively from the
analysis of satellite images and certain ancillary data. In response
to this, a new protocol was proposed in this research study as a
way to combine the advantages of these methods and enhance
the quality of LULC maps. The research methodology and proposed
protocol have been shaped using a multidisciplinary and hierarchi-
cal approach.

For classification of each of the three Landsat ETM+ images, the
study proceeded in five steps (Fig. 2): (i) preprocessing of the
images, (ii) random extraction of a training sampling location: an
unsupervised classification and two digital ancillary layers served
in identifying potential LULC areas to aid in identifying sampling
points, (iii) supervised classification of the image into LULC classes,
(iv) enhancement of the LU classification via image segmentation
and zonal statistics, and (v) enhancement of the LC classification
via NDVI and climatic zones and creation of a final LULC map. Upon

completion of all these processes the accuracy of the classifications
were evaluated for each imaging date and comparisons were made.

2.3.2. Step i: Preprocessing of the images

An improved spatial resolution and geo-referenced Landsat
ETM+ image for the study area was created. Landsat ETM+ images
have 8 individual bands, each representing a single layer of contin-
uous imagery. Given their low spatial resolution (60 m), the ther-
mal bands (bands 6.1 and 6.2) were not used. The images’ non-
thermal bands (30 m) were combined into a multilayer image
and clipped with a 150 m exterior buffer around the study area
boundary (Fig. 2a, operations 1 and 2). Image fusion (or pan-sharp-
ening) techniques have proven to be effective tools for providing
better image information (Pohl and Van Genderen, 1998; Zhang,
2004). As such, because of the fragmented nature of the landscape,
the 30 m data might not capture all details, and thus the 30 m mul-
tilayer image was fused with the 15 m panchromatic band (band 8)
using the PCA method (Fig. 2a, operation 3). The PCA method was
used because a major goal of this technique is to reduce data file
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size yet retain the spectral information of the six ETM+ bands (1-5, 1987). Geo-referencing was carried out for the image using 160
7). This algorithm is mathematically rigorous (Welch and Ehlers,

ground control points taken from 1:25,000 topographic maps
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Fig. 2 (continued)

(Fig. 2a, operation 4). The coordinate system used in the topo-
graphic maps was the Universal Transverse Mercator (UTM) zone
40 with spheroid and datum WGS84.

2.3.3. Step ii: Extraction of a training sampling location map
Training sampling locations were chosen to encompass a full
variety of potential LULC classes across the entire study area. Since
this study encompassed a relatively large watershed (>4500 km?),
with different climatic zones and a complex combination of moun-
tains, hills, and plains, two ancillary layers (4 climatic zones and 7
landform types, see Section 2.2) were combined to generate a map
of 24 unique ‘initial homogeneous areas’ (Fig. 2b, operation 5).
Concurrently, on each Landsat ETM+ image the Iterative Self-Orga-
nizing Data Analysis Technique (ISODATA) was performed. This is a

type of unsupervised classification, and based on the natural
groupings of pixels. Based on this method, applying a 95% conver-
gence threshold and maximum iterations of 12 resulted in the gen-
eration of a raw classification map with 25 classes (Fig. 2b,
operation 6). This map was then overlaid with the ‘initial homoge-
neous areas’ map (Fig. 2b, operation 7) creating a potential LULC
(homogenous areas) map with 195 classes. Since each driven class
has similar characteristics (similar land form, climate zone and
spectral range), this map was used in an important supportive role
for identifying appropriate training sampling locations across the
entire study area. Based on these homogeneous areas, the 485
training sampling locations were extracted (Fig. 2b, operation 8)
using a stratified random sampling procedure as described by
Stehman (1999). Thirteen of these sites were essentially inaccessi-
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ble due to physical barriers or remoteness from roads. These were
then replaced by 13 more accessible sites with the same classes.
Because urban areas and water bodies represent less than 1% of
the total area and they are easily recognized visually on the images,
these entities were ignored for field visits.

2.3.4. Step iii: Supervised classification of the image into LULC classes

Ten classes were used for the supervised classification to gener-
ate an LULC map. LU was classified into 6 categories as follows:
irrigated farming (IF), dryland farming (DF), forest (F), rangeland
(R), urban (U), and water bodies (W). Then, according to vegetation
density, F and R were further classified into LC: high density forest
(F1, cover >70%), medium density forest (F2, 40% < cover < 70%),
and low density forest (F3, cover <40%); high density rangeland
(R1, cover >30%, mostly between 30% and 50%), medium density
rangeland (R2, 15% < cover < 30%), and low density rangeland
(R3, cover <15%). Thus there are 10 LULC classes in all; six land
uses with two of these (F and R) being sub-classified into three
vegetation cover densities.

To obtain the required ground-truth data for supervised classi-
fication, extensive field information was collected at the same 485
locations stipulated above in the same month as that in which each
Landsat ETM+ image was acquired (May, July and September). A
topographic road map (1:25,000) and a GPS unit were used to visit
each location and without prior knowledge the location was placed
into one of the 10 LULC classes (Fig. 2c, operation 9). In order to ob-
tain the best possible results, these sampling locations were visited
by experienced agronomists with local knowledge. The data col-
lected were averaged over an area immediately surrounding each
location point representing 9-25 image pixels. With this ground-
truth data a maximum likelihood supervised classification was

performed using an area of up to 100 pixels. At this stage, a pri-
mary classified LULC map for each of the three images with 10 clas-
ses was created (Fig. 2c, operation 10). In order to increase the
accuracy of these maps a x? threshold at a 90% confidence level
was applied to the results. This process identified 1,205,324 pixels
(6% of the total pixels) which had a 10% or greater chance of being
misclassified. These pixels were put into class ‘0’ and defined as
‘unknown’ areas (Fig. 2c, operation 11 and decision #1). Within
these unknown areas, 26 additional random field location points
were selected to visit (Fig. 2c, operations 12). Again a supervised
classification was applied to the original 485 locations plus these
26 additional locations (Fig. 2c). Then a 90% confidence level anal-
ysis was repeated and an area of 183,276 pixels was identified as
“unknown”. Since this area encompassed only small pixel groups
and in all represented less than 1% of the total area, this data
was left as classified. The resulting image was termed the ‘second-
ary classified map’ (Fig. 2¢, output).

2.3.5. Step iv: Image segmentation and zonal statistics

In an effort to further increase classification accuracy, an image
segmentation algorithm was applied to the Landsat ETM+ images
(Fig. 2d, operation 13 and 14) using the Bonnie Ruefenacht algo-
rithm (Ruefenacht et al., 2002). This method classifies raster
images based on pixel values and locations. All 6 bands of ETM+
were used in this process. The region size was set at 5 pixels and
the Spectral Threshold Distance was set at 8 via trial and error,
the aim being to maintain data integrity while also optimizing
computer processing time and feature extraction. The resulting
segmented image was then combined with the ‘secondary classi-
fied map’ of Fig. 2c. Image segmentation is able to separate objects
of varying size, shape and homogeneity. The main task of image
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Table 1
Error matrix of classification process of the Landsat ETM+ imagery of 10 May, 2003.
LULC Ground-truth data New classified User’s accuracy (%)
IF DF F1 F2 F3 R1 R2 R3
IF 78 8 1 1 1 0 2 1 92 85
DF 6 146 0 11 10 3 178 82
F1 2 0 49 0 0 0 0 0 51 96
F2 2 0 1 73 2 0 0 0 78 94
F3 0 5 3 81 0 0 0 89 91
F (Total) 4 5 209 0 218 96
R1 1 7 0 0 6 72 9 97 74
R2 0 12 0 0 0 10 126 5 153 82
R3 0 8 0 0 0 5 18 42 73 58
R (Total) 1 27 6 289 323 89
Total sites visited 89 186 51 77 92 98 165 53 811
220 316
Producer’s accuracy % 88 78 96 95 88 73 76 79
95 91

Overall accuracy (OA) for LULC classification = 82%.
Overall accuracy (OA) for LU classification = 89%.

Table 2

Error matrix of classification process of the Landsat ETM+ imagery of 20 July, 2000.
LULC Ground-truth data New classified User’s accuracy (%)

IF DF F1 F2 F3 R1 R2 R3
IF 80 8 1 0 1 0 0 0 920 89
DF 5 156 0 0 1 4 2 168 93
F1 2 0 50 1 1 0 0 0 54 93
F2 2 0 0 75 1 0 0 0 78 96
F3 0 5 0 1 85 3 1 0 95 89
F (Total) 4 5 214 4 227 94
R1 0 0 0 0 4 92 2 0 98 94
R2 0 7 0 0 0 152 2 163 93
R3 0 10 0 0 0 0 6 49 65 75
R (Total) 0 17 4 305 326 94
Total sites visited 89 186 51 77 92 98 165 53 811
220 316
Producer’s accuracy % 90 84 98 97 92 94 92 92
97 96

Overall accuracy (OA) for LULC classification = 92%.

Overall accuracy (OA) for LU classification = 93%.

segmentation was to create a set of non-overlapping segments objects (raster to vector format) but it is unable to classify them,

(polygons). This algorithm merges groups of pixels into polygon thus the need for combining the images (the segmented ETM+
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Table 3

Error matrix of classification process of the Landsat ETM+ imagery of 09 September, 2001.

LULC Ground-truth data New classified User’s accuracy (%)
IF DF F1 F2 F3 R1 R2 R3

IF 88 0 0 1 1 0 1 0 91 97
DF 1 180 0 0 0 3 3 1 188 96
F1 0 0 51 0 0 0 0 0 51 100
F2 0 0 0 75 0 0 0 0 75 100
F3 0 0 0 1 88 3 0 0 92 96
F (Total) 0 0 215 3 218 99
R1 0 0 0 0 3 91 9 2 105 87
R2 0 2 0 0 0 1 150 5 158 95
R3 0 4 0 0 0 0 2 45 51 88
R (Total) 0 6 3 305 314 97
Total sites visited 89 186 51 77 92 98 165 53 811

220 316
Producer’s accuracy % 99 97 100 97 96 93 90 85

98 96

Overall accuracy (OA) for LULC classification = 95%.
Overall accuracy (OA) for LU classification = 97%.

and the secondary classified map) with zonal statistical analysis
(Fig. 2d, operation 15). The zonal statistics present a distribution
of each LULC within each segmented polygon. The reason for image
segmentation is to use the resultant polygon vector map in combi-
nation with the supervised classification raster map and zonal sta-
tistics to generate a new classified polygon map. The idea behind
this is to eliminate mixed pixels. It was found that for the six LU
classes, the majority distribution was always more than 90% within
any one segmented polygon. Thus each segmented polygon was
fully classified to the 90% majority creating one layer for each of
the six LU classes (Fig. 2d, operation 16).

2.3.6. Step v: Enhancement of the LC classification and creation of a
final LULC map

For the LC classes (F1, F2, F3, R1, R2 and R3) another approach
was required since in this case the results of the majority distribu-
tion classification via zonal statistics were much lower than 90%.
To address this, each Landsat ETM+ image was clipped so as to
show only the R and F entities as defined by the results of step
iv. Subsequently, an NDVI was applied to both (Fig. 2e, operations
17 and 18). From the original 511 (485 + 26) ground-truth loca-
tions, 128 were known to be F and 241 were known to be R. Using
these ground-truth values, NDVI values for each satellite image
were grouped into six ranges; F1, F2, F3 and R1, R2 and R3. The re-
sults of the NDVI values (shown below in Section 3.1) for F showed
little overlap. However R1, R2, and R3 had significant overlap. Thus
an additional factor, ‘climate’, was introduced (Fig. 2e, operation
19). It was found that by grouping the R1, R2 and R3 values into
temperate-semi-arid, cool-semi-arid, sub-humid and humid zones
(Fig. 1b), much of the data overlap was eliminated. The resulting
layers (F1, F2, F3, R1, R2 and R3) were merged with the IF, DF, U
and W class maps (Fig. 2e, operation 20) to generate a final LULC
map (Fig. 3).

2.3.7. Map accuracy assessment

To evaluate the accuracy of the LULC map, reference sampling
locations were chosen to encompass a full variety of LULC classes
across the whole study area. Since this study encompassed a rela-
tively large watershed of 451,183 ha which included a variety of
climatic conditions, the LULC map was overlaid with the climatic
zones such that a full range of conditions would be sampled. This
overlay map was used for identifying appropriate reference sam-
pling locations across the entire study area. In total, 811 sites were
extracted based on the stratified random sampling procedure as
described by Stehman (1999). Class decisions were based on

observing an area around the sampling location equal to 9-25 im-
age pixels. These sampling locations were visited by experienced
agronomists with local knowledge. Statistically, all 811 sites
should have been visited, but the watershed is so large and some
areas so remote that 18 sites had to be replaced with more acces-
sible locations.

Finally, an error matrix was generated comparing land cover
classifications from the map and the ground-truth classifications.
The extent to which these two classifications agree was defined
as the map accuracy according to the procedure of Congalton
(1991). It should be noted that the field reference data was col-
lected in the same month as each image yet acquired from 4 to
6 years after the image was taken. To address the issue of LULC
changes that may have occurred over this time, local farmers were
interviewed. The interviewed farmers were able to categorically
state information about land use changes from the time of image
acquisition up to now, so this information was used (LU changes
were few; about 0.3%). As for vegetation conditions in the past,
they were less certain and thus this information was not used.

3. Results and discussion
3.1. Results

Upon completion of all steps in Section 2.3 a final LULC map was
created (the late-summer image, which yielded the classification
result shown in Fig. 3). The area of LULC classes for the study area
using Landsat ETM+ images acquired in spring, summer, and late-
summer are shown in Fig. 4. Low density rangeland (R3) presented
the widest variance (32-42%) in area values between spring, sum-
mer, and late-summer Landsat ETM+ images. Variance in area val-
ues for F3, IR, DF and R2 were 6-10%, 2-5%, 1-5% and 2-3%,
respectively. The least variance between seasons was obtained
for F1, F2 and R1 (all less than 1.5%).

Based on ground-truthing, the accuracy of the three finalized
LULC maps derived from the Landsat ETM+ images acquired in
spring (10 May, 2003), summer (20 July, 2000), and late-summer
(9 September, 2001) was evaluated. For each of these images, an
error matrix was generated (Tables 1-3). The accuracy parameters
were calculated according to the procedure of Congalton (1991).
Note that since U and W represent less than 1% of the total area
(Fig. 4), they were excluded from any accuracy analysis. The pro-
ducer’s accuracy (PA) is a measure of how correct a classification
is. As presented in Fig. 5a, LULC PA ranged from a low of 73% in
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classification, (c) OAs of the LULC and LU maps.

the case of R1 (using the Landsat ETM+ imagery acquired in spring)
to a high of 100% in the case of F1 (using Landsat ETM+ imagery ac-
quired in late-summer). Values for the remaining four LU classes
(before F and R were divided into LC classes) ranged from a low
of 78% in the case of DF (using Landsat ETM+ imagery acquired
in spring) to a high of 99% (Fig. 5b) in the case of IF (using Landsat
ETM+ imagery acquired in late-summer). The user’s accuracy (UA)
is a measure of how well the classification process captured all
occurrences of any of the eight LULC types (excluding U and W);
this ranged from a low of 58% (Table 1) in the case of R3 (using
Landsat ETM+ imagery acquired in spring) to a high of 100%
(Table 3) in the case of F1 and F2 (using Landsat ETM+ imagery ac-
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Fig. 6. The NDVI values for all sample locations in F and R based upon the Landsat
ETM+ images acquired in (a) spring (May, 2003), (b) summer (July, 2000), and (c)
late-summer (September, 2001).

quired in late-summer). UA for the four LU classes ranged from a
low of 82% (Table 1) in the case of DF (using Landsat ETM+ imagery
acquired in spring) to a high of 99% (Table 3) in the case of F (using
Landsat ETM+ imagery acquired in late-summer). For comparison,
Lucas et al. (2007) classified forest, marshy grasslands, bracken, dry
heath, and semi-improved grasslands with a PA of 100%, 65%, 62%,
48% and 47%, respectively, using multi-date Landsat ETM+
imagery.

In general, the highest PAs and those which varied the least be-
tween seasons were obtained for F, indicating that forests are the
easiest to identify (Fig. 5a and b). In the same figure, PA values
for DF, IF, and R tended to show greater variance between spring,
summer, and late-summer Landsat ETM+ images. Sivanpillai
et al. (2007) were also able to classify forested areas better than
non-forested areas using AVHRR imagery.

3.2. Single date imagery discussion

Referring to Fig. 5c, the late-summer (09 September, 2001)
Landsat ETM+ imagery presented the best overall results, with an
overall accuracy (OA) of 95% for LULC classes and 97% for LU clas-
ses. The spring (10 May, 2003) Landsat ETM+ imagery presented
the poorest results with an OA of 82% for LULC classes and 89%
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for LU classes. The summer (20 July, 2000) Landsat ETM+ imagery
presented intermediary results with an OA of 91% for LULC classes
and 93% for LU classes. Similarly, Sedano et al. (2005), using MODIS
imagery in southern Africa, found that late summer gave the best
results and spring the poorest.

The spring Landsat ETM+ imagery produced the least accurate
results, particularly with respect to R (R1, R2 and R3) and DF. This
is likely the result of two factors. At low elevations, spring is well
advanced and what will become R3 is, in the spring, due to March
rains, and infested with weeds thus making it seem like R1. Fur-
thermore, at high elevations spring has not yet arrived and the
grazing of the previous year tends to make R1 look like R3. And fi-
nally, R, DF, and IF are all, in the early spring, infested with weeds
to a similar degree. Plowing, irrigation and grazing, all of which im-
pact weed populations differently, have not as yet occurred. For
example, in the column under DF (Table 1), of the 186 sites visited,
27 are mis-classed as R and eight as IF.

Using the summer (20 July, 2000) Landsat ETM+ imagery al-
lowed for better discrimination of R (R1, R2 and R3) than did the
spring image. However, the values for DF and IF (84% and 90%,
respectively) were still consistently below the OA (91%). This is
likely because wheat and barley (both occurring on both DF and
IF) are harvested in June and July thus making them both look like
DF once harvested. Cotton (IF), watermelon (DF), and sunflowers
(mostly DF) are sown from April to mid June (spring) and harvested
in late July to mid October. The long period of planting for these
crops results in a relatively large variation of reflectance for each
during the summer period, making differentiation difficult.

Using the late summer (09 September, 2001) Landsat ETM+
imagery allowed for the best discrimination of DF and IF with a
PA of 97% and 99%, respectively. This was due to the fact that at
this time of year most crops at different locations in the study area
are harvested. The reflectance values obtained are thus for soil, and
not vegetation reflectance, and IF soils would likely have a dis-
tinctly higher moisture content than DF soils, making them rela-
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Fig. 8. Grouping NDVI values (based upon the three image times) of R1, R2 and R3
sample locations into two climatic zones (a) temperate-semi-arid zone (b) cool-
semi-arid, sub-humid, and humid zones.

tively easy to differentiate. The values of PA for R1, R2 and R3
(93%, 90% and 85%, respectively) using the late-summer Landsat
ETM+ imagery were below the OA (95%). This is likely the result
of overgrazing which is common in the area. By the end of the sea-
son overgrazing will make R1 look like R3. Further, due to over-
grazing, R3 can look like DF. It can be seen that local agronomic
knowledge is helpful in understanding relative classification
accuracies.

3.3. NDVI value analysis

Because LC classes (F1, F2, F3, R1, R2 and R3) were the most dif-
ficult to discriminate, plots of NDVI values for all ground-truth
locations for F and R were created (Fig. 6). The first thing that is evi-
dent from these plots is that F1, F2 and F3 exhibit little to no over-
lap. Thus NDVI is sufficient for differentiating F1, F2 and F3, if F is
first isolated from R (Fig. 7a). R1, R2 and R3 do show significant
overlap (Fig. 7b), thus a parameter in addition to NDVI is required
for differentiation. By trial and error it was found, for all images,
that by grouping R1, R2 and R3 plots into two climate zones (one
temperate-semi-arid and the other all other climatic zones
clumped together), differentiation was improved. This improve-
ment likely occurs because vegetation is dependent on climate
and rangeland vegetation is rapidly dynamic due to climate com-
pared to forest vegetation.

Fig. 7a shows that F3 (low density forest) has the widest vari-
ance in NDVI values compared to F1 and F2. This is as expected
since F1 and F2 present a more uniform and dense canopy cover;
F3 being sparsely vegetated comes closest to and is most easily
confused with R1. Also, the average NDVI value for all F1, F2 and
F3 decreases over the season (with F3 the most). It is likely that
F3 decreases the most because some of the reflectance in F3 is
due to shrubs, which would on average dry out over a dry growing
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season more than trees would. Further, some F3 is used for grazing
while F1 and F2 are not.

Fig. 8a and b show that NDVI values for R1, R2, and R3 have the
widest variance in spring, and that NDVI values decrease over the
season with the vast majority of this decrease occurring in early
summer. These results are to be expected since spring is the time
of highest vegetation (for rangeland), yet with the lack of rain
and overgrazing in summer the vegetation is quickly reduced.
The lower NDVI values from summer and late summer show that
R1, R2 and R3 have, for a long time, relatively low vegetation cover
(relative to IF and F).

Other studies have also used a number of ancillary layers such
as climatology and topography to aid in the identification of vege-
tation types (Belda and Melia, 2000; Homer et al., 2007; Lucas
et al., 2007). In our study, a landform map and climatic zones were
used to assist in the interpretation and classification of remotely
sensed data for LULC. The results show that successful mapping de-
pends on more than just the analysis of reflectance information.
Incorporating climatic and topographic conditions helped delin-
eate what was otherwise overlapping information. Subsequently,
knowledge of local vegetation conditions such as the occurrence
of weeds in spring and shrubs within F3 helped to interpret vari-
ance and the level of reflectance observed.

4. Conclusions and recommendations

This study encompassed a relatively large watershed of
451,183 ha which included a variety of vegetation cover from high
density forest to low density rangeland. Accurate LULC maps can
play an important role in aiding watershed management as well
as helping in deciding what sort of lands are best suited for sus-
taining agriculture and in what manner this agriculture should
be practiced. In this study, in order to extract and identify various
LULC classes, Landsat ETM+ images from the growing season
(spring, summer and late summer) were used. Further, a landform
map and climatic zones were used to assist in the interpretation
and classification of the remotely sensed data.

This study proposed the use of a unique combination of proven
classification steps to create a successful protocol for accurately
classifying LULC types. The protocol enhances initial reflectance
based classification with the use of image segmentation and sup-
plemental segregation via the use of ancillary information (climatic
and landform). The results show that accurate classification de-
pends on more than just analysis of reflectance information. Spe-
cifically, incorporating climatic and landform information helps
increase LU classification accuracy and NDVI can be used to sepa-
rate overlapping LC classifications.

This study illustrated that the highest producer’s accuracies
(PA) and those which varied the least between seasons were ob-
tained for F, indicating that forests are the easiest to identify.
Low density forest (F3) had the widest variance in NDVI values
compared to F1 and F2. This is as expected since F1 and F2 present
a more uniform canopy cover. Further, some F3 is used for grazing
while F1 and F2 are not. NDVI values from summer and late sum-
mer images were consistently lower for R1, R2 and R3 when com-
pared to IF and F, and the largest portions of NDVI decrease
occurred from spring to summer, with little further decrease into
late summer.

The study corroborates other studies, finding that late summer
images present the best information for LULC classification (OA of
95%). It was found that knowledge of local agronomic conditions
helps interpret reflectance variance within a classification and
change of reflectance within a classification over the growing
season.

Since similar ancillary layers (climate and landform maps) and
Landsat ETM+ images (and also ASTER images or other potential

multi-spectral images with medium spatial resolution) are avail-
able for all of Iran, it is recommended that the new protocol pre-
sented in this paper be applied in different geographic locations
in Iran. Because many of the processes used in this classification
protocol, like the hierarchy of classes and multiple layers of seg-
mentation and classification (some of which are driven by the-
matic and not only spectral data) are actually embedded in the
new paradigm of digital image interpretation known worldwide
as object-based image analysis (OBIA), it is recommended that
other available and powerful computing tools and a genuine ob-
ject-based image analysis guided by a semantic network be used
in these areas and the results be validated. It is also recommended
that in the future, additional research be conducted on the support
vector machine (SVM) method, which has a robust algorithm, to in-
crease accuracy during the classification process. The results of
these studies will make it clear if this method can be considered
universal for developing LULC maps. Further, it is expected that
knowledge of local vegetation conditions (specific vegetation cover
types, and when during the growing season they occur and at what
elevation) and knowledge of human interventions such as grazing
and irrigation can help interpret reflectance variance within a clas-
sification and the level of reflectance observed. It is therefore rec-
ommended that further studies such as this one incorporate the
documentation of such factors. Use of such data could elicit new
relationships between image reflectance and land management.
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